
Institutional Characteristics and Engineering Student Non-

Cognitive and Affective (NCA) Profiles*

JUSTIN C. MAJOR1, MATTHEW SCHEIDT2, ALLISON GODWIN3, HEATHER PERKINS4,

SANGA KIM5, BRIAN SELF6, JOHN CHEN6 and EDWARD BERGER7

1Rowan University, Department of Experiential Engineering Education, 201 Mullica Hill Rd., Engineering Hall, Glassboro, NJ 08208,

USA. E-mail: majorj@rowan.edu
2Manpower and Reserve Affairs, United States Marine Corps, 3280 Russel Rd., Quantico, VA 22134, USA.
3Cornell University, Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120OlinHall, Ithaca,NY 14853,USA.
4 Indiana University, Department of Psychology, 1101 E. 10th St., Bloomington, IN 47405, USA.
5University of Texas at El Paso, Center for Education Research and Policy Studies (CERPS) 500 W. University CCSB 3.1002, El Paso,

Texas 79902, USA.
6California State Polytechnic University, Department of Mechanical Engineering, 1 Grand Ave., San Luis Obispo, CA 93407, USA.
7 Purdue University, School of Engineering Education; MEERCat: The Mechanical Engineering Education Research Center at Purdue,

701 W. Stadium Ave., Suite 1300, West Lafayette, IN 47907, USA.

In our prior work, a cluster analysis (n = 2,339) identified four groups of engineering undergraduates’ non-cognitive and

affective (NCA) factors from a list of 28 dimensions such as belongingness, engineering identity, self-control, and

perceptions of faculty caring. We found clusters of students that generally contained favorable student success

characteristics (high belonging, high engineering identity, high motivation, and others), as well as those that were

characterized by less favorable characteristics for student success (low belonging, low perception of faculty caring, and

others).Higher education institutions have varyingmissions and profiles, and they serve different student populations.We

hypothesize that as institutional characteristics are related to specific NCA (institutional characteristics may affect

belongingness, stress support, perceptions of faculty caring, or other constructs from our NCA-based clusters), they may

also be related to cluster membership. To test our hypothesis, we merged our dataset with institutional data from the

Integrated Postsecondary Education Data System (IPEDS), engineering program enrollment data from the American

Society for Engineering Education (ASEE) Engineering DataManagement System (EDMS), and financial data from the

U.S. Census Bureau. The final data for this analysis consisted of n = 1,252 responses across 14 U.S. institutions. We used

multinomial logistic regression to predict cluster membership as a function of both individual and institutional

characteristics. We found that institutional characteristics correlate to cluster membership in important ways: students

at large and/or and doctoral granting institutions have decreased odds of being in a generally positive cluster containing

favorable student success characteristics, while enrollment at guaranteed tuition institutions increases these odds. These

results elevate the role of institutional culture and its alignment to student characteristics as a key component of successful

student outcomes. These results, when considered as a question of student-institution alignment, offer opportunities to

rethink student academic and social support structures that encourage growth in specific NCA factors. In turn, this

growth may support expanded engineering student success.
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1. Introduction and Motivation

Between 2006 and 2015, the number of full-time

students studying engineering increased by 63%

[from 374,202 to 610,000 students; 1]. However,

high attrition rates in engineering, especially for

students from underrepresented backgrounds (i.e.,

women, socioeconomically disadvantaged, Black,

Latinx, and Indigenous learners), remain a continu-
ing concern among higher education stakeholders,

including students and parents. Research shows

that students in STEM, compared to non-STEM

peers, are more likely to switch to non-STEM

majors or not complete their degrees at all [2–4].

Further, studies also suggest that socioeconomic

factors, perceptions of risk, and institutional cli-

mate play an important role in these decisions [5, 6].

In addition to the negative impact on students, high

attrition strains U.S. organizations seeking a qua-

lified, talented, and diverse STEM workforce.

Therefore, STEM students’ educational opportu-

nity and success are essential to U.S. economic

vitality, intellectual and creative leadership, and

global competitiveness [7, 8].

Prior research on engineering student outcomes
has examined students’ tendency to switch majors

or drop-out [9, 4, 10, 11]. These studies indicate that

both cognitive skills (e.g., academic achievement)

and non-cognitive attributes (e.g., perceptions of

failure or success), as well as institutional charac-

teristics, might contribute to students’ retention

and success in engineering programs. However,

few studies have examined the role of student-
institutional alignment on engineering student out-

* Accepted 9 February 2023.668

International Journal of Engineering Education Vol. 39, No. 3, pp. 668–684, 2023 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2023 TEMPUS Publications.



comes. In particular, much of the prior work on

student NCA factors (identity, belongingness, and

so forth) considers these factors to be characteristics

of the individual, with only implicit connections to

the institutional context in which these students

study. There remains a substantial gap in our
understanding of how institutional factors and

individual attributes work in concert to shape

student outcomes.

We begin to address this research gap by lever-

aging our prior work on student NCA profiles,

augmented with institutional data and financial

data, to explore the connections among these indi-

vidual and institutional variables via multinomial
logistic regression. We have previously reported on

the existence of 4 distinct clusters of students based

uponNCA profiles [12]. In this work we explore the

hypothesis that alignment between individual and

institutional characteristics plays a role in student

NCA factors, clustering, and outcomes.

2. Background

Some institutions carry a reputation for their pres-

tige in engineering, such as polytechnics and many

land grant institutions. Those reputations can affect
not only which students apply but, subsequently,

who is admitted and who ultimately succeeds [13].

Therefore, studying engineering students frommul-

tiple institution types provides a unique glimpse

into how institutional context relates to students

and their non-cognitive profiles. In addition, mea-

surements for many psychological factors that

foster student success (e.g., personality and belong-
ing) are domain-specific and therefore must be

measured within the context they occur [14]. This

study uses items that have validity evidence speci-

fically with undergraduate engineering students,

either through the previous work of others or

through our own factor analyses. Focusing on

engineering students across institutions allows us

to (1) examine the effect of institution- and pro-
gram-level characteristics while minimizing poten-

tial confounds (described later) and (2) uphold the

validity of our measures. The first step in our study

of institutional contexts and students’ non-cogni-

tive attributes thus begins with a literature review

summarizing work on institutional differences and

NCA factors linked to student success, and then

drawing from these findings to tailor the current
study to undergraduate engineering students across

institutional contexts.

2.1 Historical Models to Understand the Student-

Institutional Alignment

Substantial prior work acknowledges the key role

played by institutional context in student success,

and in particular the alignment or ‘‘fit’’ of a student

within the institution occupies a central position

within these models. This alignment manifests in

several important processes, starting with the initial

decision to enroll at a specific institution and

continuing through future decisions about persist-
ing through graduation. Hossler and Gallagher’s

[15] three phase linear model, which builds upon

prior work [16, 17], progresses through predisposi-

tion, search, and choice processes. Each of these

phases is affected by both individual factors (e.g.,

students), as well as organizational factors (e.g.,

schools and the universities) and the interactions

among these variables. Hossler andGallagher’s [15]
student attributes resemble certain NCA factors

considered here, including both psychological and

behavioral factors. Much of this prior work is

rooted in classical models such as Astin’s [18] I-E-

O (inputs-environment-outcomes) model and Tin-

to’s [19] Model of Institutional Departure. These

historical models are useful in understanding stu-

dent-institution relationships at a high level, but
more recent scholarship highlights the tighter con-

nections among academic preparation, academic

and social-emotional support available at the insti-

tution, and student outcomes. For instance, the

Model of Co-Curricular Support [20] adds valuable

texture to the institutional support elements of the

student experience by highlighting the role of peer

interactions, faculty relationships, career counsel-
ing and advising, financial assistance, and many

others.

Similarly, Mattern, Marini, and Shaw [21] pro-

vided additional depth to the student-oriented con-

siderations about retention and transfer via a large-

scale, cluster-based analysis that included academic

preparation and financial resource measures. How-

ever, these and other more contemporary models
lack specificity in both the measured constructs and

the engineering student population. We next

describe engineering-specific, modern constructs

that individually correlate to student success.

2.2 NCA Factors, Student Outcomes, and Other

Student Characteristics

Non-cognitive factors have largely been studied

individually, and they have been described using

the vocabulary of the specific disciplines [e.g., non-

cognitive attributes, non-cognitive skills, non-cog-

nitive factors, character skills, social-emotional

learning, soft skills, personality traits; 22, 23].

Across disciplines and research studies, NCA attri-

butes have been consistently shown to correlate
with educational outcomes [24–26]. Non-cognitive

attributes contribute to college grade point average

(GPA) and retention – for instance, meta-analyses

indicate that self-efficacy has the strongest correla-
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tion with college GPA and is the second-strongest

predictor of retention [22, 27]. As one of many non-

cognitive attributes, grit has also recently received

attention in education research [although there is

concern about what it means to be ‘‘gritty’’ and the

privilege surrounding this measure; see 28–30], and
is strongly and positively related to college GPA

and college retention [31–33]. While the details of

these studies vary (student population, outcome

measure, study design), the general conclusion is

that student success and NCA factors are con-

nected, and that there exists a particularly desirable

set of NCA factors for individual students to

possess [34–37, and many others]. The malleability
of certain NCA factors presents an opportunity for

institutions to build academic or social activities to

support students’ growth of specific attributes.

We consider the role of socioeconomic inequal-

ities in shaping non-cognitive attributes as well; we

use socioeconomic status (SES) as a proxy. Sociol-

ogists have found that the parents of higher SES

students have greater privilege to invest more time
and economic resources in their children’s educa-

tionally effective activities, which benefits students’

cognitive and social-emotional needs [38, 39].

Lundberg [40] also found that Big Five conscien-

tiousness predicted degree completion for all

women, but only for high-SES men, while openness

was positively related to degree completion for low-

SES men. Given the well-documented importance
of non-cognitive attributes for college outcomes, it

is important to understand the intersectional role of

SES in shaping non-cognitive attributes in varying

institutional contexts to promote educational suc-

cess for students, in particular marginalized stu-

dents in engineering.

2.3 Research Question

Although a significant body of literature exists

linking single or small numbers of NCA factors to

student outcomes, little prior research explores the

ways in which a large collection of NCA factors

(such as via membership in a cluster) correlates to

student outcomes, or the systematic connections of

those NCA factors to institutional characteristics.
Exploring the relationships between the NCA pro-

files of students and their individual demographics

in conjunction with institutional characteristics will

help us understand how institutional characteristics

are related to NCA profiles – in ways that add value

over prior research that considered a limited

number of NCA factors in the absence of institu-

tional context. Our prior work used a person-
centered clustering approach to categorize engi-

neering students into 4 clusters based upon their

NCA factors, with some clusters exhibiting a set of

characteristics linked to high student success, and

other clusters showing sets of NCA factors con-

nected to lower levels of success. In this study, we

leverage this prior work to answer this research

question: in what ways do student NCA factors, their

backgrounds and demographics, and institutional

characteristics interact to predict cluster member-

ship?The underlying hypothesis is that alignment of

individual-level and institution-level variables will

predict cluster membership, which in turn allows us

to infer conclusions about student outcomes.

3. Methods

3.1 Survey and NCA Factors

In prior work, we designed, tested, gathered validity

evidence for, and then distributed, a large NCA

factor survey to students at about 20 institutions

across theUnited States. Amongst a large sample of

solicited universities, institutions included in this

work consisted of the 20 schools in our social
network who chose to be involved after being

solicited. The 28 NCA factors measured by the

survey include: the Big Five personality traits,

engineering identity, future time perspective (FTP)

motivation, belongingness, gratitude, mindfulness,

self-control, mindset, and several others. We chose

these NCA factors because each has validity evi-

dence as a construct in relation to student success.
We conducted exploratory and confirmatory factor

analysis, as well as cognitive interviews, to further

obtain validity evidence for this comprehensive

survey. More information about survey develop-

ment, data collection, and validity evidence is

contained in our prior published work [41–44].

3.2 Cluster Analysis

In other prior work, we used Gaussian Mixture

Method modeling (GMM) to cluster the survey

responses of n = 2,339 engineering students accord-

ing to their measures across 28 NCA factors [12].

GMM is a person-centered, probabilistic clustering

technique that assigns observations to clusters

according to their probability of belonging to

each cluster [45, 46]; observations not exceeding a
given threshold are assigned to an unclustered

group. Using a multiple-restart method, we gener-

ated 1,000 clustering models and reviewed a series

of appropriate fit indices to determine the best

clustering solution for our data. We found that a

four-cluster model of students NCA profiles was

the simplest, best fitting model. These clusters of

students, based on their NCAmakeup, were named
to represent the overall NCA profile of the engi-

neering students they contained. Full details on the

process of clustering students, reviewing fit indices,

and deciding upon the best solution can be seen in

our prior paper [12].

Justin C. Major et al.670



The names and descriptions of the resulting

clusters are shown below. Similarly, the numbers

of participants total and at each of the 14 institu-

tions included in the analysis we present are shown

in Table 1.

� Cluster 1: ‘‘Normative’’ –Members of this cluster
held NCA factor scores near the overall average

of the sample of students in the cluster analysis.

‘‘Average’’ NCA factors are neither good nor

bad, rather they represent a comparative baseline

for other clusters (35.5% of sample).

� Cluster 2: ‘‘High Positive NCA Factors’’ – Over-

all, the average student in this cluster scored high

on many NCA factors linked to student success,
including stress support, support from faculty,

future time perspective motivation (i.e., percep-

tions of the future, value, instrumentality,

connectedness, and expectancy), gratitude,

belongingness in engineering, meaning and pur-

pose in life, engineering identity interest and

recognition, time and study environment, and

agreeableness, with correspondingly low scores
on attributes like impulsivity and neuroticism

(21.3% of sample).

� Cluster 3: ‘‘Unconnected and Closed Off’’ – In

contrast to Cluster 2 which contained students

with predominately higher NCA factor scores,

this cluster contained students with low NCA

scores on factors associated with student success

including engineering identity interest, belong-
ingness in engineering, and expectancy, instru-

mentality, and connectedness from the future

time perspective motivation framework (13.2%

of sample).

� Cluster 4: ‘‘Without Support from Faculty and

Peers’’ – The fourth cluster was similar to the

third cluster, with even lower scores on dimen-

sions of engineering identity (interest and recog-

nition), FTP motivation (instrumentality,

perceptions of the future, and expectancy), agree-

ableness, perceptions of faculty support, and

belongingness in engineering (4.0% of sample).

There were no statistically significant differences

in self-reported standardized test scores or in GPA
across clusters for this sample [12]. Additionally,

the only significant (at � = 0.05) difference in

demographics (including institutions) across clus-

ters was a lower percentage of women and non-

binary participants in Cluster 3, as compared to the

other clusters. In our previous analysis, about 26%

of the sample remained unclustered using our

GMM approach. Unclustered participants held
NCA profiles diffusely distributed throughout the

parameter space with no strong trends or common-

alities (thus their lack of assignment to a cluster).

The unclustered group demographics were similar

to those of Clusters 1–4 in terms of race/ethnicity

and year in school, and similar to Clusters 1, 2, and

4 in terms of gender.

Based upon the substantial prior literature about
NCA factors, we expected that members of Clusters

1 and 2 are more likely to achieve success in

engineering programs than members of Clusters 3

and 4, and our prior research focusing on GPA

bears out this contention. We found that members

of Cluster 2 (high positive NCA factors) had higher

GPA on average than those in the other clusters.

While GPA is not the only–or perhaps even the
most important–element of student success, we

nonetheless conclude that there is a hierarchy of

clusters: we would prefer students to be members of

Cluster 2 or perhaps Cluster 1, and we would like

students to not be members of Clusters 3 and 4.

In more detailed analysis of participants’ GPA

over time at a single institution [47], we found that

members of Cluster 2 maintained the highest GPA

Institutional Characteristics and Engineering Student Non-Cognitive and Affective (NCA) Profiles 671

Table 1. The percentage of cluster membership at each institution

School Participants [Count] Cluster 1 [%] Cluster 2 [%] Cluster 3 [%] Cluster 4 [%] Unclustered [%]

A 349 39 19 10 1 31

B 467 27 19 18 3 33

C 100 30 15 18 2 35

D 276 35 13 6 3 42

E 81 30 20 16 2 32

F 140 33 16 9 4 39

G 228 18 17 8 1 56

H 76 33 26 11 1 29

I 98 32 12 10 4 42

J 50 34 26 4 4 32

K 41 12 24 15 5 44

L 27 41 22 4 0 33

M 111 27 21 10 5 38

N 214 31 16 3 3 47



over time, with members of Cluster 1 holding the

next highest GPA, andmembers of Cluster 3 experi-

encing the most significant drop in GPA over time

(Fig. 1). In summary of our prior work, the four

clusters are distinct, only mildly related to the
demographics of the participants, and significantly

related to success as defined by time-varying GPA.

3.3 Institutional Characteristics

Participants in this analysis came from 14 institu-

tions across the United States. The majority of

institutional data were collected from the National

Center of Education Statistics (NCES) Integrated

Postsecondary Education Data System (IPEDS), a

rich data source for institutional characteristics

[48]. The remainder of department-level enrollment

data came from the American Society for Engineer-

ing Education (ASEE) Engineering Data Manage-

ment System (EDMS). Tables 2 and 3 describe

specific IPEDS and EDMS variables and sources
for this analysis.

We chose institutional characteristics based on

their potential interactions with student attributes,

considered across three categories: (1) that the

variable had theoretical bases for potentially inter-

acting with students’ NCA profiles (based upon

prior literature or researcher experience/intuition),

(2) that the variable existed in IPEDS or EDMS and
differed across the institutions in the sample, and (3)

that the variables were linearly independent.

Overall, the sampled institutions are representa-

tive of the national engineering student population

(see Table 4). Due to sample size needs for proper

statistical power, underrepresented race/ethnic

minorities (URMs) were coalesced into a single

group in our dataset as well as within the data
from IPEDS and EDMS. Particularly, students

who did not identify as Asian or White were

clustered into this group, as Asian or White stu-

dents are overrepresented in engineering. Similarly,

our initial survey allowed for students to choose

multiple gender identities including woman, man,

agender, genderqueer, cisgender, transgender, or a

write-in response. Because men are historically
overrepresented in engineering, and for similar

sample size needs for proper statistical power,
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Table 2. IPEDS data fields and sources used in these analyses

Variable Name Variable Description IPEDS Source

INSTSIZE Institution Size Category IPEDS Directory, 2018

LEVEL17 Doctor’s degree – research/scholarship Institutional Characteristics Data File

TUITPL1 Tuition guaranteed plan

EFASIAT Asian total Enrollment in selected major fields of study, by
race/ethnicity, gender, attendance status, and level
of student: Fall 2018

EFWHIT White total

EFTOTLW Total women

EFTOLLT Grand total

EFCIPLEV University, All students total

Table 3. ASEE EDMS data fields used in these analyses

Variable Name/Description

White Freshman Sum
White Sophomore Sum
White Junior Sum
White Senior Sum
Asian Freshman Sum
Asian Sophomore Sum
Asian Junior Sum
Asian Senior Sum
Native Hawaiian/Other Pacific Islander Freshman Sum
Native Hawaiian/Other Pacific Islander Sophomore Sum
Native Hawaiian/Other Pacific Islander Junior Sum
Native Hawaiian/Other Pacific Islander Senior Sum
Total Female Enrollment
Total Bachelor Enrollment

Note: EDMS data source: Bachelor’s Enrollment by Race and
Gender (Institution), 2018.

Fig. 1. GPA progression for a sub-sample of students at a single institution from Chen et al. [47].
Statistical differences exist between Cluster 2 and 3 at Fall of year 3. Cluster 4 was not included due to
negligible sample size. See Chen et al.[47] for more detail.



those who did not identify as men were grouped

together into a ‘‘women or non-binary’’ group.
Both forms of representation are limited by the

small numbers of minoritized students in engineer-

ing. These processes were statistically appropriate

for this work as literature has acknowledged that,

though there is variance across different specific

groups, there are still broad similarities in experi-

ences of marginalization across underrepresented

groups in engineering education [49]. Coalescing
these groups gave us the necessary statistical power

to properly identify systemic features that impact

systematically marginalized students more broadly.

Nonetheless we recognize that this process does not

completely model the existent inequities many

systematically marginalized students face that are

typically better represented by qualitative methods

such as narrative. This process, which lends itself to
the erasure of specific groups (a topic we discuss in

work elsewhere; see [50]), remains a limitation of

this work as well as quantitative work in engineer-

ing education more broadly.

3.4 Participants, Individual Measures, and

Institutional Measures

In this paper, we considered only participants who

were assigned to a single cluster in our prior work.

We therefore excluded from this analysis n = 123

participants who were assigned to more than one

cluster, as well as n = 601 unclustered participants.

We also excluded participants from institutions

with incomplete or missing IPEDS or EDMS

data. The final sample used in the present analysis
was n= 1,252 participants from 14 institutions. This

final sample is a subset of the initial clustered

sample with the addition of IPEDS, EDMS, and

cluster assignment data.

As shown in Table 5, students at the participating

institutions come from varying backgrounds.Mean
income, operationalized as average neighborhood

socioeconomic status (NSES), was gathered by

averaging the 2010 U.S. Census median household

incomes associated with students’ ZIP codes where

they attended high school. This process of linking

Census data to estimated students’ household

income has been documented elsewhere [51] and is

considered a best practice in STEM education
research [52].

Institutional average ACT scores and overall

enrollment were both initially considered as proxies

for institutional selectivity [53], but were later

removed from the analysis due to possible multi-

collinearity [according to analysis of variance infla-

tion factor; 54]. Rather, ACT [55] concordance

tables were used to transform SAT scores into
ACT scores, if ACT scores were not provided

(ACT scores were chosen because the majority of

institutions in this work reported average ACT

scores to IPEDS). The range of percent URM

among survey respondents at participating institu-

tion ranged from 3.7% – 100.0%, which is similar to

the IPEDS and EDMS data for each institution

shown in Table 5.
We considered the following institutional char-

acteristics (reference categories for the analysis in

parentheses): institution size (Institution Size), doc-

toral granting (Doctoral Granting), tuition guaran-

tee (Tuition Guarantee), the percentage of women

enrolled at the institution (% Women in Inst.), the

percentage of women enrolled in engineering (%

Women in Eng.), the percentage of traditionally
URMs enrolled at the institution (%URM in Inst.),

and the percentage of traditionally URMs enrolled

in engineering (% URM in Eng.). All continuous

Institutional Characteristics and Engineering Student Non-Cognitive and Affective (NCA) Profiles 673

Table 4. Institutional and program characteristics obtained through IPEDS and EDMS dataset

School
Large
Institution

Doctoral
Granting

Tuition
Guarantee

Women at
Institution
[%]

URM at
Institution
[%]

Women in
Engineering
[%]

URM in
Engineering
[%]

A Y N N 26.3 32.6 3.1 31.7

B Y Y N 26 31.4 6.1 31.4

C Y Y Y 31.8 22.3 7 24.4

D Y Y Y 28.6 31.2 18.7 30.3

E Y Y N 31.5 17.6 25.5 17.7

F Y Y N 22.6 31.2 22.8 31.6

G N Y Y 23.9 31.6 — 34.6

H N N N 21 23.7 74.6 22.6

I Y Y Y 27.9 30.1 14 30.2

J N Y N 26.8 31.7 — 33.2

K N Y N 20.8 14.9 32.4 13

L N N N 17.6 15.6 27.9 14.2

M N Y N 14.7 16.8 17.4 16.3

N Y Y Y 20.1 95.4 26.8 94.6



variables were standardized (� = 0, � = 1) to allow

for model convergence. ‘Tuition guarantee’ refers

to programs at specific institutions in which the

tuition for each year of study is guaranteed, in the

sense that it is known and predictable, in the

student’s first year at the institution. Typically,

tuition guarantees hold tuition constant through-

out a four-year program.

3.5 Multinomial Logistic Regression

In this study, we explore how students from
different institutions may be more or less likely to

have a particular NCA profile. The intraclass

correlation coefficient (ICC), a ratio that identifies

how much variance can be explained by the higher-

order variables (institution) versus individual level

variables, indicated that our data did not have

significant variance across these different levels to

warrant use of multi-level techniques like hierarch-
ical linear modeling [54]. Similarly, we did not

pursue methods such as MANOVA as many of

our variables were not categorical in structure (see

Table 4).

We used Multinomial Logistic Regression

(MLR) to examine how cluster membership may

be different based on interactions among institu-

tional and individual characteristics. MLR is a
type of logistic regression that allows for multiple

categorical outcome variables; here, these out-

comes are membership in the four clusters.

Within this method, one of the categorical vari-

ables serves as a baseline categorical predictor (we

chose Cluster 1) by which the other categorical

variables (Cluster 2, 3, and 4) are compared [54].

This analysis uses the normative cluster (Cluster 1)
as the baseline predictor because it represents the

average (in terms of their NCA profile) engineer-

ing student while also being the largest cluster [12].

Here, MLR results, like logistic regression results,

are reported in odds ratios (ORs); for example, an

OR of two would indicate that the odds of being in

another cluster versus the baseline cluster are twice

as high.

To answer our research question, we built four

models of increasing complexity as follows: (1) a

control model with only individual variables of

survey respondents (URM status, gender, ACT
score, and NSES), (2) a model that added both

URM and gender percentages at the institutional

level (derived from IPEDS) to explore student-

institution alignment on demographics, (3) a

model that added both URM and gender percen-

tages at the engineering programmatic level

(derived from EDMS) to explore student-institu-

tion alignment on demographics, and (4) a model
that included institutional characteristics (derived

from IPEDS) such as institution type (large/small,

level of research activity) and the existence of a

tuition guarantee, as well as interaction effects

between these variables and others in Models 1–

4. The control model (Model 1) adds value over

our prior work by exploring demographic predic-

tors of cluster membership via a regression
approach. In Models 2 and 3, institutional demo-

graphics and characteristics were added to the

control model one-by-one, adding no new indivi-

dual variables, and the differences between the

previous and new models were compared using

an ANOVA. Only variables that generated a

statistically significant change in the prediction of

cluster membership were considered. After all
variables were identified, a new model was created

adding in the institutional demographics first to

determine their effects. Then the remainder of

institutional characteristics were added one-by-

one (Model 4). Ultimately, the predictors in the

control model were: individual URM status,

gender, ACT score, and NSES.
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Table 5. Student sample demographics at participating institutions

School Participants [Count] Mean Income [$] Mean ACT [Score] URM [%] Women/Non-Binary [%]

A 349 69575 30 18.6 37

B 467 63410 30 13.5 24.6

C 100 56856 29 11 16

D 276 70173 30 17.4 43.5

E 81 62238 31 16 39.5

F 140 64913 26 13.6 31.4

G 228 61294 29 17.5 22.4

H 76 60447 28 6.6 25

I 98 68799 32 16.3 41.8

J 50 65971 27 36 36

K 41 75047 29 17.1 56.1

L 27 53862 27 3.7 29.6

M 111 50361 27 9.9 22.5

N 214 43221 23 93.5 28
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4. Results

In the first model, using individual-level variables as

predictors, we found that only URM status and

gender, in tandem, were significant predictors of

cluster membership (see Table 6). When URM

status, gender, ACT score, and neighborhood

income were considered together, identifying as a
woman or non-binary participant decreased the

odds of being in Cluster 3 (Unconnected and

Closed Off; OR = –2.07, p < 0.001) and identifying

as a URM participant decreased the odds of being

in Cluster 3 (OR = –1.82, p = 0.006).

In the second model, we added the institutional

demographic variables (percentage URM and per-

centage women). Adding these demographic vari-
ables resulted in the individual level URM variable

dropping out of the model while the institutional

URM percentage remained a significant predictor

for Cluster 3 (OR = –1.41, p = 0.005; see Table 6).

This result thus signifies that institutional URM

percentagemay bemore important to consider than

individual URM status. Additionally, NSES

became significant for Cluster 3 (OR = –1.22, p =
0.019); see Table 6). There was no significant effect

to the individual gender variable.

In the third model, we added engineering pro-

gram variables (percentage URM and percentage

women). No new variable was significant leaving

Model 3 to be the same as Model 2. These variables

were left out of future analysis.

In the finalmodel (Model 4), which included both
individual-level variables above and selected insti-

tutional characteristics (see Table 6), higher NSES

decreased the odds of being in Cluster 3 (OR =

–1.19, p = 0.035). Students enrolled at large institu-

tions had decreased odds of being in Cluster 2 (High

PositiveNCAFactors; OR= –2.12, p= 0.002) while

students enrolled at doctoral granting institutions

had increased odds of being in Cluster 3 (OR=1.80,
p = 0.005) and Cluster 4 (Without Support from

Faculty and Peers; OR = 2.89, p = 0.024). Addi-

tionally, students who attended universities that

offered guaranteed tuition had decreased odds of

being in Cluster 2 (OR = –1.57, p = 0.019) and

Cluster 3 (OR = –1.77, p = 0.010). When institu-

tional characteristics were considered, identifying

as a member of any race/ethnicity within the URM
group was no longer a significant predictor of

cluster membership.

To investigate which institutional variable(s)

were linked to URM representation among clus-

ters, each institutional variable added to the control

model was considered individually and for its inter-

action with other variables. Including a variable

measuring the percentage of URMs in engineering
or at the institutional level, or any related interac-

tion, caused the individual variable for URM status

to become non-significant in the analysis. There-

fore, we found that variance in cluster membership

as affected by URM variables may be better

explained by institutional characteristics than by

individual identities. We see this as a significant
finding of this work. Lastly, comparing the final

model to the first model using ANOVA, the models

were statistically different (df = 15, Likelihood

Ratio = 45.28, p < 0.001). These findings suggest

that institutional characteristics play a significant

role over individual characteristics in explaining the

variance of cluster membership.

5. Discussion

Based upon this study, we can conclude that

individual and institutional variables do indeed
interact to predict cluster membership, and that

our research question has affirmatively been

answered: both individual and institutional variables

play a role in cluster membership prediction, parti-

cularly for membership in clusters that are corre-

lated to less desirable student success outcomes

[here, our Cluster 3; 12]. The following sections

interpret our results in light of specific variables in
the analysis.

5.1 University Size and Type

This study significantly advances nascent research

linking a suite of NCA factors to institutional type

and size. Our hypothesis was that the alignment

between individual preferences, expectations, and

behaviors and institutional characteristics would

manifest in our data as differences in key NCA

factors as represented by our clusters. Results of
our work indicate that students at large institutions

were more than two times less likely to be members

of Cluster 2 (OR = –2.12), which is characterized by

several factors previously associated with improved

academic success and overall wellbeing (e.g., higher

motivation, engineering identity, belongingness,

gratitude, meaning and purpose, and connection

with faculty). Results also show that students at
doctoral-granting institutions are more likely to be

in Cluster 3 (OR = 1.80) and Cluster 4 (OR = 2.89),

both of which are characterized by low scores on

factors associated with academic performance,

including motivation, engineering identity, belong-

ing, and gratitude. Our consideration of a suite of

NCA factors extends prior research that focused on

a single or small collection of NCA factors. Our
introduction of institutional variables in this ana-

lysis adds explanatory power to our prior NCA-

factor-only clustering work.

For instance, students at PhD-granting andMas-

ter’s institutions generally experience lower belong-
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ingness than their peers at undergraduate-only

institutions [56]. Similarly, Wilson and colleagues

[57] found that amongst the larger engineering

community, belonging tended to be the lowest for

undergraduate students when compared to faculty

and graduate students. Belongingness (an indivi-
dual student NCA factor) is clearly affected by the

institutional variables considered here (which may

be a proxy for institutional culture). For example, a

three-institution study found belongingness and

institutional support to be correlated. Specifically,

after considering SES, GPA, gender, and several

factors related to university characteristics and

culture, holistic interpersonal support, which we
believe impacts students’ NCA success, was found

to be the strongest predictor of belonging among

both White students and Students of Color [58].

Belonging, aspects of future time perspective moti-

vation, and engineering identity have also been

shown to predict engineering student retention

[59], a desirable student outcome aligned with the

characteristics of our Cluster 2. These results sug-
gest that institutions have an opportunity to deliver

student support systems that target multiple NCA

factors simultaneously, and that also acknowledge

institutional context, to help students build NCA

profiles that better align with Clusters 1 and 2. This

might mean large institutions could focus on

belonging interventions that make large-enrollment

campuses feel smaller to students, or that doctoral
institutions could expand undergraduate research

opportunities to build disciplinary identity and

belongingness in a way aligned with institutional

mission.

5.2 Traditionally Underrepresented Students in

Engineering

5.2.1 Underrepresented Racial/Ethnic Minorities

We gained new insights whenwe introduced institu-

tional information for demographics as well. In the

individual-variable-only analysis (Model 1), stu-

dents who we identified as URM were less likely

to be amember of Cluster 3 (OR= –1.82, p= 0.006).
Cluster 3 was characterized by low overall scores in

many factors associated with student success, so

this was a positive result with respect to student

outcomes. However, when introducing the institu-

tional characteristics (Models 2 and 3), individual-

level URM status became non-significant while the

percentage of URM students at the institution

became a significant predictor of membership in
Cluster 3 (OR = –1.41), a change we suspect is

linked to (mis-)alignment between an individual’s

demographics and those of their institution. The

tentatively positive story told by Model 1 (that

URM students were less likely to be in Cluster 3)

was shifted from an individual consideration to an

institutional consideration through the addition of

institutional demographics in Model 2. Finally, in

Model 4 with the introduction of other institutional

variables, all URM-related individual and institu-

tional predictors become non-significant, reinfor-
cing the idea that URM participants in our dataset

were equally likely to be a member of any of the

clusters.

This result is important for two reasons. First, the

Model 4 conclusion that URM students are indeed

as likely, statistically, to be in Clusters 2, 3, and 4 as

they are to be in Cluster 1 (a less favorable result

than that of the control model including individual
variables alone) highlights the individual-institu-

tional alignment argument we have mentioned

prior. Specifically, while individual characteristics

are important, institutional characteristics play a

large role in the broader success of students. Model

1 includes only individual-level variables andmasks

their interactions with institutional variables, yield-

ing an incomplete understanding of cluster mem-
bership. While more work needs to be done (see

below), we can confirm the counterintuitive out-

come that appropriate clustering of individuals

relies on information about those individuals as

well as information about their institutions.

We suspect that this result is also to some extent a

function of our dataset, which includes mostly PWI

institutions (with several HSIs as well), but no
HBCUs. This individual-institutional alignment

argument, suggested by our analysis, is also sup-

ported by the broader literature [60]. The second

reason this result is important is that it further

emphasizes the need to enroll participants in

future studies from institutions whose missions

may better align with their populations. For

instance, the institutional-individual question
could be explored in much greater depth with the

inclusion of HBCUs, two-year institutions, faith-

based institutions, and other institution types that

are not currently represented in our dataset. This is

a clear limitation of this study, and we offer this

argument about alignment as preliminary–more

work needs to be done. But we believe this work

produces significant quantitative insights about
individual-institution alignment that stimulate

both research- and practice-oriented opportunities

as described below.

5.2.2 Women and Non-Binary Students

Women are more likely to enter and complete

college, more generally, than men. Relevant to
this work, research indicates that women persist in

engineering at approximately the same rates as

men, even when disaggregated by race [4, 61], and

they have higher admissions scores and higher
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STEM GPAs than men as well [61–63]. Indeed, the

data from this study show that women and non-

binary students were two times less likely to be

members of Cluster 3 (OR = –2.03, p < 0.001) and

that this effect was robust in the presence of both

individual-level and institution-level variables. This
result indicates that women and non-binary stu-

dents are less likely to be in a cluster with lower

indicators for success in engineering, even when

accounting for a variety of institutional differences;

this result comports with prior literature. This

finding is important because of its robustness

across institutional characteristics such as size or

degree-granting status.
Yet, these findings do not dismiss notions of

engineering institutions as gendered organizations

which marginalize and exclude women and non-

binary students who do not conform to internalized

masculine norms [64]. Gendered power structures

exist within institutions in many forms that super-

sede the general characteristics of them [65], such as

overall culture and treatment. Literature suggests
that these institutional cultures directly impact an

individual’s help-seeking behaviors, self-esteem,

and sexual health [66, 67]. Many of these features

are present in engineering [68]. Constructs such as

self-esteem have connections to important NCA

features such as engineering identity, which is

known to predict engineering choice and agency

[69]. We believe the institutional characteristics
used here may not adequately account for the

academic cultures of engineering programs, and

this suggests an avenue for further research to

explore institutional proxies for culture that can

be integrated into this and future analysis.

It is also possible this finding is embedded in the

clustering dataset from our prior work [59], wherein

we found that women and non-binary students were
significantly less represented in Cluster 3. However,

even after the introduction of several other indivi-

dual- and institutional-level controls, the individual

gender predictor remained statistically significant.

We suspect that the characteristics and cultures of

institutions play a greater role in cluster member-

ship than is captured in the models considered here.

5.3 Socioeconomic Considerations

5.3.1 Neighborhood Socioeconomic Status

Recent research suggests that low-income students

struggle to feel they belong as engineers because

they are perceived as not having socially accepted
qualities that engineers are expected to have and

exhibit, such as recognized competence and interest

in STEM concepts [70–74]. These perceptions are

key to one’s identification, overall feelings of

belonging, and future sense of self as an engineer

[75, 76]. Several of these constructs are key features

of the clusters explored in this research. For this

reason, it is not surprising that students with higher

NSES showed lower odds of being in Cluster 3 (OR

= –1.19, p = 0.035). This result indicates that lower

socioeconomic status is indicative ofmembership in
a cluster with lower indicators of success (Cluster

3), even after accounting for institutional differ-

ences.

Low-income students’ decreased probability of

being part of a group with higher positive NCA

factors may also connect to systemic resource

deprivation. Because students become competent

and recognized as mathematicians, scientists, and
engineers by participating in relevant activities,

students’ perceptions of themselves as engineers in

college are undoubtedly influenced by their ability

to access stimulating STEMactivities and resources

in college and earlier [74, 51]. However, early access

to necessary resources, including parent and tea-

cher support, are not as common (and in many

cases, not of sufficiently high quality) in the schools
and neighborhoods of low-income students. These

systemic deficits are likely due in part to the many

overlapping racist, sexist, and classist reasons these

neighborhoods and schools remain underfunded.

Such effects impact students’ choice to enroll and

persist in college and engineering [52, 77], likely

mediate their perceptions of themselves as engi-

neers, and potentially affect their ability to succeed
in engineering [74, 51]. Universities and engineering

programs should feel empowered to remedy the

resource deficits and in-college strains of socio-

economically disadvantaged students to increase

their opportunities to succeed.

5.3.2 Tuition Guarantee

The final institutional model also indicated that the

addition of guaranteed tuition decreased the odds

of being in Cluster 3 (OR = –1.77, p = 0.010). A

tuition guarantee ensures that incoming students’

tuition costs will not change unexpectedly through-

out their enrollment, making predictability of debt

easier. The guarantee lessens the chance that a

student will be left with additional unplanned out-
of-pocket costs when tuition is billed. While tuition

guarantees do not solve all socioeconomic equity

issues, tuition guarantees still increase the prob-

ability that students will be able to plan ahead for

how they will pay for their expenses. This increase

in probability likely lowers overall student stress

allowing students to better focus on success in their

studies, a pattern found in a recent financial aid
reform study focused on student retention [78]. The

report found that tuition guarantees allowed uni-

versities to mitigate students’ financial risk and

stress, or at least their perceptions of it, thus
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allowing students to focus on their own academic

success. A provision of guaranteed tuition likely

mitigates engineering students’ perceptions of risk

while bolstering perceptions of self and potential to

succeed. A similar trend has been discussed by

Quadlin [6]. It is likely that the final institutional
model’s incorporation of tuition guarantee referred

to this larger psychological assessment of risk.

6. Limitations of Findings

This study has several limitations that prevent the

generalizability of the results to all engineering
students. First, although data were collected from

students at many institutions, and we designed the

survey with trustworthiness in mind [42] we simply

did not collect or receive data from a sufficiently

wide or diverse enough group of students or

institutions to enable appropriate analyses at the

intersections of demographic groups or institu-

tions. This is an important limitation of the work,
given prior work about the importance of intersec-

tional approaches in characterizing students’

experiences [79]. A larger sample with greater

individual and institutional diversity would sup-

port answering our research questions with much

greater nuance, and provide much more general-

izable conclusions to the community. Similarly, our

cluster analysis identified a particularly vulnerable
(very low belonging and faculty support) popula-

tion in Cluster 4, but this population is also small,

even given our total sample size. While we consider

this work to be an important step along our

research trajectory, we fully recognize the consider-

able room for improvement in our recruitment and

sampling procedures. These improvements are

being adapted in other parallel projects to that of
the present. Finally, our prior use of GMM

resulted in a dispersed unclustered group as well

as groups who were multi-clustered; the presented

analysis contains neither of this groups of students.

We recognize that in our work, as with any study,

that our results are limited in generalizability. Yet,

we believe this work makes an important contribu-

tion to the larger body of engineering education
research.

A second point of caution regards study mea-

sures and data sources. This study is one of the few

in engineering education to include SES, specifically

NSES, as a variable in the analysis. These data were

collected by asking participants for their home ZIP

codes and calculating their average neighborhood

socioeconomic status from Census data. Although
valuable, this approach is limited to a focus on

income when research shows that socioeconomic

experience goes far beyond the amount of money

earned (to include parental education attainment

and occupational status, for example), and is drawn

from separate, national data sources instead of the

participants themselves [71, 80].We believeNSES is

a valuable, if coarse, proxy for socioeconomic

status, but clearly further refinements of this

approach would add value to future iterations of
this study.

7. Implications

7.1 Implications for Research

This research makes an important contribution to
studies of student success because it emphasizes the

perhaps counterintuitive notion that clustering of

individuals depends upon the inclusion of institu-

tional variables. Using the succession of models

presented here, we suggest that alignment of indi-

vidual and institutional variables plays an impor-

tant role in cluster membership, which in turn is

connected to likelihood of academic success
through the NCA constructs composing the clus-

ters. This is an important result because it empha-

sizes that person-centered analyses need to engage

contextual/institutional variables in order to gen-

erate a complete picture of cluster membership and

the roles of individual-level variables. This impor-

tant contextual role can be understood in terms of

itsmediation effect on certainNCA factors, notably
identity (recognition), belonging, and perceptions

of faculty caring. These constructs all inherently

include outside-of-self perspectives (unlike, say, Big

Five factors, which are firmly internal to the indi-

vidual); to the extent that those external perspec-

tives are represented by institutional variables, we

should expect them to play a role in this analysis.

For instance, the institutional variables related to
overall size and level of research activity conspire at

large, R1-type institutions to yield a lower percep-

tion of faculty caring in general as compared to

smaller, teaching-focused settings. Future studies of

student success should integrate institutional fac-

tors, including proxies for institutional culture, to

build more robust models for student outcomes.

7.2 Implications for Practice

This study has implications for individual institu-

tions and for the field overall. These results suggest

that, based uponModel 1 using individual variables

alone, belonging to an underrepresented group

decreases the odds of membership in Cluster 3 (a

cluster associated with less favorable outcomes).

This conclusion becomes complicated with the
inclusion of institutional characteristics: with the

second model, we find that the percentage of URM

students at the institution predicts assignment to

Cluster 3, while individual URM status becomes

non-significant. Adding the remainder of the insti-
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tutional characteristics leads both individual URM

status and the institutional URM percentage to

drop from significance, while factors like institution

size and the presence of a tuition guarantee become

significant. Taken together, these results paint a

complex picture; it seems that individual URM
status and institutional URM percentage interact

in ways this analysis cannot tease apart, but that

institutional characteristics carry more weight in

individual-levelNCA cluster assignments than indi-

vidual demographics or their interactions alone.

This analysis further emphasizes that institutions

should support individual students in meaningful

ways, but that institutional-level factors (and
potentially institutional culture) play a central role

in cluster membership and, by extension, student

success. These findings support our other prior

work developing a consensus model of engineering

thriving [81]. Institutions that focus on program-

matic support for URM students alone, without an

associated commitment to improving the academic

culture more generally, may be missing an oppor-
tunity to enable their students to achieve greater

success [82].

Our results also further reinforce the need for a

deeper understanding of socioeconomics and their

continuing influence on students. Higher NSES

significantly decreases the odds of being assigned

to Cluster 3; we suspect that a similar trend would

exist from Cluster 4 with a larger population. This
observation reinforces research emphasizing long-

term effects of socioeconomic disadvantage, in this

case producing decreased belonging, identity, and

motivation. In contrast, a tuition guarantee at the

institution has a conflicting effect on cluster assign-

ment: tuition guarantees are associated with

decreased likelihood of belonging to either Cluster

2 or Cluster 3, suggesting more likely Cluster 1
membership (normative cluster).

Finally, most of our results address factors that

predict assignment to Cluster 3 versus Cluster 1

(normative group). There are fewer significant pre-

dictors for assignment to Clusters 2 and 4, but our

findings hold significant implications. Assignment

to Cluster 2, the group with the most positive NCA

scores, was only predicted by two variables: size of

the institution, and presence of a tuition guarantee.

Both are reinforced by previous work: students

benefit strongly from small class sizes, strong
faculty-student relationships, and proactive man-

agement of financial concerns. These results urge

renewed institutional commitments to help make

the complex and often impersonal contexts in larger

universities more like smaller institutions. Lastly,

assignment to Cluster 4 – characterized by low

NCA scores and poor social support – was only

predicted by whether the institution was doctoral
granting. Although this odds ratio was the highest

(2.89), membership in Cluster 4 was the smallest;

more research is certainly warranted.

8. Conclusions

Use of clusters and cross-institutional data collec-

tion allows for the examination of larger institu-
tional factors that may be masked in studies with

smaller samples, and these factors have a significant

relationship with students’ NCA scores. In our case,

clustering allowed for a robust grouping outcome

while institutional factors explain a larger amount

of variance than individual factors. Future work is

needed to further develop and refine our under-

standing, but these results suggest the existence of
complex, nuanced relationships that may be useful

inspirations for new institutional practices and

supports for engineering students.
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