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Experimental laboratories are required for all engineering disciplines to fulfill undergraduate degree requirements. These

capstone laboratories are designed to reinforce fundamental science, technology, engineering, and mathematical content

associatedwith core aspects of the discipline. These laboratories are usually physical experiments; however, the emergence

of online degrees, the COVID pandemic, and the development of virtual lab technologies have expanded how students

experience capstone labs. An instrument is needed tomeasure the relationship between students’ engineering role identity,

technology acceptance, and prior learning experiences. This study reports the development and validation of a Student

Perceived Value of an Engineering Laboratory (SPVEL) assessment instrument for capstone mechanical and aerospace

engineering laboratories. The items for the SPVEL assessment instrument were constructed according to three theoretical

models: The Technology Acceptance Model (TAM), Inputs-Environment-Outcome (IEO) Conceptual Model, and

Engineering Role Identity (ERI). An exploratory load factor analysis was conducted on responses to thirty-five

questionnaire items to discover the underlying factor structure of the dataset. Squared multiple correlations were used

as prior communality estimates, and the principal axis factoring method was employed to extract the factors. The study

was conducted in a capstone senior Mechanical and Aerospace engineering laboratory course at a university in the

northeastern United States with 227 undergraduate participants. Six factors were extracted, and Cronbach’s alpha for

data reliability was found to be 0.86 for the set of thirty-five questions andwithin the range of 0.67 to 0.94 for all six factors.

Thus, this SPVEL assessment tool had high internal consistency of reliability coefficients. The SPVEL Assessment tool

provides amechanism for observing how students interact with and experience engineering laboratories. The relationships

between students’ ability to leverage prior experiences and learn from the laboratory experience, prepare for their roles as

engineering professionals, and accept innovative technologies used for teaching engineering education are also forms of

information gleaned from this tool. Using the SPVEL assessment instrument could enhance the literature on evaluating

the effectiveness of undergraduate engineering laboratories and facilitate the improvement of laboratory design in

undergraduate mechanical and aerospace engineering laboratory environments.
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1. Introduction – Engineering
Undergraduate Labs

1.1 A Historical Context of Engineering Labs

Instructional laboratories have been an integral

part of the undergraduate engineering curriculum

in varying degrees throughout the history of the

engineering profession. In fact, since the founding

of the engineering discipline at the U.S. Military

Academy at West Point, NY, in 1802, instructional
laboratories have been the foundation of under-

graduate engineering education. These instruc-

tional laboratories were often coupled with

fieldwork, drafting, mathematics, and science.

This format of training persisted throughout the

middle and nineteenth centuries as more engineer-

ing schools, e.g., Yale (1852), MIT (1865), Union

College (1845), Cornell (1830), etc., emerged [1, 2]
and built physical infrastructures to house engi-

neering laboratories to align with realistic work

environments. This form of instruction continued

until the end of World War II, when it was dis-

covered that scientists, rather than engineers devel-

oped the majority of inventions during the war.

This discovery led to the publishing of the Grinter

Report [3] by the American Society of Engineering

Education (ASEE) that called for strengthening the
requirements for engineers in basic sciences, mathe-

matics, chemistry, and physics. The reason for this

modification of the course curriculum for engineers

was due to the production of engineers who were

too ‘‘practically oriented,’’ i.e., not well-equipped

to solve engineering problems using first principles.

The increase in theoretical curriculum led to the

establishment of two distinct disciplines: engineer-
ing technologists and engineers, whose course cur-

riculumwas regulated by the Engineers’ Council for

Professional Development, which was the precur-

sor to the Accreditation Board for Engineering and

Technology (ABET) [4]. The focus on the inclusion

of theoretical concepts in the engineering curricu-

lum and diminished investment in instruction labs

led to the graduation of many engineers with little
practical or laboratory experience. During this time
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there was also a growing confusion between the

roles of technologists and engineers, where many

technologists filled the roles and assumed the title of

engineers. To address this confusion, engineering

organizations were reorganized, and ABET was

formed. It was then concluded that the engineering
curriculum at that time was not preparing students

with laboratory practice. Since then, ASEE has

produced a number of reports affirming the impor-

tance of laboratory instruction for undergraduate

curriculum, along with recommendations for best

practices, e.g., reports in 1967, 1986, 1987, etc. [2, 5].

Presently, the inclusion of laboratory instruction

within engineering disciplines continues to be a
necessary component within the undergraduate

curriculum, however providing students with high

quality laboratory experiences remains a challenge

due to several factors. First, as the complexity of

instrumentation and software increases, so do the

infrastructural and facilities, maintenance, and spe-

cialized operation support (technicians). Second,

many scholars argue that changes in faculty
reward and recognition systems at universities,

which were originally geared toward development

of engineering education tools and pedagogy has

been replaced with a system that recognizes and

rewards individual research programs that siphon

off time, support, and resources from time-intensive

work on instructional labs. Third, the integration of

computing and online technologies has provided
opportunities for newways for engaging students in

engineering laboratories, i.e., virtual and hybrid

laboratories. However, the best practices and

ways of assessing these new forms of laboratories

is still an area that is underdeveloped.

The role that instructional labs play in the devel-

opment of engineers becomes more critical as these

labs reaffirm theoretical foundational coursework
and can also provide a meaningful link to aspects of

the engineering profession. Cultivating students’

authentic knowledge of the engineering profession

is important as it has been found that many under-

graduate engineering students have higher self-

proclaimed levels of professional engineering iden-

tity than their developmental levels actually are [6].

Further, the literature suggests that students’ mis-
understanding of the scope and work of 21st cen-

tury engineers during their formal education and

sustained misalignment of their perceptions of the

future engineering profession may lead to students’

disengagement or withdrawal from engineering

preparation programs and the profession [6].

Thus, development of assessment tools for 21st

century labs that reflect and evaluate students’
perceptions of the engineering field, their identity,

and learning are needed to advance the effectiveness

of engineering instructional labs, which can often

utilize physical, online, virtual, and simulation

technologies [6–11]. This work focuses on the

validation of an instrument that was designed to

evaluate and assess online instructional virtual

engineering laboratories.

Using the responses from 227 undergraduate
mechanical and aerospace engineering students,

an Exploratory Factor Analysis (EFA) was per-

formed on the questionnaire to validate it as an

assessment instrument for undergraduate engineer-

ing laboratories. The work also builds upon

another study of assessment of in-person and

virtual labs [12] which provided evidence that a

traditional course evaluation instrument generally
lacked meaningful information about students’

experiences of the laboratory environment. The

questionnaire used in this study was used as a

feedback mechanism for a mechanical and aero-

space engineering virtual lab that took place in the

School of Engineering at a university located in the

Northeastern region of the United States. This

study was also approved by a university internal
review board (IRB) for students to participate in a

multiple year study about their experiences partici-

pating in a laboratory comprising labs that covered

multiple topics over an academic year. The purpose

of this study is to validate this questionnaire, so that

the instrument can be used by laboratory instruc-

tors and researchers to garner students’ perceptions

of effectiveness of virtual and in-person labora-
tories taken as part of the engineering curriculum.

2. Virtual Engineering Laboratories –
What are They?

Online learning modules and virtual laboratory

(VL) platforms have been designed, developed,
and studied as tools in many classrooms for several

decades to enhance student engagement and aca-

demic performance in K-12, undergraduate (UG)

and graduate (GR) populations. There has been a

great deal of research on VLs in science, technol-

ogy, engineering, and mathematics (STEM) disci-

plines in UG classrooms, e.g., in biology [13, 14],

chemistry [15, 16], physics [17], computer science
[15, 18], general engineering [19, 20], software and

electrical engineering [18, 21–33], mechanical

engineering (ME) [34–42], chemical engineering

[43, 44], computer aided design [45], power engi-

neering [46, 47], biomedical [48, 49] engineering,

and aerospace engineering [50].

Virtual laboratories use media formats to simu-

late physical laboratories that are traditionally
designed for learners who participate in in-person

laboratory settings. Virtual and remote labora-

tories are often categorized in two ways. One way

is where real laboratory experiments are computer
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simulated and accessed online. The other type of

virtual lab is one that allows the user to remotely

access, control, operate, and/or observe the opera-

tion of equipment, computers, and data capture

through the internet. The objective of most virtual

lab technologies is to provide an opportunity for the
user to perform or observe experiments without

being in the physical lab environment. The ways

in which these virtual and remote learning environ-

ments and tools are used varies. For example, VLs

have been used to supplement traditional course

materials in large-scale lecture classes or distance

learning courses, to enhance lecture demonstra-

tions, to prepare students for in-person action-
oriented labs prior to engaging in the physical lab,

to replace in-person labs, and to assess the perfor-

mance of a student’s ability to operate equipment

and apply theoretical knowledge in performing

practical tasks, e.g., [13, 49, 51, 52]. VLs have also

been used to visualize complex physical phenom-

enon, such as, thermodynamic cycles and energy

conversion systems, to optimize design efficiency
and output [53]. Due to the variability in the ways in

which these VLs have been used and studied; a

myriad of methods has been used to evaluate their

effectiveness, e.g., student outcomes (skills required

for the Accreditation Board for Engineering and

Technology), assessment of educational value as a

function students’ perceived motivation to learn,

and students’ acceptance of new technologies (ease
of use and usefulness, i.e., the Technology Accep-

tance Model).

Many scholars who have evaluated VL effective-

ness using metrics defined by the Accreditation

Board for Engineering and Technology (ABET).

For example, in a mechanical engineering course,

[54] supplemented the traditional course materials

(lecture and physical lab) with a learning module
that included simulated VLs. These VLs were used

to enhance students’ engineering intuition towards

predicting material testing results. In this work,

students were also exposed to VLs to design and

simulation software that illustrated research and

industry settings. The curricular intervention was

assessed quantitatively using a questionnaire

(Likert-scale) and open-ended comments from the
students. The effectiveness of the VL intervention

was evaluated according to students’ perceptions of

the VL’s usefulness towards learning mechanical

engineering concepts and simulation skills and the

VL’s ability to help them develop skills for employ-

ment [54]. The effectiveness of the VL was also

evaluated using the ABET Criterion 3 outcomes

1, 3, and 6 [4]. They also concluded that VLs
enhanced students’ interest in the subject matter

due to the visual attractiveness of the simulation

results, and also because they allow students to

engage in more complex experiments than they

could perform in a physical environment. They

also found that VLs helped students to develop

critical thinking skills by connecting multiple learn-

ing schema, theoretical knowledge, experimenta-

tion, and simulation.
Other researchers have used ABET criterion to

evaluate student outcomes after being exposed to

simulation VLs such as [55], who had students

model dynamic systems and controls. Similarly,

[56] incorporated virtual and remote labs as supple-

mentalmaterials in an industrial automation course

and used a KIPPAS (Knowledge and understand-

ing, Inquiry skills, Practical skills, Perception,
Analytical skills and Social and scientific commu-

nication) framework, which affirms criterion 3 in

ABET. They concluded VLs had several advan-

tages in comparison to traditional physical labs.

VLs are cost effective and can provide multiple

students access for participation. VLs also can

facilitate scalability of classes that range from

small to large in number of students. VLs also
allow students to model scientific phenomena that

are difficult to visualize in a physical environment,

which enables the experiments performed to be

adaptable for diversity of cognitive level, while at

the same time maintaining a safe environment for

learning. Thus, [56] concluded that VLs may also

encourage student experimentation as multiple

attempts can be made with no penalty or concern
of breaking equipment, which may lead to reduc-

tions in time students spend learning. They also

concluded that the use of VLs as supplemental tools

motivated students to learn more and established a

meaningful link between classroom activities and

skills needed for future employers. As the afore-

mentioned studies focused on evaluating labs using

ABETmetrics and student perceptions, others have
used pre- and post-content assessments, e.g., [52,

57].

Several studies have used virtual labs to replace

in-person labs and compared the effectiveness of

both experiences according to students’ pre- and

post-content assessments where findings have

varied. For instance, [52] studied the differences

between a physical in-person lab and virtual lab
using the Science Process Skill mastery pre- and

post-tests for a 4th grade chemistry course. They

found that students achieved higher scores when

they engaged in the in-person labs but, the greatest

difference between in-person and virtual lab scores

was seen for girls in comparison to boys. Specifi-

cally, boys achieved higher content proficiency

scores than the girls when participating in VLs.
Conversely, researchers such as [58] conducted a

study of student learning outcomes and preferences

for several different lab formats, e.g., traditional in-
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person action oriented labs, remotely operated labs

and simulated labs in an undergraduate engineering

class. They concluded that in some instances stu-

dents received higher scores in remote laboratories,

while in others, there was no significant difference

between performance in different laboratory for-
mats. However, while students recognized the value

in remote and simulated labs, such as technology-

enabled formats, they still preferred in-person labs.

Additionally, students’ perception of their learning

experience have more cognitive impact on them

than the actual content or psychomotor means

associated with the learning activity [59]. Hence

understanding how students perceive benefits and
deficits of learning environments is vital. Hence,

many scholars have used the Technology Accep-

tance Model to elucidate how people associate the

value of various forms of technology within a

learning or working environment.

3. Theoretical Frameworks and Review of
the Literature for Questionnaire
Development

3.1 Technology Acceptance Model

The Technology Acceptance Model (TAM), devel-

oped by Davis [60, 61], posits that peoples’ adop-

tion of information technological systems is
connected to and a function of two primary ele-

ments: users’ perceived usefulness and the perceived

ease of use of the technological system. In other

words, people will use or not use an application/tool

to the degree that they deem the tool will help them

do their jobs better [60]. According to the TAM, if

people believe the effort required to use a tool is too

high or consider the benefits of its use less than the
effort of use, they will abandon the use of the

technology. Several studies have used the TAM to

explore students’ decisions to use VLs [62–64].

Most researchers assert that the TAM is most

effective when other variables are considered. For

example, [63] concluded that undergraduates (UGs)

chose to engage with VLs based on their ease of use,

perceived usefulness, in addition to their prior knowl-

edge of materials related to the VLs. [63] also

concluded that UGs with more prior experience

achieved better grades in the course that incorpo-

rated VLs and associated higher value to the use of

VLs, than those who did not have similar prior

knowledge. Likewise, [64] used the TAM to exam-

ine students’ acceptance of VLs and interactive

activities. They concluded that perceived efficiency,
expectation, and satisfaction were crucial factors to

consider when using the TAM. Also, it has been

found that undergraduate engineering students

associate more value, i.e., usefulness from educa-

tional technologies that allow them to connect their

real world experiences and theoretical knowledge to

their perceptions of the real world engineering

profession [65].

3.2 Inputs-Environment-Outcome (IEO)

Conceptual Model

The majority of the literature that uses the Inputs-

Environment-Outcome (IEO) conceptual model

has focused on the examination of student success

as a function of input variables such as learning

disabilities [66, 67], amount and quality of time of

involvement [68], perceived academic ability and

drive to achieve [69], inUG and postsecondary level
students. The IEO model has also been used to

investigate the role of gender and race in the

prediction of gender-role traditionalism [70], fem-

inist identity and program characteristic roles in

social advocacy [71] and differences in transition of

black and white students from high school (HS) to

college [72]. Less than a handful of workers have

used the IEOmodel to assess outcomes in engineer-
ing, though the engineering community is begin-

ning to understand the importance of considering

student inputs and environment as described by the

IEO model in assessment of engineering curricu-

lum. For example, van den Broeck, et al. [73] used

the IEO model to explore differences in dropout

and academic achievement of traditional versus

lateral entrance students in the SoE at Katholieke
Universiteit Leuven in Belgium, where input vari-

ables were prior education and study patterns. They

concluded that both groups had similar drop-out

rates and academic achievement, which they attrib-

uted to mandatory curriculum course work

required for lateral (bridged) students to enter the

program [73].

3.3 Engineering Role Identity

Engineering role identity describes how students

form their identities in the engineering role based

on their experiences working in a community of

practice and in the college environment. Godwin

and Kirn [74] defined engineering role identity as

how students describe themselves and are positioned

by others into the role of an engineer. Role identity is
premised on three elements. First, students’ identity

development is dialogic [75], i.e., based on a social

perspective of communication. Second, students’

identity is connected to their interest in the subject

and beliefs about their competence relating to the

subject [76, 77], which both influence their motivation

to persist in and learn about the subject. Third,

engineering role identity depends on one’s compre-
hension of concepts, and ability to connect new

knowledge to prior information [78, 79] (cognitive

learning perspective). Many studies have shown

engineering identity as a predictor of students’
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educational and professional persistence. Most of

these studies have focused on how students’ percep-

tion of their engineering role identity is related to

their culture and enacting the qualities, they believe

are required for being an engineer [80, 81]. In the

context of developing an instrument that considers
students’ identity while introducing a virtual learn-

ing environment, students’ role identity could play a

meaningful role. This is because students’ role

identity focuses on the ways students describe them-

selves and their experiences with engineering games,

how they value the game in their learning, and how

theyunderstand engineering concepts as they engage

in the virtual learning environment. This is sup-
ported by several engineering identity theorists’

assertion that engineering identity is a function of

one’s national affiliation within a cultural context

[82–84], and the importance of students seeing

themselves as one who can ‘‘do’’ or ‘‘be’’ an engineer

to persist in the profession [80, 81, 85].

Understanding the interrelationship between

one’s identity and their persistence in the STEM
educational process and formation into an engineer

has been a subject of many researchers over several

decades, where differences between subgroups

(race, gender, socioeconomic, sexuality, etc.) and

the traditional stereotypical white/Asian masculine

culture of engineering have been noted [86, 87]. For

example, researchers [80, 81] used the social identity

theory described by [88, 89] to understand how
students identify as engineers as a function of

gender. It was found that there are significant

gender differences in how first-year students iden-

tify with engineering and becoming an engineer,

where fewer women were exposed to the engineer-

ing field through applied or building experiences

(0%women to 26%men); interactions with relatives

who were engineers (20% women to 26% men) and
STEM activities (10% women to 26% men) [81].

4. Experimental Method

4.1 Research Environment and Experimental

Method

A Mixed-Method Convergent Research Design

Method [90] was proposed and approved by the

primary Institutional Review Board of the first

author. The study took place at a Research-1 [91],

research-intensive institution in the Northeastern

region of the United States. The data described

herein represents phases of a multi-year study

(2020–2022). Participants in the study (N = 304)
were recruited to participate from amechanical and

aerospace undergraduate engineering laboratory

course that took place in the 2020–2021 academic

school year, while the laboratory was offered vir-

tually during the COVID-19 pandemic.

4.2 Data Collection Protocol

Students who participated in this study were all

undergraduate engineering students who were

enrolled in a mechanical and aerospace engineering

laboratory. The remote labs were designed tomimic

the experience of being in the physical demonstra-

tion lab. Three hundred and four students partici-

pated in the study by submitting responses to a pre-
lab and a post-lab questionnaire. Seventy-seven of

the participants neglected to complete either the

pre- or the post-lab. So, the minimum number of

responses for each question is 227.

Due to the large number of students enrolled in

the course, students were divided into multiple

sections and were rotated to different labs that

occurred simultaneously through the course seme-
ster. Students participated in one introductory

laboratory lecture that discussed course objectives,

design, and expectations. Before engaging in or

with any laboratory activities students were asked

to complete a pre-lab questionnaire with the ques-

tions that are detailed in Table 5. After finishing the

pre-lab questionnaire, students downloaded and

observed a pre-recorded video lecture that
described the theoretical concepts covered in each

lab. These recorded lectures were created by

instructors who taught the theory associated in

the lab in the technical courses. These technical

courses were pre-requisites to the senior educa-

tional engineering lab. Students were also provided

equipment manuals and laboratory guides for each

lab prior to beginning the lab.
In the virtual laboratories, students observed the

teaching assistant (TA) conduct the lab synchro-

nously via multiple video feeds while logged on to a

video conference platform. A schematic of the

virtual lab set up is provided in Fig. 1. As shown

in this figure, several cameras focused on specific

aspects of the equipment where inputs were pro-

vided, and where data was captured as output.
Students observed the operation of the equipment

synchronously as the TA directed the lab proce-

dures. In some cases, TA’s asked students to

indicate the steps in the procedure and/or express

parameters for operation.

Over the course of the semester of the study,

students participated in five virtual labs: LabVIEW,

Material Testing, Momentum Deficit, Steam
Engine, and Vibrations. These laboratories were

based on fundamental theoretical content covered

in courses that the majority of students took prior

to the engineering lab as prerequisites. Students

were given two weeks to submit a laboratory

report after participating in the lab. Students were

prompted to complete a post-lab questionnaire

after each lab with the questions detailed in Table 6.
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5. Questionnaire Development –
Validation Methods

A multiple item questionnaire was created for this

project called the Student Perceived Value of an

Engineering Laboratory (SPVEL) assessment. This

questionnaire was designed to leverage three theo-
retical models, i.e., the Technology Acceptance

Model [60, 61], Inputs-Environment-Outcome

(IEO) Conceptual Model [68, 92], and Engineering

Role Identity [74, 77, 93]. The original draft of the

questionnaire (prior to the application of the load

factor analysis) comprised 35 items as shown in the

Appendix in Table 5 and Table 6, which depict

portions of the questionnaire administered pre- and
post-lab, respectively. Twenty-seven (27) of the

items were rated on a Likert-type scale that

ranged from 1 to 5, where 1, 2, 3, 4, and 5, referred

to ‘‘Strongly Disagree’’, ‘‘Somewhat Disagree’’,

‘‘Neither agree nor Disagree’’, ‘‘Somewhat

Agree’’, and ‘‘Strongly Agree’’, respectively. The

other items in the questionnaire, were scaled

according to number of occurrences/experiences
and hours of participation.

The process for validating the SPVEL instrument

consisted of four steps in chronological order [94]:

(1) determination of Cronbach’s Alpha for the

entire questionnaire, (2) exploratory load factor

analysis using the principal axis method, (3) the

principal component analysis (PCA) for the reduc-

tion approach, and (4) determination of Cronba-
ch’s Alpha for each of the factors derived from the

reduction method.

5.1 Cronbach’s Alpha Reliability Method

The reliability of the entire questionnaire and sub-

sequent factor loadings was assessed via Cronba-

ch’s Alpha (�) to ascertain the strength of the

consistency in the questionnaire and loadings for

measuring the concepts detailed Table 5 and Table

6. To interpret Cronbach’s Alpha a score between

0.7–0.95 is generally considered very high and

demonstrates that the items within the question-

naire of a loading factor possess high test-retest

reliability and internal consistency (connected to

the inter-relatedness of the items in the test). While
Cronbach Alpha scores between 0.55 and 0.70 are

considered acceptable, those that are less than 0.55

are not [95, 96]. A Cronbach alpha score that is less

than 0.55 could indicate an inappropriately low

number of questions, which could be due to two

common issues: (a) low number of questions and

hence poor inter-relatedness between the items and

(b) multiple-choice questions that have only two or
three choices of responses generally have lower

reliability score compared to Likert style questions

that have five to seven response choices [96].

5.2 Principal Axis Factoring Method –

Exploratory Load Factor Analysis

An exploratory factor analysis was conducted to

investigate the factor structure underlying the

responses to a questionnaire that comprised 35

items. Principal axis factoring was used to extract
the factors, and the squared multiple correlations

were used as prior communality estimates. A

Kaiser-Meyer-Olkin (KMO) test was also per-

formed to validate that an appropriate number of

sampling sizes were used in the study. In particular,

this statistic (ranges from 0.0 to 1.0) was used to

measure the proportion of variance among vari-

ables that may be common variance, which deter-
mines if the data is suitable for factor analysis,

where values greater than or equal to 0.7 indicate

suitable data [97]. A Barlett’s test for sphericity was

performed to determine whether the data has an
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adequate number of correlations. In other words,

this test was conducted to check for redundancy

between variables, where a value of less than or

equal to 0.05 indicates that the correlation matrix is

not the identity matrix [97]. Finally, a scree plot

containing the eigenvalues of the factors arranged
in descending order of magnitude was used to

ascertain the most meaningful factors of the struc-

ture [94].

5.3 Principal Component Analysis (PCA) Method

Principal Component Analysis (PCA) is the dimen-

sionality-reduction method that was used to reduce

the dimensions of the large data set to make a

predictive model. In this way, each item is projected

onto the first few principal components to obtain

lower-dimensional data, while maintaining the
majority of the data’s variation.

6. Results

6.1 Demographics of the Participants

The racial and ethnic demographics of the students

who participated in this study are provided in Table

1 and Table 2. The demographics of the student

population presented in this table demonstrate that

the racial and ethnic groups are similar in percen-

tage to the national averages recorded by the ASEE

(Engineering By the Numbers report [98]). For

example, 15% of the students have identified them-
selves as women in this study, which is close to the

national average values for mechanical engineering

(16.5%) women graduates. Similarly, the percen-

tage of LatinX participants in this study, e.g., 12%,

is close to the percentage of graduating students

nationally for all engineering majors, i.e., 13.1%.

Lastly, the number of Black/African American

participants, e.g., 6%, supersedes the national aver-

age values for all engineering majors (4.5%).

6.2 Analysis of Data Reliability of the 35-Item

Questionnaire – Cronbach’s Alpha Reliability

Method

The analysis of the data initiated by ascertaining the

reliability of the entire questionnaire via Cronba-

ch’s Alpha (�) to ascertain the strength of the

consistency in the questionnaire. Cronbach Alpha
was computed for the pre- and post-lab questions

independently, and for the combined questionnaire.

As anticipated, the Cronbach’s alpha scores for the

pre-lab, post-lab, and combined questionnaires

were 0.464, 0.933, and 0.858, respectively. The low

alpha score for the pre-lab questionnaire questions

has to do with the scale and number of questions

used. As shown in Table 5 and Table 6, Q1–Q7 were
not based on a Likert-type point scale, and instead

were based on the frequency of occurrences, where

Q1–Q5 had 3 choices and Q6 and Q7 had 5 choices.

On the other hand, the remaining questions, e.g.,

Q8–Q35 were based on a 5-point Likert-scale for

each item. In the pre-lab questionnaire, themajority

of the questions had a maximum of three choices.

This small number of choices makes it difficult for
the SPSS software to conduct a valid reliability

analysis for these questions. However, the ques-

tions that did have a 5-point Likert Scale had high

reliability, i.e., greater than 0.67, i.e., Q6–Q15. The

post-lab questions were all posed on a 5-point

Likert scale and has a high alpha score of 0.933,

which suggests a high internal consistency of the

data. Although the individual alpha score for the
pre-questionnaire was low, when combined with

the post-questionnaire, the combined alpha value

goes to 0.858. This provides sufficient evidence that

the test-retest reliability of the combined question-
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Table 1. The racial and ethnic demographics of the undergraduate mechanical and aerospace engineering (MAE) student participants in
this study

Race/Ethnicity Number Percent

White, Non-Latino (Not Hispanic) 118 39%

Black or African American, Non-Latino (Not Hispanic) 19 6%

Asian 92 30%

Two or more races and/or ethnicities 7 2%

Prefer not to answer 10 3%

White, Latino (Hispanic) 19 6%

Black or African American, Latino (Hispanic) 2 1%

LatinX (Latin American origin or descent) 16 5%

Middle Eastern, North African 21 7%

Total Responses 304 100%

Table 2. The gender demographics of the undergraduate MAE
participants in this study

Gender Frequency Percent

Male 232 76%

Female 47 15%

Prefer not to answer 25 8%

Total 304 100%



naire is remarkably high, and the internal consis-

tency of the items are high as well.

6.3 Exploratory Factor Analysis

An Exploratory Factor Analysis (EFA) was con-
ducted to investigate the factor structure underlying

the responses to the questionnaire that comprised

thirty-five items as detailed in Table 1 and Table 2.

The descriptive statistics for the pre- and post-lab

questions, i.e., the mean and standard deviations

for each of the responses are provided in the table.

A normality test was conducted for each item in the

questionnaire that combined the pre- and post-lab
questions. From the normality test, it was deter-

mined that the distribution of the responses was

skewed and did not follow a normal distribution.

Hence, a maximum likelihood estimator (used for

normal distribution responses) was not used for

estimating parameters. Instead, the data was trea-

ted as categorical data, which are ordered and non-

normal [94].
The factor structure of the latent variables was

estimated with the aid of SPSS software where

squared multiple correlations were used as prior

communality estimates. Polychoric correlation

factors were calculated from the 35 original cate-

gorical variables [99]. This correlation matrix indi-

cated that both positive and negative correlations

existed in the data, where the correlation values
ranged from –0.006 to 0.525. The range of the

correlation coefficients indicated that the putative

factors from the EFA were not independent. None

of the correlations in the original matrix exceeded

0.85, thus multicollinearity was not observed, i.e.,

no two items measured the same aspect of the

construct. Also, the determinant of the matrix

was found to be greater than 0.0001 [94, 100],
which supports the further use of the data set for

EFA and principal component analysis reduction

methods for this study. Three additional tests, i.e.,

Kairser-Meyer-Olkin, Bartlett, and Scree Plot,

were conducted to affirm the viability of using the

data set for EFA and Principal Component Ana-

lysis (PCA) analyses.

A Kaiser-Meyer-Olkin (KMO) test was also
performed to validate that an appropriate number

of sampling sizes were used in the study, e.g.,

sampling adequacy. A total of 304 students parti-

cipated, however, only 227 of the participant data

was used as incomplete surveys were discarded

from the analysis. The KMO for this work was

calculated to be 0.75 (shown in Table 3). Since

KMO is equal to 0.750, this indicates that sample
size is sufficient for factor analysis. Bartlett’s Test

for Sphericity was conducted to test the null

hypothesis that the correlation matrix is an identity

matrix. As shown in Table 3, sphericity significance

was determined to be <0.001, which confirms that

there are an adequate number of correlations

between variables to conduct an exploratory

factor analysis (EFA) [97].

To extract the number of factors underlying the
data, two criteria were used: the point of inflection

from the Scree Plot [101] and the number of

eigenvalues greater than 1.0 [101, 102]. The Scree

Plot containing the eigenvalues of the factors

arranged in descending order of magnitude for the

data for this study is provided in Fig.2 was used to

ascertain the most meaningful factors of the struc-

ture [94]. Six factors were identified using this
extract method, which are used to define the puta-

tive factor structure for the SPVEL instrument.

Once the putative factor structure was identified,

factor loadings were analyzed and reduced using

the Principal Component Analysis (PCA) method

[103].

6.4 Reduction Method – Principal Component

Analysis (PCA)

A Principal Component Analysis (PCA) method

was used to extract, define, and reduce the factor

loadings, where the squared multiple correlations

were used as prior communality estimates to extract
the factors for this analysis. Rotated orthogonal

matrix (Varimax with Kaiser Normalization [104])

and communalities were used to ascertain the load-

ing of factors, where items with factor loading
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Table 3. KMO and Bartlett’s test results for the questionnaire.
The KMO value indicates that there was an appropriate sample
size for the number of questions included within the instrument.
The sphericity significance (<0.001) value indicates that there is
an adequate number of correlations between the variables within
the instrument to use the EFA method

Measure Value

Kaiser-Meyer-Olkin (KMO) Measure of
Sampling Adequacy

0.750

Bartlett’s Test of Sphericity Approx. Chi-
square

1360.871

Bartlett’s Test of Sphericity df. 378

Bartlett’s Test of Sphericity Sig. <0.001

Fig. 2. Scree plot of the questionnaire questions and eigenvalues,
which illustrate the presence of 6 factors.



coefficients greater than |0.4| were considered sig-

nificant for a specific factor, and those less than

|0.40|, were removed. This process of analysis was

repeated to optimize loading coefficient values and
communality values, while minimizing loadings of

variables that cross-loaded onto multiple factors.

The final rotation converged in ten iterations. The

questions that were removed from the question-

naire using this reduction and extraction method

were Q2–Q7, Q24, and Q33. As mentioned pre-

viously, these were mostly appropriate for removal

due to the limited number of choice options for
participant responses, i.e., less than 5 response

choices. Finally, Cronbach’s Alpha was calculated

for each factor to assess the reliability of the loading

associated with the group. The final loading factor

structure that comprised six factors along with the

associated loading coefficients, Cronbach Alpha

values are presented in the APPENDIX in Table

7. The rotated sums of the squared loadings are
detailed in Table 4.

6.5 Instrument Factors

An Exploratory Factor Analysis (EFA) approach

was used to decipher six primary factors including

twenty-seven questions from the original set of
thirty-five. Load factor one describes student per-

ception of laboratory educational value towards

enhancing students’ skillset and reinforcement/

enhancement of theoretical content taught in pre-

vious classes (TAM and IEO). Load factor two

describes the interaction and communication

between students and the instructor in the labora-

tory environment. The third load factor describes
how students accepted/or not the laboratory envir-

onment, ease of use in from the TAM. The fourth

load factor describes students’ perception of the

viability of virtual lab learning environment as a

learning tool. The fifth load factor describes stu-

dents’ engineering role identities (EFI). The last and

sixth load factor observed was students’ percep-

tions of virtual learning environment ease of use
and usefulness (TAM). As shown in the APPEN-

DIX in Table 7, additional reliability tests were

performed for each load factor, where Cronbach’s

alpha was determined for each of the load factors.

Overall, the alpha scores for each factor were high

(� � 0:67), thereby confirming high reliability.

6.6 Load Factor One – Student Perception of

Laboratory Educational Value

The first load factor has a total of nine variables

loading into it. Cronbach’s alpha for the variables

associated with factor one is 0.944, which is extre-

mely high. This factor refers to how students

perceived the virtual laboratory experience in

terms of value in enhancing their existing skills

and/or technical knowledge. From Table 7, it can
be deduced that Factor one contributed 26.685% of

the total variance after rotation, which is the highest

among the six factors.

6.7 Load Factor Two – Interaction and

Communication Between Students and the

Instructor

Four variables loaded into the second factor. This

factor refers to communication between students

and the instructor within the virtual labs experi-

ence. Factor 2 contributed to 11.705% of the total

variance after rotation and its Cronbach’s alpha

was determined (for four variables) to be 0.857,

which is very high.

6.8 Load Factor Three – Technology Acceptance

(Ease of Use) and Engagement

The third factor has a total of five variables loading

into it and refers to the attentiveness of the students

in the virtual lab environment, as well as ease of use
(TAM) of the virtual laboratory environment. It

can be deduced from Table 7 that Factor 3 con-

tributed to 11.550% of the total variance after

rotation, where Cronbach’s alpha after rotation

was found to be 0.773. The high value of Cronba-

ch’s alpha suggests a high reliability for this load

factor to predict students’ opinions regarding how

easy/or not it was to engage with the virtual
laboratory environment remotely from home.

6.9 Load Factor Four – Students’ Perception of the

Viability of Virtual Lab Learning Environments as

Learning Tools

The fourth factor has two variables loading into it
and contributes to 8.363% of the total variance after

rotation. It refers to a student’s perceived under-

standing of virtual lab viability. The Cronbach’s

alpha for Factor 4 is 0.764. This load factor like the

others has high reliability in the variable question-

naire questions within it.

6.10 Load Factor Five – The Fifth Load Factor

Describes Students’ Engineering Role Identities

The fifth factor has three variables loaded onto it

that pertain to engineering role identity as defined
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Table 4. Percentage of total variance accounted for by each
factor after the rotation process

Component factor % of Variance

1 26.685

2 11.705

3 11.550

4 8.363

5 8.190

6 7.125



by [74, 77]. Factor five contributed to 8.190% of the

total variance after rotation. The Cronbach’s alpha

for load factor five is 0.674, which is average, i.e.,

between 0.5 and 0.7.

6.11 Load Factor Six – Students’ Perceptions of

the VL Environment Ease of Use and Usefulness

(TAM)

Factor six has three variables loading within it and

contributed to 7.125% of the total variance after

rotation. It also has a Cronbach’s alpha equal to

0.674, which is within an acceptable range (between

0.5 and 0.7). Factor six examines how students

perceive the virtual learning environment in terms

of ease of use and usefullness, which are elements

from the TAM described in Section 3.1.

7. Discussion

In our previous work [12], we found that several
questions in the conventional course evaluation

instrument tended to be more instructor focused,

rather than student focused. Hence feedback from

students about the virtual lab session did not fully

visualize students’ points of view regarding the

laboratory environment. Hence, one of the goals

for this project was to generate more feedback from

students regarding the virtual lab experience and
utility.

Factor 1, derived from the EFA, relates to how

students perceived the virtual laboratory experience

in terms of value in enhancing their existing skills

and/or technical knowledge. This factor also exam-

ines if the laboratory experience enhanced students’

motivation to learn more about the laboratory

topic outside of the classroom environment. In
this way, the factor helps the researcher understand

the tendency of the learner to allocate time towards

gaining more knowledge, which is part of the I-O-E

model. The I-E-O model also connects one’s pre-

vious experiences and environment to output. In

this case, the inputs to the model include previous

experience with virtual lab environments and con-

fidence in content mastery from previous classes
taken in the subject of the laboratory. Inputs could

also include social identity characteristics, which

can be related to access to technology and novel

learning platforms. When connected to student

demographical information, this factor may be

used to elucidate how students’ motivation from

the lab experiences are related to their background

and prior experiences in a manner similar to [105],
who used the I-E-O model to predict students’ first

choice in selection of engineering as a major to

students’ ethnicity, gender, and time of application.

Factor 1 also illustrates how students perceive the

lab to be of use in helping them prepare for their lab

report, which is an extension of the TAM as it

allows the instructor to interpret what is useful for

the student, i.e., being able to successfully fulfil the

lab report requirement based on the virtual lab

experiences. In the original TAM, usefulness was

based on predicting how the usefulness of the
technology outweighed the effort put into learning

how to use the technology. In our validated instru-

ment, willingness to learn to use the technology for

benefit is expressed in questions 18, 21, 27, and 35.

Extending the Technology Acceptance Model

(TAM) to include mechanisms pertaining to how

users interpret usefulness has been the subject of

scholars like [106], who related students’ proclivity
towards continuing to use an online engineering

education game to how they perceived it to be useful

in terms of preparation for an exam in the course or

an engineering related job interview. Similarly, this

work extends the TAM to understand students’

perception of usefulness in terms of preparation

for lab reports and development of skills to be used

in a career. In a similar way, the TAM’s definition
of ease of use is extended in this work, via questions

pertaining to the ability to follow the steps in the lab

and the lab being a good learning experience.

Factor 2 refers to communication between the

students and instructor in virtual lab environments.

From previous work that used the traditional

course evaluation tool, students were not able to

communicate the level of engagement that they
experienced with the course instructor, though

this has been noted by others as a vital component

of effective laboratory learning experiences [2, 12].

Hence, the addition of the questions that loaded

onto Factor 2 for this instrument allows the

researcher and practitioner to ascertain the effec-

tiveness of their interaction with students using

multiple schemas. This factor’s ability to assess
student-instructor engagement is important and

aligns with the findings of [107] who asserted that

it is critical that there should always be a pedagogic

alignment between content knowledge and technol-

ogy, which can lead to enhanced student-teacher

interaction and active learning environments.

The third factor refers to the attentiveness of the

students in the virtual lab environment, as well as
ease of use (TAM) of the virtual laboratory envir-

onment, which was discussed in Section 3.1. This

factor informs the instructor or instruction team/

technologist, about aspects that influence students’

ease of observing (visually) and hearing the lab as

performed by the instructor. Cronbach’s alpha of

0.773 suggests a high reliability of this load factor to

predict students’ opinions regarding how easy/or
not it was to engage with the virtual laboratory

environment remotely from home. In addition, this

factor includes one question related to the I-E-O
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model, i.e., student’s prior experience with using

virtual labs. Inclusion of this question within load

factor three suggests that there is a relationship

between student’s ease of using virtual lab technol-

ogy and prior experiences with virtual labs. The

high correlation between the variables in this group
reinforces our previous work, where qualitative

responses from students indicated that they lost

concentration in virtual labs in instances where

there were technology/internet challenges and visi-

bility complications when observing steps in the

experimental process due to camera vantage point.

The Cronbach’s alpha for Factor 3 (� = 0.77),

compared to Factor 1 (� = 0.94) and Factor 2
(� = 0.86), is slightly lower due to there being

fewer options in the instrument for the question

about prior high school experience. This may have

resulted in lower inter-relatedness between items

and/or lower reliability from this multiple-choice

question (with 3 choices of response) in comparison

to the 5-point Likert scale used for the majority of

the other questions in the instrument. The 11.55%
of total variance for this factor is close to that for

the second factor, which indicates that both factors

have similar weights in terms of importance for

these items for inclusion within the final instrument.

Factor four refers to a student’s perceived under-

standing of a virtual lab’s viability. From the feed-

back of the interview from previous work, it was

perceived that while many students liked face-to-
face lab sessions more, some were content with

virtual lab sessions. To garner more student feed-

back regarding this matter while providing contin-

ual improvement on the virtual lab sessions, it is

important to constantly ask for feedback regarding

the viability of the virtual lab classes from the

students’ point of view. This aspect was not

included in the set of questions within the conven-
tional course evaluation instruments [12]. Factor

four signifies this aspect and had the two variables

closely representing the notion of whether a virtual

lab is better than face-face and if students learn

more or nearly the same in both types of labs.

The fifth factor has three variables that pertain to

engineering role identity as defined by [74, 77].

Factor five has a Cronbach’s alpha equal to 0.674.
which is slightly lower compared to previous fac-

tors. This is mostly attributed to the lower relation-

ship of the students’ belief in their ability to use their

skills as engineering students evidenced in them

being able to understand engineering concepts in

their courses. It is important to note, however that

the extracted communality score for question 13 is

0.6, which is acceptable, i.e., above 0.4, for the
reduction approach. This lower connection with

the other variables indicates an opportunity for

this instrument to garner evolving perceptions of

student identities’ affinity and the affection for their

chosen field. It also sheds light on understanding

their confidence in their ability to appreciate and

use skills acquired in coursework and laboratories.

This disconnect in personal confidence in engineer-

ing skillset and actual performance has been noted
by [6]. Also, variability in student experiences, e.g.,

mentorship [108], parental support [109, 110], expo-

sure to others in engineering like themselves [111,

112], may contribute to confidence, which are

elements not included in this instrument, but

found to relate to engineering role identity, engi-

neering formation, and persistence in the engineer-

ing field [113], which undoubtedly influence the
effectiveness of educational resources and learning

tools. This question may also have lower inter-

relatedness to the two other items because it may

be interpreted differently by the students, or not

provide enough context for students within the

same department, but with different specific inter-

ests, e.g., thermal science, design, composites, etc.

In addition, variability in confidence regarding
one’s abilities in a subject could be influenced by

sentiments of imposter phenomenon [114, 115],

which were not explored as a part of this study

instrument.

Factor six describes how students perceived the

virtual learning environment in terms of ease of use

and usefulness, which are aligned with the TAM

[60, 61, 116] . Table 7 shows that the question in this
factor pertaining to usefulness of the lab to future

work is ranked lower (0.624) than the other two

questions in the grouping, related to VL’s ease of

use (0.760) and VL’s can be good learning tool

(0.718). This lower connection may be because of

some students’ inexperience with the engineering

field from internships and co-ops, and other experi-

ences with course work not directly appearing to
relate to real-world engineering experiences. This

could also be a reflection of the student’s percep-

tions of the equipment and measurements used in

the lab, which may not have been cutting edge from

their vantage points. It is expected that this instru-

ment will provide a unique opportunity to garner

their evolving perceptions of the engineering pro-

fession and their personalized educational needs,
which have been identified by the National Acad-

emy as a grand challenge in engineering [117] .

It is anticipated that the SPVEL assessment

instrument can be used by researchers and instruc-

tors who facilitate and design engineering labora-

tories for 21st century engineering undergraduate

and pre-college high-school science students. For

example, the SPVEL instrument provides a mean-
ingful way to assess how laboratory content relates

to and affirms theoretical content taught in prior

courses. This instrument also facilitates the
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exploration of communication and interaction

between students and instructors, which is different

from traditional assessment tools that focus on

student assessment of instructor preparedness and

not how students chose to actively participate in

laboratory environments. The instrument also
allows the instructor and researcher to examine

how diverse types of laboratory environments,

equipment, and tools are accepted (or not) as

being useful for realistic professional skill develop-

ment as interpreted by the student. Given the

important relationship between students’ associa-

tion with their engineering role identity and persis-

tence in the field, learning how laboratory
environments affirm (or not) students positionality

within the engineering field is vital. Understanding

this relationship is crucial as educators contemplate

evidence-based practices for updating and moder-

nizing laboratory equipment, protocols, and sub-

ject matter in innovative novel ways.

8. Conclusion

Anexploratory factor analysis was used to validate a
questionnaire as an instrument for use in under-

standing the perceptions of students engaged in

virtual laboratories. In this process, underlying

factors within the questionnaire were identified and

Cronbach alpha scores that were high to acceptable

were achieved. Several questions were eliminated

from the instrument due to low communality

scores, i.e., lower than 0.4. The six factors gleaned

from this study focus on students’ perception of the

lab’s educational value; the effectiveness of the

interaction and communication between the stu-

dents and the instructor; the acceptance of the
technology (TAM); viability of the virtual lab envir-

onment as an effective learning tool; and the influ-

ence of the lab on forming students’ engineering role

identities. Understanding how to design remote and

virtual labs is a meaningful step towards developing

personalized learning tools for engineering educa-

tion. Also, this work provides an initial glimpse into

how students align their practical demonstration
labs with future career work. Understanding ways

of preparing 21st engineering students for the 21st

century engineering profession will require critical

analysis of existing norms andways of doing, funda-

mental engineering theory, teaching, and mechan-

isms/tools for assessment as the connection between

coursework and practical application of theory. As

the identity and expectations of the students and
engineering curriculum evolves, so too will the

profession and research in this field as they become

more convergent in practice.
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Appendix

Table 5. List of Pre-lab questions administered to students prior to participation in the lab. The mean and standard deviation for each
variable is provided along with the associated theoretical framework

Item Category of Question and responses Mean (M) � STDEV Theoretical Model

Prior virtual lab experience demographic information. Possible student choices: 0 Classes (0), 1 – 2 Classes (1), 3 or more classes (2)

Q1 Have you ever engaged in a virtual lab in high school? 0.17 � 0.49
IEO
Model

Q2 Have you every engaged in a virtual lab in college? 0.48 � 0.58

Q3 How many in-person lab courses have you had since you started college? 1.74 � 0.50

Prior internship and undergraduate research experience. Possible student choices: None (0), 1 – 2 experiences (1), and 3+ experiences (2)

Q4 Engineering internship 0.49 � 0.63
(58.1% no experience) IEO

ModelQ5 Engineering research with engineering school 0.34 � 0.59
(53.9% no experience)

Prior experience - lab preparation classes other than MAE 14-650-431 (this course). Possible student choices: 0 – 1 hour (1), 2 – 3 hours (2), 4 – 5
hours (3), 6 or more hours (4), N/A (5)

Q6 How many hours have you spent in the past preparing for hands-on labs. 1.76 � 0.94
(50% 0–1hrs.) IEO

ModelQ7 How many hours have you spent writing lab reports (outside of class period) in
college in the past (hands-on labs)?

3.04 � 0.84
(74% 4+ hrs.)

Perceptions of virtual labs (VLs) – Likert Scale of 1 to 5. Possible student choices: Strongly Agree (5), Somewhat Agree (4), Neither Agree nor
Disagree (3), Somewhat Disagree (2), Strongly Disagree (1)

Q8 I think VLs can be good learning tools. 3.23 � 1.05

IEO

Q9 I think virtual labs can replace hands-on-labs. 1.84 � 0.97

Q10 I think virtual labs are easier to do than hands-on-labs. 2.73 � 1.00

Q11 I can learn as much virtual lab as I can from a hands-on-lab. 2.32 � 1.08

Q12 The skills from VLs will be useful to me in my future career. 3.23 � 1.07

Self-Identification with the Engineering Profession- Likert Scale of 1 to 5. Possible student choices: Strongly Agree (5), Somewhat Agree (4),
Neither Agree nor Disagree (3), Somewhat Disagree (2), Strongly Disagree (1)

Q13 I can understand concepts that I have studied in engineering. 4.34 � 0.70
Engineering Role
Identity

Q14 Being an engineer is an important part of my self-image. 4.03 � 0.99

Q15 My friends see me as an engineer. 4.14 � 0.89

Table 6. post-lab questions administered to students after they completed the virtual lab and submitted the final laboratory report, N =
227. Likert Scale of 1 to 5 where 1 is Strongly Disagree, 3 is Neither Disagree or Agree, 5 is Strongly Agree

Student Perceptions of VL Experience.

Q16 The VL was easy to understand. 3.69 � 1.05

TAM +

Q17 I could follow the steps in the lab. 3.70 � 1.10

Q18 The lab held my attention for the full duration of the time. 3.36 � 1.23

Q19 I was able to communicate with the TAs during the lab. 4.13 � 0.97

Q20 Class ran smoothly with no technical glitches. 3.48 � 1.31

Q21 This lab adequately prepared me to write my final report. 3.42 � 1.15

Q22 TAs effectively answered questions during the lab. 4.09 � 0.95

LabView virtual laboratory (VL) and in-person interactions and visual experiences.

Q23 The operations performed in the lab were easy to follow. 3.79 + 1.09

TAM +

Q24 It was hard for me to see relevant steps/processes taking place in the lab. 3.11 � 1.24

Q25 I was able to ask questions in the virtual chat. 4.27 � 0.90

Q26 I was able to ask the TA questions orally during the lab. 4.27 � 0.87

Q27 I think I learned as much from this VL as I would have learned in a hands-on lab. 2.72 � 1.41

VL Connection with MAE prior coursework

Q28 This VL helped me to understand concepts from my previous courses. 3.44 � 1.19

IEO
Model +

Q29 This VL affirmed concepts from my previous classes. 3.56 � 1.14

Q30 This VL helped me make the connections between previous course concepts. 3.57 � 1.07

Q31 The VL motivated me to want to seek more knowledge about this subject outside of class. 2.89 � 1.31

Q32 I was able to interpret the data from the lab using only resources provided in the class. 2.89 � 1.31

Usefulness of the virtual lab for future career

Q33 I do not think that the real life of an engineer was reflected in this VL. 3.18 � 1.15 TAM +

Q34 The virtual Lab was a good learning experience. 3.33 � 1.19

Q35 I think the skills I learned in this lab will be useful in my future career. 3.27 � 1.23

In this table, the ‘‘+’’ sign indicates that additional questions have been added to the model detailed to better understand student perceptions
of the VL learning experience.
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Table 7.RotatedComponentMatrixa, which contains Cronbach’s alpha that relates to the load factor.Minor cross-loadings not counted
in the factor loading have been removed

Question 1
(� = 0.94)

2
(� = 0.86)

3
(� = 0.77)

4
(� = 0.76)

5
(� = 0.67)

6
(�= 0.67)

Q28: This VL helped me to understand concepts from my
previous courses.

0.857

Load Factor 1 describes students’ perception of the
laboratory’s value. This factor has nine variables loaded into
it and illustrates the connection betweenusefulness of the lab
in preparing course work materials and motivation to learn
more for lifelong learning. This factor represents 26.685% of
the total variance after rotation.

Q27: I think I learned as much from this VL as I would have
learned in a hands-on lab.

0.855

Q29: This VL affirmed concepts from my previous classes. 0.833

Q34: The VL was a good learning experience. 0.796

Q30:This VL helpedmemake the connections between previous
course concepts.

0.769

Q35: I think the skills I learned in this lab will be useful in my
future career.

0.762

Q31: The VL motivated me to want me to seek more knowledge
about this subject outside of class.

0.753

Q32: I was able to interpret the data from the lab using only
resources provided in the class.

0.713

Q21: This lab adequately prepared me to write my final report. 0.707

Q18: The lab held my attention for the full duration of the time. 0.478

Q26: I was able to ask the TA questions orally during the lab. 0.878 Load Factor 2 describes the interaction and
communication between students and the
instructor. This factor represents 11.705% of
the total variance after rotation and has four
variables loaded into it.

Q25: I was able to ask questions in the virtual chat. 0.842

Q19: I was able to communicate with the TAs during the lab. 0.737

Q22: TAs effectively answered questions during the lab. 0.696

Q17: I could follow the steps in the lab. 0.734 Load Factor 3 represents 11.550%
of the total variance after rotation
and has 5 variables loaded into it.
This factor describes the ease of use
of the virtual lab system (TAM)
and students’ engagement.

Q16: The VL was easy to understand. 0.714

Q1: Have you engaged in a VL in high school? –0.693

Q23: The operations performed in the lab were easy to follow. 0.595

Q20: Class ran smoothly with no technical glitches. 0.546

Q9: VLs can replace hands-on-labs. Load Factor 4 describes the viability
of the VL learning environment as a
learning tool from the students’
perspectives. This factor represents
8.363% of the total variance after
rotation and has two factors loaded
into it.

0.801

Q11: I can learn as much in VLs as in hands-on-labs. 0.792

Q15: My friends see me as an engineer. Load Factor 5 describes students’ engineering
role identities and contributes to 8.190% of the
total variance after rotation, with three
variables loaded into it.

0.890

Q14: Being an engineer is an important part of my self-image. 0.882

Q13: I understand concepts that I have studied in engineering. 0.585

Q10: VLs are easier than hands-on-labs. Load Factor 6 has three variables loaded into it and represents
7.125% of the total variance after rotation. This load factor
represents students’ perceptions of the VL’s ease of use and
usefulness (TAM).

0.760

Q8: VLs can be good learning tools. 0.718

Q12: The skills from VLs will be useful in my career. 0.624

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.a

a. Rotation converged in ten iterations.
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