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In this study, we focus on engineering students’ motivational beliefs and course grades in a two-term college calculus-

based introductory physics sequence (physics 1 and physics 2). We investigated how engineering students’ perception of

the inclusiveness of the learning environment (including their sense of belonging, perceived effectiveness of peer

interaction and perceived recognition) predicts their physics course grades andmotivational beliefs including self-efficacy,

interest, overall physics identity, and overall engineering identity. Using structural equation modeling, we find that

students’ perception of the inclusiveness of the learning environment statistically significantly predicts their physics grades

and motivational beliefs. In particular, students’ engineering identity is statistically significantly predicted by engineering

students’ perception of how they were recognized as a physics person. In addition, we find that the gender differences in

students’ physics self-efficacy, interest, overall identity, and grades were partially mediated by the different components of

students’ perception of the inclusiveness of the learning environment. Our findings suggest that instructors’ focus on

equity and inclusion, and approaches to student recognition, are especially important for supporting students’ engineering

identity and promoting learning for all students in the classroom.
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1. Introduction

Prior studies have shown that women are often

underrepresented in many science, technology,

engineering, and mathematics (STEM) courses

and disciplines [1–11]. For example, despite

women securing a substantial share of all bachelor’s

degrees awarded in the United States, they continue

to be significantly underrepresented in engineering
undergraduate programs [12]. In addition, prior

studies showed that female students leave engineer-

ing fields at higher rates than male students [13].

Moreover, prior studies also show that female

students drop out more frequently from engineer-

ing than from other STEM fields [14]. These studies

suggest that we are largelymissing out on the talents

of half of the population, which not only hinders the
development of engineering fields because of the

loss of talent and diversity, but also hinders women

from pursuing many great career opportunities.

Therefore, efforts to promote participation,

achievement, and continuation of women in engi-

neering fields are important for the development of

both individuals and the society as a whole. Some

prior studies suggest that individuals’ academic
performance and persistence in a field such as

engineering can be influenced by their motivational

beliefs such as self-efficacy, interest and identity in

that domain [15–24]. Students from underrepre-

sented groups in engineering such as women may

not have enough encouragement and role models to
help them develop strong motivational beliefs in

engineering. In addition, the societal stereotypes

and biases in engineering may further undermine

their motivational beliefs and lead to withdrawal

from engineering courses, majors or careers [9, 10,

25–35]. Thus, investigation of students’ motiva-

tional beliefs is important for better understanding

the underrepresentation of women and minority
students in engineering and can be useful for for-

mulating guidelines for developing an inclusive

learning environment and promoting diversity

and equity in engineering fields.

By inclusive learning environment, we refer to an

environment in which all students feel welcome,

valued, and supported. By equity in learning, we

mean that not only should all students have ade-
quate opportunities and access to resources and

have an inclusive learning environment with appro-

priate support and mentoring so that they can

engage in learning in a meaningful and enjoyable

manner, but the course outcomes should be equi-

table. Therefore, inclusiveness is necessary but not

sufficient for equity since inclusiveness does not

guarantee equitable course outcomes. By equitable
course outcomes, we mean that students from all

demographic groups (e.g., regardless of their

gender identity or race/ethnicity) who have the

prerequisites to enroll in the course, on average,

have comparable outcomes, which is consistent
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with Rodriguez et al.’s equity of parity model [36].

The course outcomes include student performance

and their motivational beliefs at the end of the

courses because regardless of the performance, the

motivational beliefs can influence students’ short

and long-term retention in the field such as engi-
neering [37, 38].We note that adequate opportunity

and access to resources, inclusive learning environ-

ment and equitable outcomes are strongly

entangled with each other. For example, if the

learning environment is not inclusive, the outcomes

are unlikely to be equitable.Introductory physics

courses usually serve as a prerequisite for many

engineering courses, and thus for most students
who enrolled in an undergraduate engineering

program, physics is mandatory in their first year.

A study shows that students’ grades in introduc-

tory physics courses predict their performance in

later engineering courses [39]. Moreover, physics

is not only important for engineering students’

knowledge building but may also affect their

attitudes and self-beliefs about being an engineer.
For example, studies have shown that students’

physics motivational beliefs such as self-efficacy

and interest can influence their engineering career

agency [40]. However, physics is also one of the

most stereotyped domains in the sense that it is a

traditionally male-dominated field and has a mas-

culine culture and a masculine public image [41,

42]. In addition, physics is perceived by many
people to depend largely on the innate qualities

of ‘‘brilliance’’ or ‘‘genius’’, which are also typi-

cally attributed to men [10, 43, 44]. These societal

stereotypes not only impact female students’ phy-

sics motivational beliefs but may also dissuade

them from pursuing study in physics-related dis-

ciplines such as engineering. A prior study shows

that physics was the only science subject for which
female engineering students had a lower average

score than male engineering students [45, 46].

Therefore, the gender difference in physics moti-

vational beliefs may partially explain the under-

representation of women in engineering disciplines

and studying the relationship between students’

physics and engineering motivational beliefs may

provide new insights into how to improve the
recruitment, retention, and diversity within engi-

neering. In this study, we aim to understand how

engineering students’ perception of the inclusive-

ness of the learning environment in an introduc-

tory physics course predicts their course outcomes

and engineering identity at the end of the course.

1.1 Students’ Motivational Beliefs Related to

Engineering Learning

The Expectancy-Value Theory (EVT) [47, 48] is one

of the most prominent approaches to the study of

students’ motivational beliefs. In the EVT, expec-

tancy refers to students’ belief in their ability to

succeed in a given task [48]. Value refers to the

subjective task value for students, which can be

differentiated into four components: intrinsic value,

attainment value, utility value, and cost [48]. Intrin-
sic value refers to students’ interest in the task and

the enjoyment they experience from performing the

task. Attainment value reflects how important

students themselves feel it is for them to develop

mastery and do a good job in the field [48]. Utility

value pertains to students’ perception of whether

the task can help them achieve some other goals

[48]. The last value component is cost, which refers
to the assessments of how much effort and time will

be taken to engage in the task as well as the amount

of opportunity cost and stress caused by the task

[48]. In the EVT, students’ learning goals, academic

engagement and performance, and persistence in a

field are impacted by their expectancy of success

and the four components of value [48].

The expectancy component of EVT is closely
related to the concept of self-efficacy in Bandura’s

social cognitive theory, which is defined as one’s

belief in one’s ability to succeed in a specific area or

accomplish a task [49, 50]. Prior research suggests

that self-efficacy is an important motivational belief

of students for them to excel in a domain [19, 51–

53]. Studies have shown that students’ engagement

and performance can be influenced by their self-
efficacy [17, 54–57]. For example, students who

have high self-efficacy tend to see difficulties as

challenges and believe that productive struggles

can help them improve, so they often choose to

take harder courses and ask to do more challenging

problems than students with low self-efficacy, who

usually see difficulties as threats and obstacles to

success [58].
Another importantmotivational belief is interest,

which refers to students’ curiosity, enjoyment, and

engagement in a specific area [59, 60]. Interest is

closely related to intrinsic value in EVT. Studies

have shown that interest can also influence stu-

dents’ learning [54, 60–65]. For example, one

study showed that students’ performance can be

improved by connecting physics courses to stu-
dents’ daily lives or using evidence-based curricula

to make the courses more engaging and interesting

[66]. Prior studies (both experimental and correla-

tional) have also shown that interest can be affected

by self-efficacy [67, 68]. Some other studies show

that interest may also lead to the development of

self-efficacy [69, 70].

In addition, students’ identity in a specific field
such as engineering is another important motiva-

tional belief that influences their career decisions

[40, 71–77]. In prior research, engineering identity
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has been studied from several different perspectives

[78, 79]. For example, some studies consider engi-

neering identity as the combination of multiple

identities such as academic, social, and occupa-

tional identities [80–82]. Some other studies identi-

fied several cognitive, affective, and performance
variables to comprise engineering identity [83–85].

Another widely used definition of engineering iden-

tity is how students see themselves with respect to

engineering or whether they see themselves as an

engineer based on their perceptions and navigation

of engineering related experiences [86–88], which is

also the most relevant definition to our study.

However, studies have shown that many students
have very few direct experiences with engineering

before they enter college [89]. Thus, due to the

interdisciplinary nature of engineering, students’

experiences in other engineering related domains

such as math and science may play a very important

role in the development of students’ engineering

identity [84]. For example, studies have shown that

doing well in math and science courses in high
school has a positive impact on students’ choice of

and persistence in an engineering major and longer-

term career goals [90, 91]. Therefore, studying

students’ motivational beliefs in engineering related

domains, e.g., physics, and how they interact with

engineering identity may help us develop a better

understanding of students’ attrition and retention

in engineering majors.

1.2 Theoretical Framework

In Carlone and Johnson’s science identity frame-

work [92], students’ science identity includes three

interrelated constructs: competence (belief in one’s

competence), performance (belief in ability to per-

form), and recognition (recognition of self and by
others as a ‘‘science person’’). Hazari et al. [93]

adapted this model to physics and added interest to

this model. In addition, Hazari et al. [93] developed

quantitative measures for these constructs and

found that competence and performance factored

into a single construct. Moreover, they separated

recognition of self and by others and used a single

item (‘‘I see myself as a physics person’’) to measure
students’ overall physics identity [93]. In Hazari et

al.’s later studies using structural equation model-

ing, they found that students’ overall physics iden-

tity was predicted by interest, competence/

performance beliefs, and perceived recognition

from other people [40, 84, 94, 95]. This physics

identity framework has been used to study physics

identity of students in high school physics classes
[96, 97] as well as college students with a variety of

majors [94, 98–101], and studies have shown that

students’ physics identity is an important predictor

of their engineering identity [40, 84].

The definition of physics competence/perfor-

mance beliefs is peoples’ beliefs about their ability

to understand and perform physics [93], which is

very similar to the definition of self-efficacy for the

purposes of our research which uses validated

survey data, and our survey items were adapted
from prior studies that use the term self-efficacy

[102, 103]. Moreover, prior studies have shown that

self-efficacy is also an important predictor of stu-

dents’ overall identity [80, 104]. Therefore, in this

study, we will use the physics identity model in

which overall physics identity is predicted by self-

efficacy, interest, and perceived recognition.

According to the field-specific identity frame-
works discussed earlier, individuals’ overall identity

in STEM fields is not only impacted by their own

motivational characteristics but also by their per-

ceived recognition from others. Several studies have

shown that female students did not feel that they

were recognized appropriately even before they

entered college [43, 105, 106]. One stereotypical

view of science is that it is for students who are
very smart or have a natural gift in science [106]. In

general, due to societal stereotypes, being brilliant

or exceptionally smart is usually associated with

boys [44]. One investigation showed that the gen-

dered notions of brilliance are endorsed by children

as young as 6 years old and have an immediate effect

on their interest and identity in science [43]. These

stereotypes and biases also exist in the university
context [107–109]. For example, one study showed

that science faculty participants rated men as more

competent and would like to offer higher starting

salary and more mentoring to male applicants than

the (identical) female applicants even though only

the names were different in the hypothetical infor-

mation they were provided [107]. For female stu-

dents, the experiences of not being recognized as a
science person and the gender-based biases may

accumulate over time and negatively influence

their science and engineering identity.

Moreover, students’ interest and self-efficacy have

also been found to be connected to their interaction

with other people and recognition by them [50, 60].

In the four-phase model of interest development,

Hidi andRenninger pointedout that external factors
such as group work and tutoring can trigger and

maintain people’s interest [60, 62, 110]. In addition,

according to Bandura’s social cognitive theory, an

individual’s self-efficacy can be shaped by verbal

encouragement from others [111, 112]. Prior studies

done by Kalender et al. [108, 113] showed that

students’ perceived recognition not only strongly

predicts their overall physics identity, but also pre-
dicts their physics interest and self-efficacy.

In addition to perceived recognition, students’

sense of belonging and their interaction with peers
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have also been shown to be important aspects of the

inclusiveness of the learning environment [2, 41, 42,

114–118]. For example, if students have a high sense

of belonging in class, they may interact with others

more andwithmore positive attitudes, and theymay

also develop a higher perceived recognition [119]. In
our prior studies, we found that students’ perceived

recognition, sense of belonging, and peer interaction

significantly predict their physics motivational

beliefs and physics conceptual understanding [120–

123]. However, to our knowledge, no prior studies

have investigated the roles played by engineering

students’ perceived recognition, sense of belonging,

and peer interaction in a calculus-based physics
course sequence, in their course outcomes and

engineering identity. Investigating the evolution of

engineering students’ motivational beliefs in the

calculus-based physics course sequence and possible

factors that contribute to this change may help us

develop a deeper understanding of the underrepre-

sentation of women in engineering and how to

develop a more inclusive learning environment in
which all students can thrive.

1.3 The Present Study

In this study, we include engineering students’ self-

reported perceived recognition by others, sense of
belonging, and perceived effectiveness of peer inter-

action as three aspects of students’ perception of the

inclusiveness of the learning environment. We first

studied how students’ motivational beliefs evolve in

a calculus-based introductory physics sequence

(including physics 1 and physics 2) at a large state-

related university in the US. Then, we used struc-

tural equationmodeling (SEM) to investigate the net
effect of each construct of students’ perception of the

inclusiveness of the learning environment on stu-

dents’ course outcomes in physics 2. In this study, we

include students’ academic performance (measured

by course grades) and motivational beliefs (includ-

ing physics self-efficacy, physics interest, overall

physics identity, and overall engineering identity)

at the end of the physics sequence as course out-
comes. We also took into account the effect of

students’ high school preparation, which may also

predict students’ course outcomes. Specifically, we

address the following research questions:

RQ1. Are there gender differences in engineering

students’ academic performance and motiva-

tional beliefs and do they change from physics 1

to physics 2?
RQ2. How do the different components of the

perception of the inclusiveness of the learning

environment in physics 2 (including perceived

recognition, sense of belonging, and perceived

effectiveness of peer interaction) predict engi-

neering students’ academic performance and

motivational beliefs in physics 2 (including engi-

neering identity) after controlling for students’

gender, high school preparation, and their per-

formance and motivational beliefs in physics 1?

RQ3. If gender does not moderate any predictive
relationship in RQ2 (the regression coefficients

among the constructs are not different for women

and men), how does gender directly or indirectly

predict

(a) students’ high school preparation and their

academic performance and motivational

beliefs in physics 1?

(b) the perception of the inclusiveness of the
learning environment after controlling for

students’ high school preparation and their

academic performance and motivational

beliefs in physics 1?

(c) students’ academic performance andmotiva-

tional beliefs in physics 2 (including their

engineering identity) after controlling for

everything else in RQ2?

This study was conducted in a two-term college

calculus-based introductory physics sequence

(including physics 1 and physics 2) at a large

public university. These courses are generally man-

datory and taken by students majoring in engineer-

ing in their first year of university. Physics 1 mainly
includes mechanics, while the main content of

physics 2 is electricity and magnetism. In our

prior work, we found that students’ physics motiva-

tional beliefs decreased from the beginning to the

end of physics 1, and these changes were mediated

by students’ perception of the inclusiveness of the

learning environment in physics 1 [124, 125]. Stu-

dents’ physics motivational beliefs and their engi-
neering identity may change for better or worse

from physics 1 to physics 2 based upon the inclu-

siveness of the learning environment, e.g., depend-

ing on whether students had a high sense of

belonging in the course, whether they felt recog-

nized, and whether their interaction with peers was

positive. We note that for most students in the

calculus-based introductory physics sequence, phy-
sics 2 might be their last formal physics course in

college, so their motivational beliefs at the end of

physics 2 are very important not only for their

engagement in the following courses in engineering,

but also for their short and long-term academic

goals in engineering fields.

Therefore, in this study, we investigated the effect

of the perception of the inclusiveness of the learning
environment (including students’ sense of belong-

ing, perceived effectiveness of peer interaction, and

perceived recognition) on students’ grades and

motivational beliefs (including physics self-efficacy,

Yangqiuting Li and Chandralekha Singh836



physics interest, overall physics identity, and overall

engineering identity) in physics 2 after controlling

for students’ gender and pre-college test scores

(including high school Grade Point Average

(GPA) and Scholastic Assessment Test (SAT)

math scores) as well as their self-efficacy, interest,
overall physics identity, overall engineering iden-

tity, and grades in physics 1. For convenience,

perceived effectiveness of peer interaction is shor-

tened to peer interaction in the rest of the paper.We

note that the learning environment here is not only

the classroom environment but also includes stu-

dents’ experiences outside the class. For example,

students may work together on their homework
after class, and they could also ask for help during

TAs’/instructors’ office hours.

As shown in Fig. 1, the sixteen constructs are

divided into three groups: what we control for,

perception of the inclusiveness of the learning

environment, and outcomes. Students’ gender,

SAT math scores, high school GPA (HS GPA),

and their self-efficacy, interest, overall physics
identity, overall engineering identity, and grades

in physics 1 (Self-efficacy (SE) 1, Interest 1, Physics

Identity 1, Engineering Identity 1, and Grade 1) are

constructs that we control for. Outcomes include

students’ self-efficacy, interest, overall physics iden-

tity, overall engineering identity, and grades in

physics 2 (Self-efficacy (SE) 2, Interest 2, Identity

2, and Grade 2). Perceived recognition (Perceived
Recog), peer interaction (Peer Int) and sense of

belonging (Belonging) constitute the perception of

the inclusiveness of the learning environment. It is

expected that students’ responses to the motiva-

tional survey in physics 1 and physics 2 are

correlated because they are students’ responses to

the same questions pertaining to the same motiva-

tional construct at two different time points. How-

ever, if students’ motivational beliefs changed from

physics 1 to physics 2, we want to study whether the

perception of the inclusiveness of the learning

environment helps to explain the changes and
what role is played by each construct in the

inclusiveness of the learning environment. In addi-

tion, since previous studies suggest that self-efficacy

and interest can influence student learning [54, 57,

60, 62], we also model a direct path from self-

efficacy and interest to grade in both physics 1

and physics 2.

In this study, we first investigated how students’
motivational beliefs changed from physics 1 to

physics 2 and whether there were gender differences

in the constructs studied. Then, we used Structural

EquationModeling (SEM) to study the effect of the

perception of the inclusiveness of the learning

environment on students’ motivational beliefs

including their engineering identity and grades in

physics 2 after controlling for students’ gender, high
school GPA, SAT math scores, and their motiva-

tional beliefs and grades in physics 1.

2. Methods

2.1 Participants and Data Sources

The motivational survey data used in this study

were collected at the end of each course of a two-

term college calculus-based introductory physics

sequence (including physics 1 and physics 2) in

two consecutive school years at a large research

university in theUS. These courses are takenmostly

by students in engineering school for whom they are
mandatory. In this study, we only focus on engi-
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neering major students. Physics 1 mainly includes

mechanics, while the main content of physics 2 is

electricity and magnetism. The paper surveys were

handed out and collected by TAs during the last

recitation class of a semester. In particular, stu-

dents’ self-efficacy, interest, overall physics identity,
and overall engineering identity in physics 1 and

physics 2 were measured at the end of each course,

and their perceived recognition, peer interaction,

and sense of belonging were measured at the end of

physics 2. This is because only after the course can

students answer the survey questions pertaining to

inclusiveness of the learning environment based on

their real experience in the course such as their
interaction with peers, TAs, and instructors. Table

1 shows when each construct was assessed through-

out the course sequence. The demographic data of

students – such as gender – were provided by the

university. Students’ SAT math scores, high school

GPA, and course grades in physics 1 and physics 2

were also obtained from the university records.

Students’ names and IDs were de-identified by an
honest broker who generated a unique new ID for

each student. Thus, researchers could analyze stu-

dents’ data without having access to students’

identifying information.

There were 762 students in physics 1 and 629

engineering students in physics 2 participating in

the survey. However, in this study, we only focused

on 524 students (182 female students and 342 male
students) who took the survey in both courses in

recommended semesters, i.e., physics 1 in Fall

semester and physics 2 in Spring semester because

we wanted to track the same group of students’

motivational beliefs and academic performance in

the two courses in the recommended sequence.

Some possible reasons that some students took

these courses in the off semesters (not recommended
semesters) include students taking Advanced Place-

ment (AP) physics in high school with scores that

exempted them from college physics 1 and directly

enrolling in physics 2 in their first semester, students

repeating physics 1 in the off semester if they did not

perform well the first time, and students putting off

taking at least one of these courses in the summer

semester due to their heavy course load in Fall and
Spring semesters. Most of the participants were in

their first year of university when the study was

conducted.

2.2 Survey Instruments

In this study, our analysis includes three motiva-

tional constructs (physics self-efficacy, physics
interest, and overall physics identity) and three

perception of the inclusiveness of the learning

environment constructs (peer interaction, perceived

recognition, and sense of belonging). The survey

questions for each construct are shown in Table 2.

We adapted these questions from existing motiva-

tional research [93, 103, 126–128] and revalidated

them in our prior work [52, 113, 125–129]. The
validation and refinement of the survey involved

use of individual interviews with students [52, 130,

132, 134], exploratory and confirmatory factor

analysis (EFA and CFA) [135], Pearson correlation

between different constructs and Cronbach alpha

[136, 137].

Physics self-efficacy represents students’ belief

about whether they can excel in physics. In our
survey, we had four items for self-efficacy [103, 126,

127] (Cronbach’s �= 0.79 for self-efficacy in physics

1 and � = 0.81 for self-efficacy in physics 2 [137]).

These items each had four options ‘‘NO!, no, yes,

YES!’’, which is a 4-point Likert scale (1–4). We

also had four items for physics interest [103, 126]

(Cronbach’s � = 0.82 for interest in physics 1 and

� = 0.84 for interest in physics 2). For the item ‘‘I
wonder about how physics works’’, students can

choose from ‘‘Never, Once a month, Once a week,

Every day’’. For the item ‘‘In general, I find

physics’’, students can choose from ‘‘very boring,

boring, interesting, very interesting’’. The remain-

ing two items under interest had a response scale of

‘‘NO!, no, yes, YES!’’. By choosing the four

options, students will get a score from 1 to 4
respectively. For example, if a student finds physics

very boring, they will get one point for this item.

The more interest a student has in physics, the

higher score the student will have for this item.

We had one item for overall physics identity [93],

which corresponds to students’ belief about

whether they designate themselves as a physics

person. We had one item for overall engineering
identity, which corresponds to students’ belief
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Table 1. Time points when different constructs were assessed

Constructs When the constructs were assessed

Gender, SAT Math, High School GPA Pre-college

Grade 1, Self-efficacy 1, Interest 1,
Overall Physics Identity 1, Overall Engineering Identity 1

At the end of Physics 1 (December)

Peer interaction, Perceived recognition,
Sense of Belonging

At the end of Physics 2 (April)

Grade 2, Self-efficacy 2, Interest 2,
Overall Physics Identity 2, Overall Engineering Identity 2

At the end of Physics 2 (April)



about whether they designate themselves as an

engineer. These identity items had response options

‘‘strongly disagree, disagree, agree, and strongly

agree’’, which correspond to 1 to 4 points [138].

In addition, perceived recognition, peer interac-

tion and sense of belonging are the perception of the
inclusiveness of the learning environment con-

structs in our study. Unlike self-efficacy, interest,

and overall physics identity, these three constructs

are directly related to students’ experience in the

course. Perceived recognition (included in percep-

tion of the inclusiveness of the learning environ-

ment) included three items (Cronbach’s � = 0.86)

which represent whether students think they are
recognized as a physics person by other people

including their instructors or TAs, friends, and

family [93, 139, 140]. Peer interaction (which

includes four items) [127] represents whether stu-

dents have a productive and enjoyable experience

when working with peers (Cronbach’s � = 0.92).

Sense of belonging is about students’ feelings of

whether they belonged in the physics class [116],

and it included five items [128] that each had a 5-

point Likert scale: ‘‘not at all true, a little true,

somewhat true, mostly true and completely true’’

(Cronbach’s � = 0.87). Two sense of belonging
items (‘‘I feel like an outsider in this class’’ and

‘‘Sometimes I worry that I do not belong in this

physics class’’) were reverse coded, which means

that a higher score in these two items represents a

lower sense of belonging. Students’ score on each

construct is the average score of all items in that

construct.

2.3 Analysis

First, we calculated the mean score for each con-

struct for each student. Then we used a t-test [141,

142] to compare students’ responses in physics 1

and physics 2 and to compare responses for female

and male students. Then, we conducted Structural
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Table 2. Survey items for each construct studied

Construct and Item Lambda p value

Overall Physics Identity

I see myself as a physics person. 1.000 <0.001

Overall Engineering Identity

I see myself as an engineer. 1.000 <0.001

Physics Self-Efficacy (Cronbach’s � = 0.81)

I am able to help my classmates with physics in the laboratory or in recitation. 0.689 <0.001

I understand concepts I have studied in physics. 0.740 <0.001

If I study, I will do well on a physics test. 0.725 <0.001

If I encounter a setback in a physics exam, I can overcome it. 0.709 <0.001

Physics Interest (Cronbach’s � = 0.84)

I wonder about how physics worksy 0.677 <0.001

In general, I find physicsz 0.824 <0.001

I want to know everything I can about physics. 0.825 <0.001

I am curious about recent physics discoveries. 0.707 <0.001

Physics Perceived Recognition (Cronbach’s � = 0.86)

My family sees me as a physics person. 0.854 <0.001

My friends see me as a physics person. 0.900 <0.001

My physics TA and/or instructor see me as a physics person. 0.733 <0.001

Physics Sense of Belonging (Cronbach’s � = 0.87)

I feel like I belong in this class. 0.815 <0.001

I feel like an outsider in this class. 0.699 <0.001

I feel comfortable in this class. 0.836 <0.001

I feel like I can be myself in this class. 0.707 <0.001

Sometimes I worry that I do not belong in this physics class. 0.675 <0.001

Physics Peer Interaction (Cronbach’s � = 0.92)

My experience and interaction with other students in this class. . .

made me feel more relaxed about learning physics. 0.751 <0.001

increased my confidence in my ability to do physics. 0.940 <0.001

increased my confidence that I can succeed in physics. 0.926 <0.001

increased my confidence in my ability to handle difficult physics problems. 0.860 <0.001

The Cronbach alphas and CFA item loadings (Lambda and p-values of the significance test for each item loading) shown here were
calculated with physics 2 data. zThe response options for this question are ‘‘Never, Once a month, Once a week, Every day’’.
yThe response options for this question are ‘‘very boring, boring, interesting, very interesting’’.



EquationModeling (SEM) [143] using the ‘‘lavaan’’

package in software R [144] to study how the

perception of the inclusiveness of the learning

environment predicted students’ motivational and

academic outcomes in physics 2 after controlling

for students’ gender, high school GPA and SAT
math as well as their self-efficacy, interest, overall

physics identity, overall engineering identity, and

grades in physics 1.

The SEM includes two parts: confirmatory factor

analysis (CFA) and path analysis. First, we per-

formed the CFA for each construct. The CFA

model fit is considered adequate if the Comparative

Fit Index (CFI) and Tucker-Lewis Index (TLI) are
>0.9 and Root Mean Square Error of Approxima-

tion (RMSEA) and Standardized Root Mean

Square Residual (SRMR) are <0.08 [145]. In our

study, CFI = 0.933, TLI = 0.915, RMSEA = 0.052

and SRMR = 0.038, which represents a good fit.

This result provides quantitative support for us to

divide the motivational constructs and the inclu-

siveness of the learning environment constructs as
proposed. In addition, as shown inTable 2, all of the

CFA item loadings are above 0.6 and most of them

are above 0.7, which means that our constructs

extract sufficient variance from the items [146].

Before performing the path analysis, we calcu-

lated the Pearson correlation coefficients pairwise

between each pair of constructs [136]. As shown in

Table 3, there are relatively strong correlations
among non-academic constructs, while the correla-

tions between non-academic constructs and SAT

math or high school GPA are relatively small. Even

though these non-academic constructs have strong

correlations with each other, the correlations are

not so high that SEM cannot examine the con-

structs separately [147]. We note that in Table 3,

there are two very strong correlations. The correla-
tion coefficient between Interest 1 and Interest 2 is

0.85, which means that students’ interest in physics

2 is highly related to their interest in physics 1. In

addition, the correlation between students’ Self-

efficacy 2 and sense of belonging is r = 0.81 and

the correlation between students’ perceived recog-

nition and overall physics identity 2 is r = 0.83 are

relatively larger. According to the prior work done
by Kalender et al., these constructs are indeed

strongly correlated with each other even though

they are separate constructs [105, 113].

To analyze the relationships among the con-

structs, we performed the full Structural Equation

Modeling (SEM). Apart from CFA, the path ana-

lysis part of SEM estimates the predictive relation-

ships between different constructs. The strength of
each relationship is represented by a regression

coefficient �. One advantage of SEM is that it

simultaneously estimates factor loadings for items

and all of the regression links for multiple out-

comes, which improves the statistical power com-

pared with other statistical methods such as

multiple regression. The level of SEM model fit

can also be represented by CFI, TLI, RMSEA
and SRMR. We first analyzed the saturated SEM

model that includes all of the possible links from left

to right between different constructs shown in Fig.

1, and then we removed the most insignificant path

line (with the highest p value) and re-ran the model.

We used this method to trim one path at a time until

all remaining path lines were statistically signifi-

cant. Next, we usedmodification indices to improve
the model fit. The modification index is the chi-

square value, with 1 degree of freedom, by which

model fit would improve if a particular path was

added back. Modification index bigger than 3.84

indicates that the model fit would be significantly

improved, and the p value for the added parameter

would be < 0.05 [148, 149]. We added back the

paths with modification index larger than 3.84 one
at a time (from high to low modification index) to

improve the model fit. Finally, we checked the
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Table 3. Zeroth order correlation coefficients of the constructs studied

Observed Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. SAT math — — — — — — — — — — — — —

2. High school GPA 0.19 — — — — — — — — — — — —

3. Overall Physics Identity 1 0.01ns –0.09* — — — — — — — — — — —

4. Overall Engineering Identity 1 –0.01ns 0.00ns 0.28

5. Grade 1 0.37 0.26 0.33 0.13** — — — — — — — — — —

6. Self-efficacy 1 0.11* 0.06ns 0.66 0.30 0.52 — — — — — — — — —

7. Interest 1 –0.03ns –0.07ns 0.73 0.30 0.23 0.60 — — — — — — — —

8. Overall Physics Identity 2 0.04ns –0.07ns 0.63 0.25 0.31 0.54 0.54 — — — — — — —

9. Overall Engineering Identity 2 0.02ns 0.06ns 0.16 0.47 0.16 0.24 0.17** 0.24

10. Grade 2 0.31 0.26 0.23 0.14** 0.61 0.30 0.17** 0.30 0.21 — — — — — —

11. Self-efficacy 2 0.08ns 0.02ns 0.49 0.29 0.36 0.72 0.47 0.70 0.28 0.42 — — — — —

12. Interest 2 –0.03ns –0.05ns 0.58 0.22 0.22 0.43 0.85 0.64 0.18 0.24 0.65 — — — —

13. Perceived Recognition 0.05ns –0.05ns 0.69 0.27 0.36 0.64 0.62 0.83 0.32 0.34 0.72 0.65 — — —

14. Peer Interaction 0.07ns 0.02ns 0.36 0.21 0.25 0.44 0.33 0.49 0.24 0.32 0.71 0.50 0.55 — —

15. Sense of Belonging 0.07* 0.04ns 0.38 0.21 0.31 0.55 0.33 0.58 0.23 0.38 0.81 0.52 0.60 0.64 —

p values are indicated by ** for 0.001 � p <0.01, * for 0.01 � p < 0.05, and ns for p > 0.05. All the other correlation coefficients have p < 0.001.



statistical significance of each trimmed path by

adding them back to make sure that all trimmed
paths are not statistically significant and all statis-

tically significant paths are kept.

We also tested measurement invariance (which

tests whether the survey items were interpreted in a

similar manner by male and female students) and

performed gender moderation analysis using multi-

group SEM (which tests whether the regression

pathways were different across gender). Results
showed that strong measurement invariance holds

for our model, and regression pathways among the

constructs do not have differences across gender

(see the Appendix for detailed results of testing

measurement invariance and multi-group SEM

analysis). Therefore, we concluded that our SEM

model can be interpreted similarly for men and

women, and any gender differences can be modeled

using a separate gender variable (1 for male and 0

for female) as an exogenous variable as in Fig. 1. If
there are statistically significant paths from gender

to any of the constructs in the model, it implies that

women and men did not have the same average

value for those constructs controlling for all con-

structs to the left. This is the gender mediation SEM

model, which we will discuss in more detail in the

results section. A broad view of the steps in our

study is shown in the flowchart in Fig. 2. As
depicted in Fig. 2, we first collected data from

students in the introductory physics course

sequence, physics 1 and physics 2.We thenmatched

students from physics 1 and physics 2, and subse-

quently conducted descriptive statistics (e.g., t-test)

and Structural Equation Modeling.

3. Results

3.1 Gender Differences in Motivational

Characteristics and Grades

Table 4 shows the descriptive statistics of students’
motivational characteristics and their perception of

How Inclusiveness of Learning Environment Mediates the Evolution of Engineering Students’ Motivational Beliefs 841

Fig. 2. Flow diagram of the steps in the study.

Table 4. Descriptive statistics of female and male students’ motivational characteristics and their perception of the inclusiveness of the
learning environment in physics 1 and physics 2

Gender

Self-efficacy Statistics Interest Statistics

physics 1 physics 2 p value Cohen’s d physics 1 physics 2 p value Cohen’s d

Male 3.0409 2.9102 <0.001 0.26 3.1065 2.9675 <0.001 0.29

Female 2.8173 2.6593 <0.001 0.33 2.7225 2.5939 <0.001 0.27

p value <0.001 <0.001 <0.001 <0.001

Cohen’s d 0.46 0.46 0.66* 0.61*

Gender

Perceived Recognition Statistics Peer Interaction Statistics

physics 1 physics 2 p value Cohen’s d physics 1 physics 2 p value Cohen’s d

Male 2.7278 2.7196 0.946 0.00 3.0894 2.9367 <0.001 0.21

Female 2.3630 2.2637 0.026 0.17 2.7935 2.6319 0.005 0.23

p value <0.001 <0.001 <0.001 <0.001

Cohen’s d 0.52 0.67 0.47 0.46

Gender

Sense of Belonging Statistics Overall Physics Identity Statistics

physics 1 physics 2 p value Cohen’s d physics 1 physics 2 p value Cohen’s d

Male 3.8997 3.7742 0.005 0.15 2.73 2.67 0.160 0.08

Female 3.5400 3.4055 0.017 0.18 2.25 2.18 0.183 0.10

p value <0.001 <0.001 <0.001 <0.001

Cohen’s d 0.46 0.45 0.59 0.61

Gender

Overall Engineering Identity Statistics

physics 1 physics 2 p value Cohen’s d

Male 3.55 3.45 0.005 0.15

Female 3.43 3.47 0.440 –0.06

p value 0.031 0.780

Cohen’s d 0.20 –0.03

N = 182 for female students N = 342 for male students. Cohen suggested that typically values of d = 0.2, 0.5 and 0.8 represent small,
medium and large effect sizes.



the inclusiveness of the learning environment in

physics 1 and physics 2. We note that women had

significantly lower scores in self-efficacy, interest,

overall physics identity, perceived recognition, peer

interaction, and sense of belonging in both physics

1 and physics 2 than men, and the effect sizes are all
in the medium range [142]. These results indicate

that, in the current learning environment, female

students reported less benefit from peer interaction

and also felt a lower sense of belonging than male

students. Moreover, female students’ average

scores pertaining to perceived recognition and

overall physics identity indicate that on average,

female students did not think other people see them
as a physics person, and they did not see themselves

as a physics person either. Furthermore, the gender

differences in students’ perceived recognition

increased from physics 1 to physics 2. We note

that in physics 1, women had a statistically sig-

nificantly lower overall engineering identity than

men, whereas there is no gender gap observed in

physics 2.
When we compared students’ perception of the

inclusiveness of the learning environment andmoti-

vational characteristics in the two courses, we

found that, from physics 1 to physics 2, there was

no statistically significant change in both women

and men’ overall physics identity, while women’

perceived recognition decreased. Even though both

male and female students’ self-efficacy and male
students’ interest, peer interaction and sense of

belonging significantly decreased from physics 1

to physics 2, the effect sizes are relatively small

compared with the effect sizes of the gender differ-

ences in these constructs. Additionally, we note that

male students’ overall engineering identity

decreased significantly from physics 1 to physics 2,

while there was no statistically significant change in
women’s overall engineering identity.

Table 5 shows students’ high school GPA, SAT

math scores, and grades in physics 1 and physics 2.

We note that even though female students had

significantly lower grades than male students in

both physics 1 and physics 2, there was no statisti-

cally significant gender difference in SAT math

scores, and female students even had a higher
average high school GPA than male students.

3.2 Perception of the Inclusiveness of the Learning

Environment Mediation Models Using SEM

In this section, we show the predictive relationships

among the constructs using Structural Equation

Modeling (SEM). We ran the full SEM model in

which perceived recognition, peer interaction and

sense of belonging constitute the perception of the
inclusiveness of the learning environment to study

how these inclusiveness of the learning environment

constructs predict students’ motivational beliefs

including their engineering identity and grades in

physics 2 after controlling for students’ gender, high

school GPA, SAT math scores, and their motiva-

tional beliefs and grades in physics 1. The results of

the SEMmodel are presented visually in Fig. 3. The
model fit indices suggest a good fit to the data: CFI

= 0.925 (>0.90), TLI = 0.916(>0.90), RMSEA =

0.051 (<0.08) and SRMR = 0.044 (<0.08).

As shown in Fig. 3, students’ course outcomes at

the end of physics 2 are statistically significantly

predicted by the perception of the inclusiveness of

the learning environment. In particular, students’

self-efficacy and interest in physics 2 are predicted
by peer interaction and sense of belonging, Grade 2

is predicted by sense of belonging, and overall

physics identity in physics 2 is predicted by per-

ceived recognition. Fig. 3 shows that Self-efficacy 1

directly predicts Grade 1, while the direct effect of

Self-efficacy 2 on Grade 2 is not statistically sig-

nificant after controlling for Grade 1 and sense of

belonging. In addition, Fig. 3 shows that overall
physics identity in physics 1 does not directly

predict self-efficacy and interest in physics 2 after

controlling for self-efficacy and interest in physics 1

as well as students’ perception of the inclusiveness

of the learning environment in physics 2. We note

that the regression coefficient from sense of belong-

ing to Self-efficacy 2 is 0.40, which is larger than the

effect of Self-efficacy 1 on Self-efficacy 2 (� = 0.34).
In addition, consistent with prior work of Godwin

et al. and Kalender et al. [40, 108], Fig. 3 shows that

overall physics identity is predicted by self-efficacy,

interest and perceived recognition. Moreover, Fig.

3 shows that students’ engineering identity in phy-

sics 2 is statistically significantly predicted by their

perception of how others see them as a physics
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Table 5. Descriptive statistics of students’ high school GPA, SAT math, and grades in physics 1 (Grade 1) and physics 2 (Grade 2)

Grades (Score Range)

Mean

p value Cohen’s dMale Female

High School GPA (0–5) 4.24 4.39 <0.001 –0.39

SAT Math (400–800) 719.8 719.6 0.964 0.01

Grade 1 (0–4) 2.89 2.71 0.003 0.27

Grade 2 (0–4) 2.72 2.52 0.004 0.27

N = 182 for female students N = 342 for male students. The minus sign indicates female students have higher scores than male students.



person (� = 0.19) even after controlling for their

engineering identity in physics 1.

As shown in Fig. 3, gender directly predicts

students’ self-efficacy and interest in physics 1 as

well as the three inclusiveness of the learning envir-

onment constructs. These results are consistent
with the descriptive statistics shown in Table 4,

which shows that there were statistically significant

gender differences disadvantaging women in these

constructs. Although there were also significant

gender differences in students’ grades, self-efficacy,

interest and overall physics identity in physics 2 as

shown in Tables 4 and 5, gender does not directly

predict these constructs in the SEM model. Thus,
Fig. 3 reveals that the gender differences in these

outcome constructs were partially mediated by the

different components of the perception of the inclu-

siveness of the learning environment. Moreover,

even though Table 4 shows that there was a

statistically significant gender gap disadvantaging

women in students’ overall engineering identity in

physics 1, Fig. 3 shows that gender does not directly
predict overall engineering identity. Instead, this

gender difference is mediated through self-efficacy

and interest in physics 1. In addition, we note that

gender predicts high school GPA with a negative

regression coefficient (� = –0.17), which means that

female students actually had a higher average high

school GPA than male students. This is consistent

with the results shown in Table 5.
To further understand how much variance in

students’ course outcomes is explained by our

model, we calculated the coefficient of determina-

tion R2 (fraction of variance explained) for each of

the four outcome constructs. According to our

results, the R2 value of Grade 2 is 0.43, which

means that the model explains 43% of the variance
in Grade 2. For the motivational outcomes, there is

81% of the variance in Self-efficacy 2, 76% of the

variance in Interest 2, 71% of the variance inOverall

Physics Identity, and 25% variance in Overall

Engineering Identity explained by the model.

4. Discussion

Prior studies have shown that students’ motiva-

tional beliefs such as self-efficacy, interest and

identity can influence their persistence and reten-

tion in STEMfields such as physics and engineering

[19, 52, 54, 57, 58, 61, 136, 150]. In this study, we

focused on engineering students’ motivational

beliefs and academic performance in a calculus-

based introductory physics sequence and investi-
gated the role played by students’ perception of the

inclusiveness of the learning environment (includ-

ing sense of belonging, peer interaction and per-

ceived recognition) in predicting their motivational

beliefs (including self-efficacy, interest and overall

physics identity, and overall engineering identity)

and academic performance (measured by grades) at

the end of this course sequence.
We found that there were statistically significant
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Fig. 3. Schematic diagram of the path analysis part of the SEMmodel. HS GPA represents high school GPA, SE represents self-efficacy,
Perceived Recog represents perceived recognition, and Peer Int represents peer interaction. The solid lines represent regression paths and
the dashed lines represent residual covariances. The regression line thickness corresponds to the magnitude of � value (standardized
regression coefficient) with 0.01� p< 0.05 indicated by * and 0.001� p< 0.01 indicated by **.Other regression lines show relationswith p
< 0.001.



gender differences disadvantaging women in most

motivational beliefs studied, which is consistent

with prior studies [45, 53, 125]. Moreover, we

found that, in the current learning environment,

female students felt a lower sense of belonging and

perceived recognition by their instructors/TAs than
male students, and they also reported less benefit

from peer interaction than men. However, we did

not find gender difference in students’ SAT math

scores and female students actually had a somewhat

higher average high school GPA than male stu-

dents. Although female students had lower average

grades in both physics 1 and physics 2, the gender

differences in students’ motivational beliefs and
perception of the inclusiveness of the learning

environment are much more pronounced than the

gender differences in their course grades. This result

is consistent with a prior study finding that in

introductory physics courses, female students had

significantly lower physics self-efficacy than their

equally performing male peers [53]. Therefore, our

study suggests that the largest gender differences
were in students’ motivational beliefs, rather than

in actual physics performance. There could be

several possible reasons for this phenomenon. For

example, students’ motivational beliefs can be

impacted by how society sees the connection

between gender and STEM achievement [27, 30,

31, 151]. One stereotype about physics is that only

students who are very smart or have natural ability
can do well in physics. This may make people think

of physics as a masculine subject because, due to

societal stereotypes, the words ‘‘brilliant’’ or

‘‘genius’’ are usually associated with men [44].

These negative stereotypes may deteriorate female

students’ physics self-efficacy and identity, and they

may think they need to put more effort than men to

succeed in physics [151]. In addition, some prior
studies have shown that instructors may teach and

interact with women and men in different ways,

which may lead to gender disparity in course out-

comes [107]. For example, if instructors do not call

on female students to answer questions or do not

express the same expectation and recognition as

they do for male students, female students’ motiva-

tional beliefs such as perceived recognition and
sense of belonging may be negatively impacted.

In this study, we found that engineering students’

academic performance and all motivational beliefs

outcomes investigated (including the engineering

identity) were statistically significantly predicted

by at least one component of students’ perception

of inclusiveness of learning environment. In parti-

cular, out of the three inclusiveness of the learning
environment constructs, sense of belonging is the

major predictor of students’ grades and self-efficacy

at the end of the two-semester introductory physics

sequence. One possible explanation for this result is

that when students do not feel that they belong in

the class, they may not fully participate in learning

and discussions with others because they may not

feel safe to share their ideas, which may influence

their learning outcomes.Moreover, the lack of sense
of belonging may also result in anxiety [152], which

can rob students of their cognitive resources and

reduce their level of cognitive engagement while

learning. In addition, we found that engineering

students’ perceived recognition from others in the

physics course not only predicts students’ physics

identity but also their engineering identity at the end

of the course. This result suggests that the validation
and acknowledgment received from peers and

instructors in physics courses are instrumental in

shaping a student’s engineering identity, which is

crucial for their persistence and success in thefield of

engineering. Moreover, we found that both male

and female students’ physics self-efficacy decreased

from physics 1 to physics 2 and these decreases were

partially mediated through the inclusiveness of the
learning environment constructs, which indicates

that the current learning environment may not

positively help students develop their physics moti-

vational beliefs. These results suggest the impor-

tance of an inclusive learning environment in

developing students’ motivational beliefs and

improving their academic performance.

Our findings suggest that an inclusive learning
environment is very important for equitable out-

comes. As educators and instructors, we should

make intentional efforts to develop an inclusive

learning environment that emphasizes recognizing

students for making progress, promoting positive

peer interactions, and providing a space where all

students can feel that they belong and students from

all demographic groups can equally excel. For
example, instructors can explicitly recognize stu-

dents by directly acknowledging their work and

expressing faith in their ability to excel. They can

also implicitly recognize students by valuing stu-

dents’ opinions and assigning a leadership position

or a challenging task to students in small groups

that makes them feel excited [153]. In addition to

positive recognition, instructors should be careful
not to give unintended messages to students, e.g.,

praising some students for brilliance or intelligence

as opposed to their effort since it may convey to

other students that they do not have what is

required to excel. In addition, belonging interven-

tions that focus on improving the sense of belonging

of underrepresented students in STEM courses

have been found effective [154, 155]. Instructors
can also tailor these short interventions in their

classes to help all students develop positive motiva-

tional beliefs and learn physics equitably.
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5. Conclusions

In this study, we investigated engineering students’

motivational beliefs and course grades in a two-

term college calculus-based introductory physics

sequence (physics 1 and physics 2). We found that

female engineering students’ motivational beliefs

and grades in the physics courses were statistically
significantly lower than male engineering students.

Our study shows that engineering students’ percep-

tion of the inclusiveness of the learning environ-

ment plays an important role in predicting their

grades andmotivational beliefs (including engineer-

ing identity) and explaining the gender differences

in these course outcomes. We found possible sig-

natures of non-inclusive learning environment in

that female students perceived significantly lower

level of recognition and had lower sense of belong-

ing. Thus, the instructor’s focus on equity and
inclusion, and approaches to recognizing students

is vital in supporting women and promoting learn-

ing for all students in the classroom. Our study can

be valuable for formulating guidelines for creating

an inclusive learning environment in which all

students can excel.
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APPENDIX: Multi-Group SEM Analysis

We conducted a multi-group analysis to examine whether the survey items were interpreted in a conceptually

similar manner by female and male students, and whether the strength of relationships given by the

standardized regression coefficients between any two constructs in the models differ for women and men.
We first tested for measurement invariance. In other words, we looked at whether the factor loadings,

intercepts, and residual variances of the items are equal across gender in the model. To test measurement

invariance, we ran a set of increasingly constrained models and tested the differences between these models.

First, we examined the configural invariance model, in which the number of constructs and the correspon-

dence between constructs and items are the same across gender groups, but all parameters can vary freely in
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each group. The result indicated that configural invariance holds (CFI = 0.909, TLI = 0.900, RMSEA=0.056,

SRMR = 0.055). Second, to test for ‘‘weak’’ measurement invariance, we ran the model in which the item

loadings were constrained to be equal across gender groups, but intercepts and residual variances were

allowed to vary between groups. According to a likelihood ratio test, there was no statistically significant

difference between the weak invariance model and the configural invariance model, so the weakmeasurement

invariance holds (Chi-square difference ��2 = 17.712, degree of freedom difference �dof = 21, p = 0.667).
The third step is testing for ‘‘strong’’ measurement invariance. We ran the model in which both the item

loadings and intercepts were constrained to be equal across gender groups, but the residual variances were

allowed to differ. A likelihood ratio test shows that there was no statistically significant difference between the

strong invariance model and the weak invariance model (��2 = 21.613, �dof = 21, p = 0.422) or the

configural invariance model (��2 = 39.324,�dof = 42, p = 0.589), so strong measurement invariance holds.

Therefore, since strong measurement invariance holds for this model, we proceeded on to test for structural

invariance.

Next, we ran a multi-group SEM in which all regression coefficients were constrained to be equal across
gender groups in addition to the item loadings and intercepts. The model fit parameters for this model were

acceptable (CFI = 0.908, TLI = 0.904, RMSEA = 0.055, SRMR = 0.065). According to the results of

likelihood ratio tests, this model was not statistically significantly different from either the configural

invariance model (��2 = 96.555, �dof = 85, p = 0.184) or the strong invariance model (��2 = 57.231,

�dof = 43, p = 0.072). Thus, the regression pathways among the constructs do not have statistically

significant differences across gender.
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