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The importance of precollege mathematics achievement is well documented, but the complex relationships between

different measures of precollege mathematics achievement and engineering outcomes has not been fully explored. The

purpose for this study was to better understand the interrelationship between common measures of precollege

mathematics achievement and success in post-secondary engineering. The principal research question was ‘‘How are

precollege mathematics achievement measures associated with intercorrelated engineering course success for those who

graduated with an engineering degree?’’ We used extant enrollment and transcript data in our canonical correlation

analysis to assess the relationship between two variant sets: measures of precollege mathematics achievement and

engineering course success. The precollegemathematics variant set was statistically significantly related to the engineering

learning outcomes. Two canonical functions were retained and examined: (1)Mathematics Placement Exam performance

was themost influential factor in the precollegemathematics variant, and (2)Advanced PlacementCalculus BC scores and

time to graduation were the most influential factors. The results contribute a parsimonious model of mathematics

achievement variables useful in capturing prerequisites for successful completion of an engineering degree. We provide

evidence that there is no meaningful relationship between taking and passing the Calculus AB or BC exams and time to

graduation and credit earned. These results can be useful to school counselors and science, technology, engineering, and

mathematics teachers for advising high school students.
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1. Introduction

Considerable attention has been devoted to exam-

ining factors that influencematriculation and reten-

tion of engineering students. One result of this

interest is that there exists consistent and credible

evidence that precollege mathematics success is

requisite for both matriculation and retention [1–

4]. Students who are underprepared in mathematics
either do not choose to matriculate into post-

secondary programs or experience a much higher

than normal dropout rate due to requirements to

take non-credit bearing courses and increased time

to graduation [5], as well as delays in taking courses

in their subject area of interest. The nature of

precollege mathematics success and what this

notion entails must be deeply discussed however,
as the available support systems and experiences

that influence academic success are different for

every student. In fact, a renewed interest in studying

students’ opportunities to learn mathematics has

come about in response to the need to diversify the

engineering workforce.

The types and amount of admission data colleges

receive from students often reflect differences in
opportunities to learn mathematics. Opportunities

to learn can be characterized as ‘‘what students
learn in school is related to what is taught in

school’’ [6, p. 541]. These opportunities to learn

are often equated to the quality of resources and

instruction a student receives or has access to in

school settings, which varies drastically. Students

with more opportunities to learn often have multi-

ple measures of precollege mathematics achieve-

ment compared to students with fewer
opportunities.

Historically, precollege mathematics success was

measured by student performance on the mathe-

matics sections of the Scholastic Aptitude Test

(SAT) and the American College Test (ACT).

However, because calculus is an essential engineer-

ing mathematics content strand [7], many engineer-

ing programs within selective colleges and
universities often consider Advanced Placement

(AP) Calculus scores as necessary predictors of

student retention and success in engineering. The

AP Calculus exam is administered in two versions,

AB which covers the content of one semester of

calculus while the BC exam covers the content

covered in both semesters of calculus. This emer-

ging emphasis is problematic given that not all
students have access to AP Calculus and, more
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importantly, traditionally underrepresented stu-

dents of color often disproportionately lack access

to these advanced mathematics opportunities [8],

thus placing them at a disadvantage during the

admissions process.

The role of college admission exams on engineer-
ing retention has been extensively examined over

the last two decades [9–12]. What remains under-

examined is the interrelationship between different

measures of precollege mathematics achievement

and pertinent engineering learning outcomes. Dif-

ferences in opportunities to learn mathematics in

high school cannot be controlled despite differential

effects on admission into and success in colleges of
engineering. However, colleges of engineering are

well equipped to make more informed admission

decisions based on scores from precollege mathe-

matics assessments [9, 12]. Thus, the purpose for

this study was to examine the interrelationships

between a set of precollege measures of mathe-

matics achievement and a set of engineering learn-

ing outcomes. These relationships have important
implications for the preparation, recruitment, and

retention of a more diverse engineering workforce

[13, 14]. Therefore, we examined how precollege

mathematics achievement measures are associated

with intercorrelated engineering learning outcomes

for those who graduated with an engineering

degree.

2. Precollege Mathematics Achievement
and Engineering Success

Early access to advancedmathematics is considered

one of the most important opportunities to learn

within U.S. schools. It is commonly understood

that students who have access to high-quality
mathematics preparation courses in high school

are often better prepared for post-secondary engi-

neering mathematics [13, 14]. This is not the only

predictor of engineering success, but few research-

ers have attempted to understand the nexus

between multiple measures of precollege mathe-

matics achievement and engineering success [15,

16]. Calculus readiness is arguably one of the most
important considerations for admission and reten-

tion for colleges of engineering [13, 17]. This rela-

tionship is analogous to the relationship between

success in eighth-grade algebra and success in high

school mathematics. Historically, researchers

observed that college admission exams were good

predictors of calculus readiness and subsequent

engineering success [17]. Many scholars have
argued that the direct measurement of calculus

readiness is a better predictor of student prepara-

tion for engineering [13, 14]. The direct measure-

ment of calculus readiness is often assessed by

standardized tests and college-designed calculus

readiness examinations. A current trend is that

universities are developing their own measures of

calculus readiness.

2.1 College Admissions Exams

A combination of SAT and ACT scores and high

school grades has consistently been shown to be the

best predictor of freshman college engineering suc-

cess [18, 19]. These measures have not been uni-

versally implemented; across studies researchers

frequently use different sets including ACT/SAT

scores, rank in high school, SAT Math Test scores,
ACT scores, and GPA, as predictors [17–21]. In a

meta-analysis, there was a statistically significant

long-term retention effect of 0.36 for SAT mathe-

matics scores [22]. Overall, using standardized

admission tests (e.g., SAT and ACT) and GPA as

measures of academic preparedness has been

shown, with limited success, to be associated with

engineering success and useful for admissions deci-
sions.

2.2 Credit Equivalency Exams

Early access and achievement in engineering-

related mathematics, specifically calculus, is

another important precollege measure of mathe-

matics achievement that warrants consideration.

AP Calculus courses provide students a means to
enter colleges and universities with earned credits in

engineering-related mathematics. In an examina-

tion of 10 years of admission and completion data,

Bowen et al. [13] found that calculus readiness was a

statistically significant predictor of engineering gra-

duation rates. Participation in either AP Calculus

AB or BCwas the strongest predictor of subsequent

achievement in college engineering-related science
and mathematics [23].

Historically, AP course access was restricted to a

select group of ‘‘superior’’ high school students.

Often, these students were judged by their teachers

to be capable of engaging with work aligned to

university curricula. Because AP Calculus has been

shown to be a statistically significant predictor of

post-secondary engineering courses, students who
are denied access toAPCalculusmay also be denied

an opportunity to enter engineering careers. Admis-

sion to AP courses is typically determined by a

student’s prior achievement and teacher recommen-

dations. Even today, AP Calculus is often restricted

to the top 5 to 10% of students. Therefore, other

precollege measures of mathematics achievement

may better reflect the abilities of a more diverse
population of potential engineering students. Some

argue that the academic superiority of the students

taking AP exams mediates the relationship between

student AP Calculus achievement and engineering
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success [24]. To circumvent this challenge, many

exclusive colleges require potential STEM majors

to complete a calculus readiness exam prior to

placement in or exemption from college calculus.

2.3 Calculus Readiness Exams

Entry into the engineering calculus sequence by a

calculus readiness exam is an emergent trend. This
is partly informed by the observed moderate to

large effects within models examining the relation-

ship between calculus readiness measured by pre-

college examinations and engineering retention

[25]. The relationship between success in an initial

calculus course and student retention in engineering

has only increased national attention and support

for this practice [26]. Mandatory calculus readiness
exams partly function by enabling advisors to guide

freshman STEM majors to enroll into appropriate

mathematics course sequence. Understanding the

relationship between different measures of calculus

readiness and student success is important because

this knowledge could be leveraged to create alter-

native models for admitting talented engineering

students.

3. Problem Statement

Recruiting and retaining talented engineering stu-
dents is an arduous and complex task. One of the

most challenging aspects of this task is identifying

engineering talent effectively, efficiently, and equi-

tably. Participation trends indicate that U.S. high

school students take substantially more college

admissions exams (e.g., SAT and ACT) compared

to AP exams. Compared to the approximately 1.9

million students who completed the SAT in 2023
[27], a little more than 400 thousand completed

either the Calculus AB or BC exam in 2023 [28].

Thus, students complete about four times as many

SAT exams compared to AP Calculus exams. It

would be remiss not to acknowledge that the SAT is

considered one of the standard exams for college

admission, while AP exams tend to measure mas-

tery of college-level material. Nonetheless, the
participation trends for SAT exams demonstrate

the potential for engineering colleges to select from

a larger and possibly more diverse pool of learners

should these test scores be shown to contribute

effectively either directly or indirectly as a mediator

to overall model prediction.

Moreover, traditionally underrepresented popu-

lations of potential engineering learners, such as
students of color, women, and first-generation

students, are more likely to have an SAT or ACT

mathematics score than an AP Calculus score given

that the SAT/ACT exams are more affordable and

have fewer barriers to access [29]. Thus, under-

standing the nature of the relationship between

these and other precollege mathematics achieve-

ment measures can potentially inform efforts to

recruit and retain a more diverse population of

engineering students.

The desire to predict a student’s potential to
succeed in engineering-related mathematics is one

of the most important factors in admission deci-

sions. The majority of extant data have focused on

measures of mathematics achievement in isolation

rather than examining the combined and unique

relationships between different measures of precol-

lege mathematics achievement and measures of

engineering success. Understanding the relation-
ship between a student’s precollege mathematics

achievement profile and pertinent measures of

engineering success is critical to selecting students

on their propensity for success regardless of their

access to specific opportunities to learn mathe-

matics. Here, we focus on college admissions

exams (i.e., ACT and SAT), AP mathematics

exams, and calculus readiness tests as three mea-
sures that constitute a student’s mathematics

achievement profile. Only in direct comparisons is

it possible to disentangle both the unique and

combined effects of these key predictors.

Our aim is to better understand the combined

relationships between these academic achievement

measures and three measures of engineering success

pertinent to students, administrators, faculty, and
parents. These three engineering achievement mea-

sures are as follows: GPA, time to graduation, and

credits earned. We selected these factors because

they have practical implications that resonate with

administrators, faculty members, students, and

parents. Essentially, all four constituents would

like for students to graduate faster, learn more by

completing more credits, and demonstrate compre-
hension as measured by GPA. By examining the

interrelationships between these two sets of factors,

we can inform college preparation advisors and

those who recruit potential students to obtain a

more representative population of potential engi-

neers. Thus, the overarching research question that

framed this study is the following: How are pre-

college mathematics achievement measures asso-
ciated with intercorrelated engineering learning

outcomes?

4. Method

4.1 Participants

Extant transcript and enrollment data for under-

graduate engineering students (n = 2,322) from a

university in the Southwestern United States were

analyzed for the present study. The majority of the

participants were male (74.2%) and non-first-gen-
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eration college students (78.8%). Although the

majority of the participants were White (59.7%),

there was representation from Asian (11.8%),

Latinx (22.2%), and Black (2.0%) students. The

remaining students were racially unidentified

(4.3%). All of the participants were true freshman,
non-transfer students, and data were collected from

their first semester until graduation from the Col-

lege of Engineering.

4.2 Precollege Achievement Measures

Five measures of mathematics achievement were

utilized to assess the relationship between mathe-
matics achievement and engineering learning out-

comes. The first two measures were the

mathematics sections of two college entrance exam-

inations (i.e., SAT and ACT). The SAT is a multi-

ple-choice paper-and-pencil exam designed to

measure a high school student’s college readiness.

The SAT comprises two main sections – the mathe-

matics section and Evidence-Based Reading and
Writing. There is an optional essay section that can

be included in a student’s assessment for an addi-

tional fee. The mathematics section is scored from

200 to 800 [30].

The ACT is also a multiple-choice paper-and-

pencil exam; however, unlike the SAT, the ACT has

four sections (i.e., mathematics, reading, science,

and English). Each section is scored on a 36-point
scale [31]. The third and fourth measures utilized in

the present study were the AP Calculus AB and BC

exams.

TheAP courses are college equivalent classes that

students can take in high school to earn college

credit by successfully passing the AP exam. Accord-

ing to the College Board, Calculus AB represents a

single semester of calculus and Calculus BC is
equivalent to two semesters or a year of calculus

[28]. Both exams contain multiple-choice and free-

response items and are scored on a scale from 1 (No

Recommendation) to 5 (Extremely Qualified) [32].

Because the Calculus BC exam represents two

semesters of calculus, students receive a Calculus

AB subscore that represents the students’ perfor-

mance on the 60% of the material on the Calculus
BC exam that measures content from the Calculus

AB exam.

The fifth measure of precollege mathematics

achievement was a mathematics placement exam

designed by the Department of Mathematics at the

university. Officially titled the Math Placement

Exam (MPE), the exam takes approximately 90

minutes to complete and is used to assess students’
requisite mathematics skills to pursue calculus. As

such, the MPE was developed as a calculus readi-

ness exam. This is an important tool to help

advisors determine which mathematics courses

incoming students should take. In fact, the College

of Engineering and the College of Science (with the

exception of students from the Department of

Biology) require all incoming freshmen to take

this exam regardless of prior indicators of mathe-

matics success. Incoming students take the MPE
online and are proctored by university personnel.

Practice problems can be accessed as freely avail-

able PDF files.

4.3 Engineering Learning Outcome Measures

Success in engineering was assessed using three

learning outcomes derived from student transcript
data. According to the American Society of Engi-

neering Education [33], only 33% of engineering

students complete their degrees in four years. Thus,

the first measure was time to graduation measured

in years, from the first semester of enrollment to

graduation. The second measure was college GPA

as reported on the student’s transcript. Because all

participants in the present study graduated, GPA is
used to represent the student’s level of mastery or

achievement. The third engineering learning out-

come measure was credits earned. All undergradu-

ate engineering degrees require 128 credit hours.

The relationship between each of the measures and

the two variates is presented in Fig. 1. The first

variate (i.e., precollege mathematics achievement)

consists of five mathematics achievement measures.
The second variate (i.e., engineering success) con-

sists of three engineering learning outcomes. The

canonical correlation is the correlation between the

two variable sets or variates, represented by the

double-headed arrow connecting the two variates.

4.4 Data Analysis

To examine the relationship between precollege
mathematics achievement and engineering learning

outcomes, a canonical correlation analysis (CCA)

was performed. A CCA is a statistical technique for

examining the multivariate relationship between

two sets of two or more constructs/variables [34].

The goal of using a CCA is to unpack the relational

patterns present between two canonical variates

(i.e., two distinct variable sets combined to form a
pair). According to Thompson [35], CCA is a

unified approach to many univariate and multi-

variate statistical procedures. Moreover, CCA has

been considered the second most encompassing

analytic technique within the general linear model

[36–37], only surpassed by structural equation

modeling. A CCA can be used to replicate any

other (except for structural equation modeling)
analytic technique in the general linear model [38].

A CCA was chosen because our purpose was to

assess relationships between a set of precollege

mathematics achievement predictor variables and
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a separate set of variables representing engineering

learning outcomes and to disaggregate the unique

and common variance of each variable and unfor-

tunately structural equation modeling cannot pro-

vide this information. Note that due to the

correlational nature of CCA, determination of
predictor and outcome variables is essentially arbi-

trary [39]. However, due to the theoretical relation-

ship between mathematics preparation and

engineering success, we argue that it is reasonable

to assume that precollege mathematics success

measures can be considered predictors of engineer-

ing learning outcomes. A CCA will, however, not

facilitate the identification of causal relationships.
Because our objective was to assess the relationship

between variable sets, a CCA was the most appro-

priate analytic technique because it allowed us to

identify the shared and individual contributions to

the relationships presented in our model [40].

Furthermore, the multivariate nature of a CCA

limits the probability of committing a Type I error

[41, 42]. In theory, we could have conduct three
separate regression analyses: one for examining the

relationship between precollege mathematics

achievement measures andGPA, then a subsequent

analysis of credits earned, and a final analysis of

time to graduation. This would have increased the

‘‘test wise’’ error rate, however; thus, doing so was

avoided.

4.4.1 Limitations of CCA

Canonical correlation analysis is an underused
technique because it is not well understood. This

is because, all too often, this multivariate technique

is not taught or covered in depth for those who are

not in a Research Methods graduate program [43].

Generally, in a CCA, a normal distribution of the

variables is not strictly required when canonical

correlation is used descriptively; however, multi-

variate normality can enhance the robustness for
predictive models. Homoscedasticity implies that

the relationship between two variables is constant

over the full range of data, and this increases the

accuracy of canonical correlation. In this case, this

is an affordance over ordinary least squares (OLS)

analyses, because this is one of the assumptions that

the Gauss–Markov theorem applies, and OLS

provides the best linear unbiased estimator only
when heteroscedasticity is controlled [44]. Homo-

scedasticity in CCA is not required for the coeffi-

cient estimates to be unbiased, consistent, and

asymptotically normal, but it is required for OLS

to be efficient [44].

Linearity is an important assumption of canoni-

cal correlation; this technique finds linear relation-

ships between variables within a set and between
canonical variate pairs between sets because non-

linear components of these relationships are not

recognized and so are not captured in the analysis.
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This is an artifact of the theoretical model. If prior

studies have invoked less robust linear techniques

(those subsumed by CCA in the general linear

model) for the same variable, then the theoretical

model is already tested and accepted. In rare

instances, transformation may be useful to increase
linearity, but this will have consequences for any

underlying theory of the relationship among the

variables and should only be undertaken with clear

caveats.

Perhaps the most important concern for CCA is

that of outliers. Outliers have a disproportionate

impact on the results of the analysis, and each set of

variables must be inspected independently for uni-
variate and multivariate outliers. Because of this

very important limitation, it is necessary to avoid

patterns in missing data. In general, the pattern of

missing data is more important than the amount.

Because canonical correlation is very sensitive to

small changes in the data set, the decision to

eliminate cases or estimate missing data must be

considered carefully and avoided when possible.

4.4.2 CA Procedure

After obtaining statistically and practically signifi-

cant results from our CCA, we performed a Com-
monality Analysis (CA), which is a method of

variance partitioning designed to identify propor-

tions of variance in the dependent (criterion) vari-

able that may be attributed uniquely to each of the

independent (predictor) variables as well as propor-

tions of variance that are attributed to various

combinations of independent (predictor) variables

[37]. Although negative commonalities are possible
and may indicate the presence of a suppressor

effect, they should be treated as zero. There are

two pros to CA: (1) it is not dependent on the order

of entry of variables into the analysis, and (2) it

provides accurate information about the variance

accounted for by each variable without variable

overlap. Both unique and common contributions to

explained variance are estimated without respect to
some entry; therefore, variance explained is not

automatically attributed to variables entered ear-

lier.

w>TheCAwascompletedusingagreeduponpro-

cedures [45]. The synthetic canonical variate scores

werecomputedandthestandardizedcanonical func-

tioncoefficientsweremultipliedbytheZ-scoresforthe
measured variables in the criterion variable set to

estimatethescoresontheunmeasuredsyntheticvari-

ables, namedCrit1 andCrit2.We thencalculated the

regressionequationsthatpredictthecriterioncompo-

site scores for all possible combinations of the pre-

dictor variables. Those results were then used to

calculate the unique and common variance compo-

nents for each predictor variable on each composite.
Thiswascalculatedusingaspreadsheet.Thenumberof

components in an analysis equaled (2k-1), where k

equalsthenumberofpredictorvariablesintheset(i.e.,

X predictors, Y components, Z-first order unique

components). Furthermore, there are additional

order variables given the total number of variables.

For example, the second order is common to two

variables,thethirdorderiscommontothreevariables,
andthefourthorderiscommontoall.

5. Results

Descriptive statistics for each of the precollege

mathematics achievement measures and the engi-

neering learning outcomes are presented in Table 1.

The data presented in Table 1 indicated that the

participants in the current study achieved mean

levels of mathematics achievement commensurate

with above-average performance based on annual

national trends on respective mathematics mea-
sures. Because all quantitative analytic techniques

are correlational in nature [46], except for Fuzzy Set

Social Science, our results are an expression of the

correlational relationship revealed through the

analysis and represent those internal relationships.

The largest correlations were observed between

the ACT and SAT, followed by the MPE and the

SAT. All correlations presented in Table 1 were
statistically significant (p < 0.05). On the surface, it
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Table 1. Precollege Mathematics Achievement Summary Statistics and Correlation Matrix

M SD 1 2 3 4 5 6 7 8

1. ACT Math 29.42 3.32 1

2. SAT Math 687.75 65.08 0.72** 1

3. AP Calculus AB 3.65 1.38 0.42** 0.48** 1

4. AP Calculus BC 3.88 1.32 0.45** 0.44 0.79** 1

5. Mathematics
Placement Exam

23.15 11.03 0.34** 0.39** 0.21** 0.22 1

6. GPA 3.24 0.42 0.31** 0.31** 0.35** 0.40** 0.19** 1

7. Time to Graduation 4.07 0.85 –0.09** –0.05 –0.11** –0.14** –0.21** –0.29 1

8. Credits Earned 137.09 23.36 0.15** 0.16** 0.13** 0.15** 0.12** 0.07** 0.004 1

Note: ** indicates that correlation is statistically significant at the 0.01 significance level



may seem that the correlations presented are lower

than expected based on prior studies. However,

upon closer inspection, it is clear correlations

amongst exams are relatively larger than the corre-

lations between the engineering success measures.

This is an important distinction, as most prior
studies reported correlations between mathematics

achievement and individual engineering courses or

exams [47, 48]. The mean GPA was just above 3.0,

and the mean number of years to graduation was

4.21. The average number of credits earned (138.09)

was well over the minimum number of credits

required to graduate (128). Time to graduation

was inversely related to GPA (r = –0.29). These
results indicated that as our participant’s GPA

increased, their time to graduation decreased; like-

wise, as their number of credits earned increased,

time to graduation also decreased. Both relation-

ships make intuitive sense given that earning higher

grades means you earn more credits and graduate

earlier.

5.1 Normality and Multicollinearity

Like in all multivariate statistics, in CCA it is

important to assess the data for normality and

multicollinearity. We assessed distributional prop-

erties for normality, including skewness and kurto-

sis. The univariate skewness of the items tested

ranged from –2.65 to 0.23, and univariate kurtosis
varied between 1.05 and 11.34. Based on West et

al.’s cutoff values, most items indicated a normal

distribution, with skewness values fewer than 2 and

kurtosis values under 7. However, the mathematics

placement examination scores were determined to

be non-normal. A log transformation was used for

analysis purposes and transformed back for inter-

pretation purposes.
The collinearity diagnostics for the precollege

mathematics achievement predictor variables (i.e.,

ACTMath, SATMath, Calculus AB, Calculus BC,

and MPE) were acceptable. Variation inflation

factor scores were substantially below 10, ranging

from 1.40 to 4.19, and tolerance values varied from

0.23 to 0.71. A second set of regression analyses

assessed the multicollinearity among dependent
variables. The results showed variation inflation

factor scores between 1.01 and 1.12 and tolerance

values between 0.89 and 0.99.

5.2 Relationship Between Precollege Mathematics

Achievement and Engineering Learning Outcomes

To address the combined and unique relationships

between precollege mathematics achievement mea-
sures (i.e., ACT Math, SAT Math, Calculus AB,

Calculus BC, and MPE) and engineering learning

outcomes (i.e., GPA, time to graduation, and cred-

its earned), a CCA was conducted using precollege

achievement measures as predictors of engineering

learning outcomes to evaluate the multivariate

shared relationship between the sets of variables.

According to Sherry and Henson [36], the first step

in the interpretation of a CCA is to consider the

variance accounted for effect sizes in the full model
to determine if there are any meaningfully impor-

tant results. As such, we examined the effect sizes

and relevant statistics for the entire model. The

analysis yielded three functions with canonical

correlation coefficients (Rc): 0.41, 0.19, and 0.03.

The first function (Rc1 = 0.41) explained approxi-

mately 20.1% of the variance, and the second

function (Rc2 = 0.19) explained approximately
3.9% of the remaining variance. The final function

(Rc3 = 0.03) explained less than 1% of the variance

and was not statistically significant. Based on the

contextual importance of the relationships exam-

ined in the present study, we argue that these results

have practical and empirical significance that war-

rants further examination.

Table 2 presents the standardized canonical
function coefficients and the structure coefficients

for Functions 1 and 2. Due to the small correlation

and variance accounted for by Function 3, we

focused on relationships present in Functions 1

and 2. In CCA, the number of functions produced

is limited to the smallest number of variables

included in the two variable sets. Although dimen-

sion reduction is often considered in CCA, it is
warranted inmore complex cases where amultitude

of variables are used across the two sets. Structure

coefficients as well as communalities (h2) across the

two functions are also presented for each variable.

Structure coefficients and communalities above

0.45 and 45%, respectively, were underlined for

emphasis in Table 2. The 0.45 benchmark is an

established convention used inmultivariate analysis
[36, 38, 49]. Based on themagnitude of the Function

1 structure coefficients (i.e., structure coefficient (rs)

values of 0.45 or above), it is evident that all five

measures of precollege mathematics achievement

are influential contributors to the relationship

between precollege mathematics achievement and

engineering learning outcomes. Based on the mag-

nitude of the structure coefficients, MPE scores
were the strongest contributors, followed by SAT

and then ACT mathematics scores. Only time to

graduation and GPA made notable contributions

to the relationships modeled in Function 1 based on

the magnitude of their structure coefficients.

Aside from the magnitude of the structure coeffi-

cients, it was also important to examine the signs.

Variables with the same sign are positively related.
Because all the precollege mathematics achieve-

ment measures in Function 1 had the same sign

(i.e., positive), they were positively related. Con-
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versely, time to graduation was negatively related to

GPA and credits earned. This relationship was
logically sound, because if students had a high

GPA, they earned more credits and graduated in

less time. Likewise, students with lower GPAs

earned fewer credits and took longer to graduate.

Relatedly, GPA was the larger contributor to the

relationship presented in Function 1. For our data,

the relationship across variable sets indicated that

all five precollege mathematics achievement mea-
sures were positively related to GPA and credits

earned while inversely related to time to gradua-

tion.

The Function 2 results indicated that Calculus

BCwas the only notable contributor to the relation-

ship between the two variable sets. Likewise, only

time to graduationwas a notable contributor within

the engineering learning outcome variable set for
Function 2 based on the magnitude of the structure

coefficients. Furthermore, there was an inverse

relationship between Calculus BC achievement

and time to graduation, indicating that as student

scores on the Calculus BC exam increased, the time

to graduation decreased. Finally, the communal-

ities (h2) indicated the magnitude of individual

variable contributions across all functions.
The communality coefficient represents the sum

of the squared structure coefficients for each of the

functions interpreted in the analysis. Because only

Functions 1 and 2 were interpreted in the present

study, the h2 was essentially the sum of the squared

structure coefficients for Functions 1 and 2. There-

fore, the contributions to the overall model of

precollege mathematics in order of magnitude
were MPE scores (69.9%), Calculus BC scores

(69.2%), and SATMath Test scores (53.8%). Addi-

tionally, the communality coefficient for GPA was

97.9%, while the communality coefficient for time to

graduation was 80.2%. This indicated that the

influence of the variable GPA was more substantial

than the contribution of the variable time to gra-
duation across both functions. The implications of

these relationships have both scientific and practi-

cal significance.

The Venn diagram (Fig. 2) provides a graphical

depiction of the unique and shared contributions of

MPE,Calculus BC, and SATMathTest scores. The

MPE scores from the CCA also contributed the

most unique variance, followed by SAT Math Test
scores. Combined these two contributed 3.7%of the

variance accounted for in the model (four times the

contribution of Calculus BC scores). This model

clearly indicates good performance in high school

calculus is less powerful in determining engineering

success than scoring well in the commonly available

SAT. The variance common to all variables was

relatively small, in fact just smaller than that of BC
Calculus scores alone. This provides additional

Robert M. Capraro et al.1108

Table 2. Canonical Solutions for Mathematics Dispositions Predicting Mathematics Achievement 1 and 2

Variable

Function 1 Function 2

h2 (%)Coef rs rs2 (%) Coef rs rs2 (%)

ACT Math 0.28 0.63 39.8 –0.11 –0.19 3.6 43.4

SAT Math 0.26 0.66 44.1 –0.42 –0.31 9.7 53.8

Mathematics Placement Exam 0.52 0.72 52.3 0.89 –0.42 17.6 69.9

AB Calculus 0.27 0.48 22.6 –0.24 –0.33 10.8 33.4

BC Calculus 0.31 0.48 23.2 –0.38 0.68 46.0 69.2

rc 0.41 0.19

Time to Graduation –0.29 –0.65 42.5 –0.89 –0.61 37.7 80.2

Credit Earned 0.29 0.42 17.6 0.35 0.40 16.2 33.8

GPA 0.76 0.91 82.8 –0.80 –0.39 15.1 97.9

Note. Structure coefficients (rs) greater than |0.45| are underlined. Communality coefficients (h2) greater than 45% are underlined. Coef =
standardized canonical coefficients.

Fig. 2.VennDiagram of the Unique and Shared Contribution of
Canonical Weights.



evidence that measuring or counting BC Calculus

scores may lead to disappointment to those who

subscribe a large value-added component to BC

Calculus enrollment. These findings raise questions

about the value-added benefit to high school stu-

dents from administrators stretching budgets to
offer calculus. These results possibly offer a ratio-

nale for eliminating high school calculus and repla-

cing it with a more advanced algebra class thereby

reducing perceived deficits for students attending

schools where there is no calculus offered.

6. Discussion

The goal for this study was to parsimoniously

describe the number and nature of mutually inde-

pendent relationships present between precollege

measures of mathematics achievement and engi-
neering learning outcomes. The results of this

study suggest that two meaningful relationships

exist, as evidenced by the two statistically signifi-

cant canonical functions presented. In the sections

that follow, we explain the nature of these relation-

ships as they relate to the preparation, recruitment,

and retention of engineering students.

6.1 Canonical Function 1 Interpretation

The first canonical function represents a pathway to
engineering success that is not contingent upon the

completing calculus prior to college enrollment

based on the contributions of each of the precollege

mathematics measures to the respective relation-

ships within and between measures of engineering

success. The relationship described by the first

canonical function is the strongest suggesting that

all precollege mathematics measures are important
and directly related to each other based on the

shared signs and magnitudes of the structure coeffi-

cients. Student GPA and time to graduation were

important measures in the engineering outcome

variates and were logically inversely related, which

is also important. We describe Function 1 as a

calculus ready pathway to engineering suggesting

that earning high scores on all precollege mathe-
matics achievementmeasures leads to a higherGPA

and shorter time to graduation, and this is perfectly

aligned with the extant research base.

According to the relationship described in Func-

tion 1, the MPE was the most influential measure

related to engineering success, followed by college

admission exams (i.e., ACT and SAT) and then

scores on either AP Calculus exam. Hence, this
function best represents a more traditional mathe-

matics path to engineering success. National test

scores have been used most often as predictors of

engineering success [12]. This result mirrors prior

studies highlighting the utility of calculus readiness

exams as good predictors of engineering retention

[50]. National tests are popular due to their ease of

attainment and their common measure. Further-

more, although racial inequities in AP course access

abound, graduation outcomes of more than

140,000 STEM majors revealed that differential
access to high school courses did not affect post-

secondary STEM enrollment or degree attainment

[51]. These findings add credence to a more precise

and informed approach to engineering student

recruitment efforts.

The MPE was designed by the Department of

Mathematics of our university to predict calculus

readiness for STEM majors, which is one plausible
explanation for its relative importance to the rela-

tionship within and between the variates. More-

over, it is mandatory. This separates it from the AP

Calculus exams, which are neither universally

accessible nor require mandatory student reporting

and prevents it from being upwardly biased. Thus,

the MPE effectively helps in correctly placing

students in an appropriate mathematics sequence
by providing a measure that is better aligned with

the specific university expectations for STEM suc-

cess. In summary, we encourage relevant stake-

holders to consider a calculus readiness rather

than calculus proficient approach to the mathe-

matics preparation of potential engineering stu-

dents that accounts for the possibility of

curricular misalignment between standardized
mathematics exams and the specific objectives

emphasized in respective STEM disciplines.

6.2 Canonical Function 2 Interpretation

The relationship characterized in Function 2 repre-

sents an accelerated calculus approach. The rela-

tionship presented in the second canonical function
is four times weaker but indicates that AP Calculus

BC scores and time to graduation are the most

influential factors across the two variates. This

relationship can be characterized as ‘‘an accelerated

approach.’’ One explanation for this relationship is

that there exists a group of very intelligent students

who embark upon an accelerated path to gradua-

tion based on the completion of two semesters
worth of calculus by excelling on the AP Calculus

BC examination. They take AP courses, use the

credit to forgo both semesters of calculus, and

manage to pass all their classes without earning

top scores; thus, GPA is no longer an influential

measure in the model. This is only one of many

explanations for this trend but based on the sum-

mary statistics provided in Table 1, this is definitely
an important consideration.

There are two other plausible explanations for

this phenomenon, both of which address the short-

comings of depending solely on student access to
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and success in AP courses to determine calculus

readiness. Students who earn calculus AP credit will

forfeit two valuable types of curricula by bypassing

college calculus: (1) the implemented curriculum

and (2) the hidden curriculum. These curricula are

important because they are related to conceptual
knowledge gaps as well as acclimation difficulty,

which can manifest as a lack of belonging in

engineering, both of which attribute to student

attrition [52]. These challenges can create enduring

issues for students throughout their academic

careers.

The implemented curriculum is often different

from the information presented in textbooks. For
instance, many mathematics departments work in

tandem with engineering departments to deliver

calculus sequences that are tailored to address the

learning outcomes most pertinent for success in

engineering. Thus, by bypassing college calculus,

they are missing exposure to explicit conceptual

connections that are reflected in the implemented

curriculum and the knowledge of which is necessary
to understand the role of calculus within engineer-

ing. Therefore, allowing for the possibility of small

gaps in these students’ conceptual understanding of

calculus knowledge that do not prevent them from

finishing but causing some students to struggle

mastering engineering concepts and earning high

grades. This gradation in the level of calculus

achievement weakens the strength of the relation-
ship between precollege measures and GPA and

time to graduation for this group of engineering

students.

Relatedly, an alternative explanation is that

earning high scores in AP calculus prevents some

students from engaging in opportunities to learn

about the elements of the ‘‘hidden curriculum,’’ or

the unique nuances related to the culture of study-
ing engineering that are often instilled in freshman

STEM courses. For example, many engineering

colleges develop student cohorts that take the

same courses in which they develop comradery

forming the foundation of a problem solving com-

munity. Many students on an accelerated engineer-

ing pathway will effectively graduate, but their

transcript and their ability to translate their knowl-
edge into field-specific knowledge may be hindered

by their lack of opportunity to participate in the

community of learners.

6.3 Limitations

Our findings support an emerging idea that deep

mathematical understanding and fluency across
mathematics disciplines were more important to

academic success that relies on mathematics suc-

cess. For example, using hierarchical linear models

and controlling for student demographics and

backgrounds, based on students’ later performance

in college calculus, mastery of the prerequisite

mathematics for calculus (i.e., algebra, geometry,

and precalculus) had a more positive effect on later

academic success than taking a high school calculus

course [53]. Our greatest contribution is that from
our retrospective study we were able to examine the

variables that appear in the vast majority of studies

about engineering success and disaggregate indivi-

dual and combined contributions and the implica-

tions for when and how certain variables were

useful. However, all retrospective studies have

important affordances and limitations. For exam-

ple, retrospective studies can form the basis on
which prospective studies are planned, however,

they depend on extant data that were not originally

designed to collect data for research. Because of

this, some information is bound to be missing,

selection biases may also affect the results and

reasons for differences between groups and lost

cases may lead to bias. Readers need to critically

evaluate the methods and carefully interpret the
results of retrospective studies.

7. Conclusions

Our work makes three unique contributions to the

field. First, we developed a model to examine the

relationship between precollege mathematics
achievement and engineering learning outcomes

by performing a CCA, a ground-breaking

approach. Second, found that some prerequisite

variables and their contribution to predicting

post-secondary engineering success to be meaning-

ful and important for future considerations. Third,

because CCA is one of the most advanced methods

in the General Linear Model, it afforded the ability
to tease out the unique contributions of factors

within the multivariate context to determine the

importance of each of the commonly used vari-

ables. Our key findings is that high school calculus

can help students with post-secondary success, but

it is not sufficient for post-secondary engineering

success. Contrary a popular belief that taking AP

Calculus AB or BC and earning college credit is
fortuitous, from our findings skipping the first two

semesters of college calculus may actually result in

lower grades in college and result in a longer time to

graduation or opting out of a STEM major.

The relationship described by the first canonical

function is the strongest correlation and suggests

that all precollege mathematics measures are

important and are directly related to each other.
That is, their functioning was both necessary indi-

vidually but also, and perhaps more importantly,

provided a synergistic benefit when used in concert

with the other variables.We also demonstrated that
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the MPE is the most influential measure in predict-

ing engineering success, followed by college admis-

sion exams (i.e., ACT and SAT) and then scores on

either of the AP Calculus exams. We encourage

relevant stakeholders to consider a more efficient

approach to assessing the mathematics prepara-
tion, specifically the calculus readiness, of potential

engineering students that accounts for the possibi-

lity of curricular misalignment between standar-

dized mathematics exams and the specific

objectives emphasized in STEM disciplines.

The second canonical relationship, in contrast,

indicates that AP Calculus BC scores and time to

graduation are the only two variables of importance
across the two variates and this relationship is

negative. We posit as an explanation for this

relationship that there exist a group of very intelli-

gent students who embark upon an accelerated path

to graduation by takingAP courses, using the credit

to forgo both semesters of calculus, and managing

to pass all their mathematics classes without earn-

ing top scores in any. As a result, GPA is no longer
an influential measure in the model. If taking and

passing their calculus classes with high grades, then

grades too would have been important. We suggest

that students who use their AP credit to skip taking

calculus in college may lack some of the explicit

conceptual connections necessary to understand

the role of calculus within engineering and that

are reflected in the implemented curriculum. As a

result, there is the possibility that there are small

gaps in these students’ conceptual understandings
of engineering-specific calculus knowledge that do

not prevent them from finishing their degrees but do

cause some of them to struggle unnecessarily and

actually earn lower passing grades than students

who take calculus in college.

Both models provide evidence for the idea that it

is not necessary for students to take a calculus

course while still in high school to succeed in
engineering. Rather, it is important that they have

a strong mathematics foundation that supports

calculus readiness. This finding from our study

extends findings from prior research on mathe-

matics education, which indicates that high school

calculus readiness can be more effective than high

school calculus completion. Hence, we encourage

stakeholders involved in preparing students to
pursue engineering to possibly reevaluate their

curriculum and advising recommendations for

future engineering majors.
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