
Evolution of a Graduate Software Engineering Capstone

Course—A Course Review*

PHILLIP A. LAPLANTE, JOANNA F. DEFRANCO and EVERTON GUIMARAES
Pennsylvania State University, 30 East Swedesford Road, Malvern, PA 19355, USA.

E-mail: pal11@psu.edu, jfd104@psu.edu, ezt157@psu.edu

In education projects, students sometimes have difficulty conveying their knowledge when asked to solve real problems

especially when a software product is generated as an outcome. Faculty accumulated nearly 12 years of experience running

a graduate software engineering capstone course perceived theneed tobetter assist students on the learningprocess.Course

adaptations are required, particularly considering the heterogeneity of student’s background andwork experience, as well

as the use of current technologies and tools. The paper outlines an evolved graduate software engineering capstone course

for part-time graduate professional students. The capstone course is intended to create a meaningful student experience

while providing a productive environment to apply knowledge learned from the program. Moreover, the new proposal

emphasizes agile methodologies and code as the primary artifact. Our main contribution is to present the evolution of this

capstone course, from inception to coding, testing and deployment. The course revision includes new artifacts, such as a

work breakdown structure and burndown chart, as means to improve the course learning outcomes based on lessons

learned and student experience. For evaluation purposes, we selected groups of most recent capstone course sections

totaling 175 students. Two learning objectives of the program were evaluated: teamwork and critical thinking. Critical

thinkingwas assessed via the project plan artifact. Teamworkwas assessed through discussion forums, team test plans and

reports. The results were positive; however, they indicate that not all elements of project planning are present in the studio

course.

Keywords: software engineering; education; capstone project; agile; graduate program

1. Introduction

One of the main goals of software engineering

graduate programs is to prepare students to be

ready for the job market, more specifically, indus-
trial software development. Young professional

software engineers, however, are not always pre-

pared to solve real problems. Many universities

attempted to address this concern through capstone

courses in (under)graduate software engineering

programs. A capstone course is quite common,

particularly when the program has a professional

(non-research) orientation. During the capstone
course, students are expected to build a software

application from conception through delivery uti-

lizing concepts and techniques learned during the

program.

Graduate software engineering capstone courses

have been occasionally reported, however, many

factors that affect learning objectives and student

experience still need to be addressed.While there are
several treatments of undergraduate studio discus-

sions in the literature [1–5, 8], only a few report such

experience for part-time graduate students. To the

best of our knowledge, our work is the first to

propose course adaptations for online delivery.

The capstone course addresses these shortcomings

and has evolved froma resident delivered, waterfall-

based, instructor-led team project to a resident and
online, agile, student-centered team project.

The present work reviews and evaluates a studio

course for part-time, professional students complet-
ing a professional master’s in software engineering

(MSE) degree. This course was first reported in [11]

and cited more than 20 times. The course has been

delivered both in residence and online. The main

contribution of this work is to review the lessons

learned and revisions of this software studio experi-

ence. In addition to the retrospective discussion of

the software studio design and delivery over the past
12 years, we will describe the evaluation and results

of assessing course artifacts as part of a program

assessment for the MSE degree. Although a mean-

ingful studio experience has been provided to the

MSE students, the assessment shows a few gaps that

will prompt another course revision. These changes

will also be discussed.

2. Background

Researchers explored different experiences for cap-

stone courses in both undergraduate and graduate

levels [4–7, 9]. The state of art shows that capstone

courses in software engineering (SE) education

usually run from 7 to 14 weeks and employ either

waterfall of agile as development process. In some
cases, industry customers are also involved during

the development process as means to allow students

a more immersive experience. Although most cap-

stone courses adopt agile methodologies and prac-

* Accepted 11 March 2019. 999

International Journal of Engineering Education Vol. 35, No. 4, pp. 999–1007, 2019 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2019 TEMPUS Publications.

tices, there are still many factors affecting the

learning objectives in a capstone project, as well as

problems faced by students during the development

process. Next, we describe most recent studies and

briefly discuss each of them.

2.1 Case studies on SE capstone courses

A study developed in [10] introduces a case study,

developed at the University of Central Missouri,

using agile approaches in student’s capstone class.

The course was designed to teach agile software

development using SCRUM, and therefore, stu-

dents are required to work in teams while on some
occasions individual projects could be allowed. The

course organization has the following roles:

SCRUMMaster (Instructor), Agile Mentor (Grad-

uate Assistants), SCRUMTeam (size of two to four

students) and Product Owner (Domain Expert who

proposed the project). The core lessons learned, and

recommendations can be summarized as: estima-

tion of effort and task planning; larger projects are
attached to students; Git repositories are strongly

recommended (source version control), and the

product owner is critical for the success of the

project. Ultimately, one of the projects developed

using the proposed methodology eventually ended

up being adopted by the university and released to

more than ten thousand students.

In turn, Bastarrica et al. (2017) proposed a study
for a capstone course at the Universidad de Chile.

The course initially followed a waterfall process.

Adopting a waterfall process in a capstone course

makes the students not only feel disengaged, but the

outcome in terms of documentation was not strictly

necessary for all clients. After 5 years, the course

curriculum had been reviewed, and the course

structure change to adopt agile methodologies
with a focus on three relevant practices: timeboxing,

client on site and incremental development. The

study aimed at measuring what students have

learned during the capstone course using a survey

of student perceptions of learning outcome. The

study revealed that student’s perceived soft skills as

determinant factors for project success. Further,

students’ feedback of the analyzed aspects had a
significant change in their initial and final percep-

tion, an intended learning outcome of the course.

Balahan and Sturn [5] proposed a software engi-

neering course aimed to create lab conditions, so

students are faced with challenging planning soft-

ware engineering development and project manage-

ment. The research outlines the ideals, principles,

and goals when proposing a new lab course con-
sidering best practices in software engineering.

Moreover, the software engineering lab course

simulated development tasks and was comprised

of the following features/practices: agile develop-

ment, product validation, structured teamwork,

maintenance tasks, and software engineering sys-

tematic development. Authors evaluated several

aspects concerning the proposed course, especially

measuring the student’s experience regarding the

software development process, development in
teams, requirements management, software

design, software implementation, and overall soft-

ware quality. Finally, the results suggest a need to

balance the team instruction and student grading

better.

2.2 The challenge of team project courses

A study proposed by Ahtee and Poranen [6] evalu-

ates the final report of software projects in two

different universities in Finland. The study reported

four significant risks and challenges students faced

while developing a software project: tools, and skills

to use available technology (61% of projects); tech-

nological problems (53%); project management

(61%); and working/studying too many other
courses during the project. Based on the reported

results, authors suggest faculty and students should

pay attention to support and training when using

development tools and planning the project.

Furthermore, authors conclude that a causality

analysis between different risk items should be

performed, as some categories are expansive, and

should be divided into smaller categories for better
understanding and mitigating project risk.

Vanhanen et al [9] performed a survey in a

capstone project to understand the problems in

software development. As a result, the authors

reported that the main problems in software devel-

opment were related to testing, task management,

and technology skills.As the capstone projectwas in

collaboration with industrial customers; however,
problems related to taskmanagement and customer

expectations had negatively affected customer satis-

faction. The problems directly affecting customer

satisfaction are related to technology skills, version

control system, task management, team communi-

cation, and customer communication.

Finally, Koolmanojwong and Boehm [7] ana-

lyzed a graduate-level software engineering course
at theUniversity of SouthernCalifornia. The course

teaches the best software engineering practices as

means to allow students to apply the knowledge

learned from previous courses in developing real-

client projects. As a result, the study shows how

risks in graduate software project had evolved in

nearly 20 years. For instance, new factors are

considered in the top 10 risks in software engineer-
ing graduate projects, namely: COTS and indepen-

dent involving systems, customer-developer-user

team cohesion, and process quality assurance. The

results showed that team project courses have

Phillip A. Laplante et al.1000

difficult tackling problems in that students need to

do just-in-time learning. For example, students’

struggles are mostly concerned about how to select

and organize team members, how to interact with

project clients to understand their needs and envir-

onment, how to negotiate feasible requirements,
how to develop project plans, and how to define

the system’s architecture.

3. Program description

The MSE degree offered at Penn State University

(PSU) is a 36-credit (12-course) program, which

aims at preparing computer professionals to

develop, maintain, manage, test, and understand

software products and servicesmore effectively. The

program is delivered both online and in residence.
The residency program is only offered at PSU’s

Great Valley Graduate Professional School located

in Southeastern Pennsylvania. Although some stu-

dents are full time, most are part-time software

professionals. Many have 20 or more years’ experi-

ence working in the avionics, medical and financial

industries. Not all have recent hands-on software

development experience; however, they all work in
some aspect of the software development process

such as project managers, testers, documentation

specialists, technical support, database administra-

tors, and so on. The online courses are conducted by

the same faculty who teach face-to-face. The online

program differs only in that the student’s progress

through the program in a cohort.

4. Course design

The primary intent of the capstone course in the

Master of Software Engineering (MSE) program is

to provide a capstone experience that synthesizes

theory learned in predecessor courses into an indus-

trial strength software project. Therefore, students

are expected to design and implement a viable soft-

ware product within 14 weeks. The capstone course

is typically the last course taken by the students in
the program, and the course objectives can be

summarized as: (i) develop a significant software

system from requirements through code deploy-

ment; (ii) learn new languages, technologies, envir-

onments, methodologies, and application domains;

and (iii) learn to function effectively as a team

member on a complex software project.

Creating an effective studio course for profes-
sional students with heterogenous experiences is

challenging, especially in online delivery. The initial

course approach using awaterfall methodologywas

revised and described in [11]. This revision empha-

sizes agile methodologies and code as the primary

artifact. Nevertheless, there were four additional

goals on the horizon of the next revision:

1. Allow students to discuss and conceive the

software project, instead of providing them

with a list of predefine projects. This strategy

helps studentsmeet their specific needs and take

ownership of the project.

2. Manage student personalities, expectations,

and attitudes through frequent instructor inter-
action.

3. Emphasize the use of open-source tools and

frameworks, off-the-shelf code, and support for

collaboration and communication.

4. Help students manage the time spent on the

project, aswell as track theproject activities and

individual contributions

Another objective of the project is for the student

to extend their skill set as a software engineer. In

other words, the student obtains experience in some
technology or tool in which they are unfamiliar

whether it is a new language, framework, web

services development, or database. The teams col-

laborate on a project in which the instructor

approves. Moreover, they should ideally meet with

the instructor every other week where requirements

and goals are refined as well as progress and any

current and (un)resolved obstacles are discussed.
All these goals are adequately addressed in the

current course design along with using agile princi-

ples and methodologies, such as test-driven devel-

opment (TDD) [12] and SCRUM. Furthermore, all

project documentation required from the students

are living documents in that the student teams re-

submit as changes occur in the design. Fig. 1 shows

the course schedule distributed within 14 weeks,
which are organized into 7 sprints, ultimately cul-

minating in a fully documented viable product. The

first sprint comprises the first two weeks, when

students will organize themselves in groups of up

to 5 members. Next, students need to define the

project scope and outline a software requirement

specification along with the test documents (follow-

ing the TDD approach). Once requirements are
documented and validated, each group should

come up with an estimation of software in terms

of time and complexity. At the end of each Sprint,

students perform a team retrospective to revisit and

discuss all documentation, and if needed, apply

changes based on the instructor feedback.

Sprint 2 runs on weeks 3 and 4, when students

need to work on the domain and class modeling.
Next, teams need to evaluate and update the test

document and reports, especially in cases of any

changes on the requirements specification or even if

the architecture design decisions require new tests to

be created. Team retrospective will be held at the

Evolution of a Graduate Software Engineering Capstone Course—A Course Review 1001

end of week 4. Sprint 3 runs fromweeks 5 to 6, when

teams are expected to develop and demo an end-to-

end scenario of project shell. Based on the initial

software prototype develop by each team, the soft-
ware documentation should be updated. The team

retrospective will serve as basis for teams to better

plan the project and agree upon the functionalities

the team will commit to deliver in the upcoming

sprints. Sprints 4 to 7 will run for the remaining of

the course, each one been 2 weeks in length. Groups

are expected to update the software product using

TDD practices along with SCRUM. For instance,
when using TDD teams are expected to generate

automated testing using a unit framework, and

those tests can ultimately be used for regression

testing as occur to the system [13]. Incomplete use

cases return to the backlog, and teams plan the next

Sprint based on the Team Retrospective.

5. Assessment

Based on the learning objectives of the MSE pro-

gram teamwork and critical thinking were assessed.

We collected data from seven consecutive sections

of the capstone course, which has been taught by

five different faculty members. Moreover, each

section has, in average five teams, and therefore
we evaluated 35 samples of each artifact (project

plan, test plans and test reports). The assessment

and description of each learning objective is dis-

cussed in the following sections

5.1 Teamwork

The teamwork learning objective is defined as

‘‘graduates being able to work effectively as part

of a team that may be international and geographi-

cally distributed. Students will also have the ability

to lead and manage software engineering projects
with international and geographically distributed

teams.’’ From the studio course, the team work

learning objective was measured by the discussion

forums, and team test plans and reports.

The assessment was completed by taking an

anonymous random sampling of the artifacts

needed from the delivered sections of the capstone

the year prior. The test plans, report artifacts, and
discussion forums were ranked by the MSE faculty

members in the following categories: exceeds,meets,

partially meets, and does not meet expectations. The

faculty assessed the artifacts and discussed the

rankings based on the criteria shown in Table 1.

After the ranking the teamwork objective, it was

determined that 90% of the students effectively

participated in the forum. The test plans and reports
reviewed were found to have all (100%) used con-

tinuous testing which is inherent in agile TDD.

5.2 Critical thinking

The critical thinking learning objective is defined as
‘‘the graduates will be able to critically and crea-

tively plan and manage the development of soft-

ware-intensive systems using project management

methods and tools.’’ The student should understand

Phillip A. Laplante et al.1002

Fig. 1. Current Course Structure.

software project management methods, processes,

and tools to create and allocate work packages. In

addition, the teams should be able to monitor their

progress to meet cost, quality, and schedule con-

straints, as well as understand the project govern-

ance responsibilities and practices. In terms of

performance expectations from the capstone

course, the critical thinking learning objective mea-
sures the student’s ability to: (i) write an effective

project plan; (ii) apply techniques to monitor cost

and schedule performance; and (iii) create a concept

of operations statement (CONOPS). The measure-

ments for this learning objective via the capstone

course was the team and individual weekly plan

postings (backlogs), test reports, and CONOPS

statements.
To assess the learning outcome of the critical

thinking objective, the teams use agile software

development in which project plans revolve

around a ‘‘living’’ backlog. The faculty evaluated

the project plans using the same categories (exceeds,

meets, partially meets, and does not meet expecta-

tions) and the criteria shown inTable 2. It was found

that 96% of individual student posting included
elements of traditional plan-driven development.

Moreover, team test plans and test reports were

reviewed and found that 100% contained an appro-

priate CONOPS.

6. Discussion

Next, we discuss the learning experience according

to students’ point of view. We gathered feedback

from all teams at the end of each sprint to improve

the learning process, as well as feedback has been
provided through the project review.

6.1 Lessons learned

Experience in Team communication. All groups

adopted different venues for communication,

which ranges from CANVAS messages, group dis-

cussions, Google Hangout to frequent live meetings
bi-weekly. Asmeans to explore the relation between

group communication and accomplishments, the

more frequent the meetings, the earlier the team

can identify and resolve any impediments, which

better help to track the work progress. Teams that

hadmeetings 3 times a week could accomplishmore

in terms of higher number of functionalities deliv-

ered each iteration (Sprint).

Experience in Team collaboration. As part of the

capstone learning curve, some students may not be

familiar with the technologies adopted by the team.
However, collaboration is the key factor in agile

methodologies. Reportedly, groups where most

experienced developers helped other teammembers

with specific technologies and techniques and could

resolve errors/bugs more quickly. Moreover, some

teams dedicated a good amount of time learning

new technologies (i.e. API’s, frameworks, testing

tools) required to make a successful project.
Experience using SCRUM Boards. Groups

adopted many different solutions for project man-

agement (i.e. Asana, Azure DevOps, Trello). Most

groups did a great job keeping the work progress

updated. Some groups efficiently organized the use

cases / user stories into EPIC’s, which not only

improves organization but helps splitting out the

tasks and better distribute the workload. For exam-
ple, usually, each team member is responsible for

handling use cases / user stories related to a specific

EPIC. Examples of generic EPICs created are

Database, UI, Exception Handling, Wireframes,

Login, and so forth.

Experience in Project Roles. Teams are usually

good when defining the project roles, even though

they might have some problems at the beginning to
understand what the responsibilities of each role in

the SCRUM process are. Furthermore, teams are

encouraged to change roles with other colleagues

during the development, even though the literature

and industry advise a cautious approach [14].

Experience with Peer Evaluation. Peer assessment

is a valuable tool to evaluate the individual con-

tributions of team members. While the instructor
might be able to evaluate individual contributions

primarily from observations of synchronous meet-

ings, the assessment provides additional informa-

tion on what might take place outside those

meetings. Students are encouraged to take peer

evaluation seriously, as means to provide an

honest assessment. Students should also provide

an assessment of their own contribution.
Experiencing in Software Design/Architecture.

Each group should design an initial architecture

Evolution of a Graduate Software Engineering Capstone Course—A Course Review 1003

Table 1. 2017–18 criteria for software engineering program
assessment

Criteria

1. Identifies all schedule activities.
2. Identified all dependencies.
3. Accounts for worst, best, average case completion times.
4. Test driven development is employed.
5. Working code is delivered each week.
6. Unit testing tools are employed.

Table 2. 2017–18 criteria for software engineering program
assessment

Criteria

1. Plans follow a standard format forAgile backlog (i.e. contains
all requisite elements).

2. Plans are complete, consistent and readable.
3. Plans are realistic.
4. Plans are written in professional manner.

Phillip A. Laplante et al.1004

Fig. 2. High level architecture of the Food Rescue Application.

comprising all the fundamental elements of the

application. The architecture described in Fig. 2

represents the architecture for one of the projects

called Food Rescue. The application aims to be a

bridge the gap between local food banks and busi-

nesses with a surplus of food and other items. In
addition to supplying local families with necessities

during hard times, donors can earn tax breaks from

otherwise wasted inventory. The web application

connects users in an efficient and easy to use inter-

face. The popular Model—View—Controller

(MVC) pattern was considered when designing

our application. Data is housed in a Microsoft

SQL database in the Azure Cloud and manipulated
through JavaScript modules, Java services and

stored procedures. Security architecture includes

Microsoft Azure Active Directory and IAM for

portal management and the use of Microsoft SQL

for PSUFoodRescue site password encryption. All

of this is hosted in the Microsoft Azure Cloud to be

viewed responsively by users through multiple dif-

ferent devices thanks to the nature ofAngularJS and
the Bootstrap framework. Additionally, Microsoft

Connectors are used to push out notifications con-

taining user specific data.

Moreover, the team described the rationale con-

cerning architecture decisions based on software

quality attributes the solution provides support to

(e.g., security, availability, scalability), and other

design principles (e.g., SOLID, separation of con-
cerns, patterns) contemplated in the architecture

documentation. The solution demonstrates a good

understanding and critical thinking on conceiving

an architecture where students took into considera-

tion good practices and current state of the art tools

for building a software solution.

6.2 Limitations

Source code. One of the things impacting some

projects is an inefficient configuration management

process. Based on the data collected from Git

repositories, only a few members are effectively

collaborating. Moreover, teams with more than 3–

4 members assigned as developers in Git could not

properly manage conflicts in the code repository as
it was found that portions of work have been over-

written or completely deleted. In some cases,

changes were pushed to the master branch (used

for production code) disregarding any testing activ-

ities, which should be of highest high priority given

that teams should use TDD. Teams are strongly

recommended to adopt configuration management

measures as means to avoid conflicts and reduce the
amount of rework.Moreover, teams are expected to

appropriately test all new user cases/functionalities

before pushing any changes.

SCRUM vs. Use Cases/User Stories. After

reviewing all projects, a potential point of improve-

ment is related to the requirements gathering. The

first aspect would be reviewing the breakdown of

user stories and how teams specify work breakdown

structure. For example, user stories/use cases should

ideally have well defined acceptance criteria as
means to validate the requirements, and further it

will also help when developing test cases. As most

recent tools for project management supports the

concept of EPICS, teams are encouraged to use

EPICs as means of grouping user stories as well as

have a proper work distribution. Each use case/user

story can be further decomposed into smaller tasks,

which gives the team a better sense of achievement.
In some cases, the teammight also want to adopt an

issue tracking system and assign tickets to each

subtask. Therefore, when all subtasks are com-

pleted, the ticket is then closed, and the use case/

user story will be tested before integrating to the

production version.

7. Recommendation

Two learning objectives of the MSE program were

evaluated in terms of teamwork and critical think-

ing. Both were met with the course design as

presented. The next course revision, shown in Fig.

3, will include artifacts (e.g., burndown chart) to

address the lessons learned and improve this pro-
gram learning outcomes from this program review.

An incidental finding of the course outcome

review was that some students are not sufficiently

capable in programming to fully participate in the

project, even though students admitted to the pro-

gram are expected to be competent. In response, the

MSE program was modified to include an early

software construction course. This course is essen-
tially a mini capstone, with the difference that it

requires individual work, and the project/require-

ments are already defined. Further in this course,

the concentration/course objectives revolve around

development/tools used in the capstone and pro-

gramming.

8. Conclusion

Creating an effective studio course for professional

students with heterogeneous experiences is challen-

ging. The goal of the studio course was to create a

meaningful experience while providing an environ-

ment for the students to apply knowledge learned

from the program. Although the program objec-

tives were met, the results indicate that not all
elements of project planning are present in the

studio course. The main contribution of this work

is to share the evolution of this course since its

inception 12 years ago and to describe the improve-

Evolution of a Graduate Software Engineering Capstone Course—A Course Review 1005

ments made based on the results of the formal

program assessment.

References

1. Viljan Mahnic, A Capstone Course on Agile Software
Development using SCRUM, IEEE Trans. on Education,
55, pp. 99–106, 2012.

2. J. Vanhanen, T. Lehtinen and C. Lassenius, Teaching Real-
World Software Engineering through a Capstone Project
Course with Industrial Customers, In Proc. of the First Int’l
Workshop on Soft. Eng. Education Based on Real-World
Experiences, pp. 29–32. IEEE Press, 2012.

3. I. Weissberger, A. Qureshi, A. Chowhan, E. Collins and D.
Gallimore, Incorporating SoftwareMaintenance in a Senior
Capstone Project, Int’l Journal of Cyber Society and Educa-
tion. 8, pp. 31–38, 2015.

4. M.C. Bastarrica, D. Perovich andM.M. Samary,WhatCan
Students Get from Software Engineering Capstone Course’’
In Proc. of 39th Int’l Conf. on Software Eng. (SEET-track),
pp. 137–145, Argentina, 2017.

5. M. Balahan and A. Sturn, Software Engineering Lab: An
Essential Component of Software Engineering Curriculum,
In Proc. of 40th Int’l Conf. on Soft. Eng. (SEET-track), pp.
21–30, Sweden, 2018.

6. T. Ahtee and T. Poranen. ‘‘Risks in Students’ Software
Projects, In Proc. of 22nd Conf. on Software Engineering
Education and Training, pp. 154–157, India, 2009.

7. S. Koolmanojwong and B. Boehm, A Look at Software
Engineering Risks in a Team Project Course, In Proc. of
26th Conference on Software Engineering Education and
Training, pp. 21–30, California, USA, 2013.

8. B. Bruegge, S. Krusche and L. Alperowitz, Software Engi-
neering Project Courses with Industrial Clients,ACMTrans.
Comput. Education (TOCE), 15(4), 2015.

9. J. Vanhanen, T. Lehtinen and C. Lassenius, Software Engi-
neering Problems and Their Relatioship to Perceived Learn-
ing and Customer Satisfaction Software Capstone Project,
Journal of Systems and Software, 137, pp. 50–66, 2018.

10. D. Ding,M. Yousef and X. Yue, A Case Study for Teaching
Students Agile and SCRUM inCapstoneCourse, In Proc. of
Journal ofComputingSciences inColleges, 32(5), pp. 95–101,
May, 2017.

11. P. Laplante, An Agile, Graduate, Software Studio Course,
IEEE Transactions on Education, 49, N1, November, 2006.

12. R. Sangwan and P. Laplante, Test-Driven Development in
Large Projects, In Proc. of Journal of IT Pro, 8(5), pp. 25–29,
September, 2006.

13. D. Janzen and H. Saiedian, Test-Driven Development:
Concepts, Taxonomy, and Future Direction, In Proc. of
Computer, 38(9), pp. 43–50, September, 2005.

14. K. T. Lyra, M. L. Alves, F. H. C. Silva, K. Souza and S.
Isotani,AnAgileManagementExperience: Points ofViewof
Graduate Students, In Proc. XXXII Brazilian Symposium on
Software Engineering (SBES), Sao Carlos, 2018.

Phillip A. Laplante, received a BS degree in systems planning andmanagement,MEng degree in electrical engineering, and

the PhD degree in computer science from the Stevens Institute of Technology, Hoboken, NJ, in 1983, 1986, and 1990,

respectively, and the MBA degree from the University of Colorado, Colorado Springs, in 1999. He is a Professor of

Software and Systems Engineering with Pennsylvania State University, Malvern. His research interests include real-time

systems, real-time image processing, safety critical software systems and software quality.

JoannaF.DeFranco, earnedherPhD in computer and information science fromNewJersey Institute ofTechnology,MS in

computer engineering from Villanova University, and a BS in Electrical Engineering and Math from Penn State

Phillip A. Laplante et al.1006

Fig. 3. Revised course structure based on program assessment.

University. She is anAssociate Professor of Software Engineering with the Pennsylvania StateUniversity. She has worked

as anElectronicsEngineer for theNavy aswell as a SoftwareEngineer atMotorola.Her research interests include technical

teamwork, blockchain, and Internet of Things.

Everton Guimaraes, assistant professor of software engineering, holds a BS in information technology from the Federal

Institute of Technology, Science andEducation (IFRN), anM.S. in computing and systems from theFederalUniversity of

Rio Grande do Norte, and a PhD in sciences and informatics from the Pontifical Catholic University of Rio de Janeiro.

Before joiningPennStateGreatValley,Dr.GuimaraesworkedasAssistant Professor at theUniversity ofFortaleza,where

he also joined the Software Engineering Research Group. He was also a Postdoctoral Fellow at Drexel University.

Evolution of a Graduate Software Engineering Capstone Course—A Course Review 1007

