
Comparison of Two Approaches when Teaching

Object-Orientated Programming to Novices*

DESMOND ADAIR
School of Engineering, Private Bag 65, University of Tasmania, TAS 7001, Australia. E-mail: dadair@utas.edu.au

MARTIN JAEGER
School of Engineering, Private Bag 65, University of Tasmania, TAS 7001, Australia

JONATHAN STEGEN
Engineering Department, Australian College of Kuwait, PO Box 1411, Safat, 13015, Kuwait

It has been stated several times in the literature that novice students must grasp object-orientated concepts immediately as

the fundamental knowledge for programming using Java. Also, that introducing students to programming using the

simpler procedural concepts early only compounds the difficulty of teachingobject-orientatedprogramming, as the need to

always use some aspect of object-based code in Java cannot be avoided. Attempting to disguise this eventually causes

frustration and confusion, even for good students. This paper presents the results of a comparison that evaluates, using a

pre-test–post-test control group design, two approaches to teaching Java, where one approach uses objects first and the

other uses a procedural followed by an objects approach. The results of the empirical study indicate that the students, who

were first year engineers, using the objects first approach do indeed gain a better understanding of programming. This

finding is supported by information gathered fromadebriefing questionnaire, where the objects first approachwas rated as

easier for acquiring Java programming knowledge and skills.

Keywords: object-orientated programming; learning effectiveness

1. Introduction

There is a general consensus in the literature that

learning to program is not easy [1–3]. Programming

courses are perceived by many introductory stu-
dents as being difficult [4] and indeed this is testified

to by high drop-out rates and the fact that some

students are still unable to write meaningful pro-

grams after the course [5].

Surveys by questionnaires have already been

carried out to elicit the factors that are related to

the difficulties of learning to program using ob-

jected-orientated languages and a number of papers
have beenwritten that address someof the problems

that often occur when teaching the Java program-

ming language [6–9]. Object-orientated concepts

have been identified as the fundamental knowledge

that students must have in order to perform well [9–

12]. Importantly, they state that introducing stu-

dents to programming using the simpler procedural

concepts only leads to unnecessary difficulties, as
the need to always use some aspect of object-based

code in Java cannot be avoided, and that attempting

to disguise this eventually causes frustration and

confusion, even for good students.

While it has been stated many times in the

literature that novice students must grasp object-

orientated concepts immediately for efficient acqui-

sition of programming skills, there actually has been
very little objective testing using a controlled experi-

ment to test this view. Some examples can be found

in [13–15]. There is much anecdotal evidence and

that obtained by surveys [2, 3, 5, 6, 12]. This however

is subjective in nature and open to many influences

that are not easily controlled. The contribution here
is to provide evidence either way by conducting a

controlled experiment with as little threat to validity

as possible.

The presentwork startswith the development of a

curriculum that will require students to use a

directed object-orientated approach from the begin-

ning and also to develop a system to give structure

and organization for the overall programming pro-
cess. In addition, special care was undertaken to

introduce the teaching material in a way that limits

the complexity of the Java programming language

as details can easily overwhelm introductory stu-

dents [16]. A group of students taught using this

objects first approach is then comparedwith a group

taught in a more conventional manner. ‘Conven-

tional’ here, means an approach to learning Java
programming where the basics of the programming

language are first taught using procedural concepts

and then the students are guided towards effective

strategies for the more advanced programming

skills, with direct referral to object-orientated pro-

gramming coming about half way through the

course. This group is used here as the control group.

Some useful development environments are now
available to encourage students to approach the

* Accepted 21 June 2011. 1027

International Journal of Engineering Education Vol. 27, No. 5, pp. 1027–1036, 2011 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2011 TEMPUS Publications.

learning of the Java programming language with a

strong emphasis on the object-orientated approach

[17–19] as well as web-based systems to support

Java programming learning [20]. The environment

chosen here for both groups was the JCreator IDE

[21], which provided a simple yet professional en-
vironment with features that include project man-

agement, templates, syntax highlighting and class

views. Both the experimental group and the control

group used this IDE to try to eliminate bias.

In addition to the use of the above development

environment, a system was incorporated to give

students structure and organization during the

programming process [22]. This system, derived
from [23], has five stages, i.e., grouping before the

computer laboratory, planning, writing the code,

testing and improving. Special attention is given in

this work to the planning stage where problem

understanding, problem solving and the develop-

ment of a strategy for writing the code are of prime

importance. Here the five levels of abstraction:

natural languages, diagrams, flowcharts, algorith-
mic languages (pseudo code) and the Java program-

ming, all involved in the expression of algorithms

[24], were given special attention.

To test for the effectiveness of the objects first

approach, the results of a controlled experiment

applying a pre-test–post-test control group design

adopted from [25] are presented and analyzed.

The remainder of this paper is structured as
follows. Section 2 contrasts procedural program-

ming with an objects first approach, Section 3

summarizes themethod and results of the controlled

experiment and Section 4 reports the findings of the

questionnaire. Section 5 provides a discussion of

these results, including any problems with validity.

The paper concludes with suggestions for improve-

ments in the teaching and learning of the Java
programming language and improvements for the

design of the testing, as well as proposals for future

research.

2. Software development paradigms

The two software development paradigms consid-

ered here are the procedural (sometimes called

imperative) and the object-orientated.

2.1 Procedural programming

The procedural approach is ‘bottom-up’ and de-

pends on the programming language, where the

emphasis is placed on learning the language and
not on the modeling of realistic computational

problems. In addition to mastering the IDE, stu-

dents usually follow a scheme of teaching such as:

general program structure, declarations and vari-

ables, input/output and assignments, iterations and

selections, arrays and records, functions and proce-

dures and other features of the language. This is the

approach used for the control group up to about

week 6 of their 12 week course.

Understanding is also needed of the system and

other diagnostics, including syntax and runtime
errors, which adds another layer of difficulty in the

learning process. It can be argued that the proce-

dural approach does not teach construction of soft-

ware as an engineering activity, because although

engineering applications are being developed, the

emphasis is not really on writing software that is

suited to engineering problems, which is needed in

the development of complex software.

2.2 Objects first approach

This method forces a structured approach to mod-

ular programming where the use of modules and

functions establishes the principles of code re-use

and functional independence. In summary, the

emphasis is on modularization, encapsulation, re-
cursion and re-use right from the beginning. This is

in contrast to the procedural approach where mod-

ularity, functions and recursion are indeed part of

the course, but not until the second half of the

course. The objects first approach here regards the

construction of software where modules and func-

tions are the fundamental building blocks [26]. The

method helps to produce properly structured and
good quality modular software and is a ‘top-down’

approach where the important concepts of object

technology are introduced right from the start.

2.3 Software development cycle (SDC)

The industry-based software development cycle [22]

was adopted for the current work to improve

student programming practices. Overall this cycle
gives students the opportunity to program in a

professional manner and will help students later in

professional life as it requires the students to pro-

gram following standard rules and conventions. It

creates a collaborative environment for the students

to work, which improves learning efficiency, com-

munication skills and teamwork [27] and has the

highly effective problem-based approach [28]. Each
student has an equal opportunity to learn as the

programming assignment is different for each stu-

dent and a student’s performance is individually

evaluated.

There are five steps when implementing the soft-

ware development cycle. First students are paired or

grouped for a given task and two sets of problems

with a similar difficulty level are given to the
students. Each student in the pair takes one of the

sets. The second step, planning, is where students

study the problems and develop the pseudo code,

flowchart or other strategies, and this is followed by

D. Adair et al.1028

writing and self-testing the code for each of the

problems individually. The fourth step is for the

group partner to test the code, with students in the

same group exchanging their codes and makeing

cross-checks. During the checks the following

points are evaluated: sufficient comments, program-
ming conventions, programming logics and compu-

tational efficiency. On receiving the comments of

their partners, the group partner improves the

program according to the suggestions.

To ensure the quality of the software develop-

ment cycle, each programming assignment is graded

using four criteria: code correctness, the quality of

the test report made for the group partner, the
observance of convention with sufficient comments

and on-time delivery of the code. This arrangement

ensures that the students treat both their own

programming assignments and their partner’s ser-

iously.

3. The controlled experiment

3.1 Description

To investigate the effectiveness of using an objects

first approach to teaching and learning the Java

programming language, a controlled experiment

applying a pre-test–post-test control group design

was conducted following [25]. The students had to
undertake two tests, one before the respective

course (pre-test) and one after the respective course

(post-test) with the effectiveness of the teaching

approaches then being evaluated by comparing

within-student post-test to pre-test scores, and by

comparing the scores of the students in the experi-

mental group (A), i.e. those who were taught using

the more objects first approach, to those students in
the control group (B), i.e. those taught using the

procedural followed by the objects method. For the

objects first approach themethod of delivery was by

seminars and laboratories while the procedural

method followed by the objects approach was

delivered using lectures, tutorials and laboratories.

3.2 Hypotheses

Tomeasure the performance of the two groups, four

constructs were used, with each construct repre-

sented by one dependent variable. Each dependent

variable has a hypothesis:

1. There is a positive learning effect in both groups

(A: experimental group, B: control group).

That is post-test scores are significantly higher
than pre-test scores for each dependent vari-

able.

2. The learning is more effective for group A than

for group B, either with regard to the perfor-

mance improvement between pre-test and post-

test (the relative learning effect), or with regard

to post-test performance (absolute learning

effect). The absolute learning effect is of interest

because it may indicate an upper bound of the

possible correct answers depending on the

method of teaching.

3.3 Method

The design started with random assignment of

students to the experimental group (A) and control

group (B) with the members of both groups com-

pleting a pre-test and post-test. The pre-test mea-

sured the performance of the two groups before the
courses and the post-test measured the performance

of the two groups after the courses. The students did

not know that the post-test and pre-test questions

were identical and neither were they allowed to

retain the pre-test questions with the correct an-

swers only being given to the students after the

experiment.

The students were novice programmers in the
second semester of an engineering course with the

number of students in group A, NA = 23, and in

group B, NB = 18. The personal characteristics of

the students are summarized in Table 1.

The initial testing was conducted after a short

introduction as to the purpose of the experiment

and general organization issues. The pre-test was

then carried out with the data for the dependent
variables collected. Following the pre-test, the stu-

dents were placed in either the control group or the

experimental group and all students participated in

both the pre-test and post-test. After completing

their courses, both groups of students performed the

post-test using the same questions as during the pre-

test, thus providing data on the dependent variables

for the second time. In addition the students were
asked to answer questions about their subjective

perceptions.

3.4 Teaching courses details

The syllabus used for the experimental and control

groups are shown in Appendix A.

For the objects first approach a library of func-

tions on graphics waswritten prior to the delivery of
the Java programming module. When the students

began the course their programs were written as a

sequences of given functions, where students con-

sidered only the external behavior of these func-

tions. Thus the students were helped to understand,

modularization, re-use and encapsulation mechan-

isms, without knowing the intricacies of the com-

puter language. It was important to get the students
to execute their programs successfully early on in

the course to provide a sense of confidence. The

general syntax of input, output, assignment and

other basic statements of the language for produ-

Comparison of Approaches when Teaching Programming to Novices 1029

cing basic programs were then introduced with

elements of good programming style such as code

readability, maintainability and functional inde-

pendence also being introduced. In addition to
students learning by writing programs, well struc-

tured and properly documented examples were also

available to the students.

For the control group, an approach to learning

Java programmingwhere the basics of the program-

ming language are first taught using procedural

concepts was used. The students were then guided

towards effective strategies for the more advanced
programming skills, and, direct referral to object-

orientated programming came about half way

through the course

In addition a system was incorporated to give

students in both the experimental and control

groups structure and organization during the pro-

gramming process [22]. This system, derived from

Pressman [23], has five stages, i.e., grouping before
the computer laboratory, planning, writing the

code, testing and improving. Special attention is

given in this work to the planning stage where

problem understanding, problem solving and the

development of a strategy for writing the code are of

prime importance.

3.5 Data collection

Data for two types of variables were collected, the

dependent variables (J.1, . . ., J.5) and the subjective

perception variables (S.1, S.2). These variables are
listed in Table 2. The dependent variables are

constructs used to capture aspects of learning pro-

vided by the courses and each was measured using

five questions.

The questions can be characterized as:

� J.1 (‘Interest’): Questions about personal interest

in learning how to program using the Java pro-

gramming language.
� J.2 (Understand ‘general’): Questions to elicit

how much students understand the role of com-

puter programming in engineering and generally.

� J.3 (Understand ‘simple’): Questions on object-

orientated Java programming that require an

elementary knowledge.

� J.4 (Understanding ‘difficult’): Questions on ob-

ject-orientated Java programming that require a
deeper knowledge.

� J.5 (Understanding ‘cycle’): Questions to elicit

how much students understand how to apply

the software development cycle when program-

ming.

The related questions for the subjective perceptions

can be characterized as:

� S.1 (‘Time pressure’): Questions on time spent
completing tasks, and also about the overall

length of the respective course.

� S.2 (‘Course evaluation’): Questions on the stu-

dents’ personal judgment involving usefulness,

difficulty, clarity, etc.

Selected examples of questions used are shown in

Appendix B.

The results for the dependent variable J.1 were
found by applying a five-point Likert-type scale

[26] with each answer mapped to the value range

R = [0, 1].

The values for variables J.2–J.5 are average scores

D. Adair et al.1030

Table 1. Personal characteristics

Characteristic

Average age
Percentage female
Major

Experience in computer programming
� Never written a code
� Written 1–3 codes (Language)
� Written 4–6 codes (Language)

Preferred learning style(s)
� Reading with exercise
� Lecture
� Tutorial
� Laboratory

Most effective learning style(s)
� Reading with exercise
� Lecture
� Tutorial
� Laboratory

Likes to work in groups

21.45 years
19%
Mechanical Eng. 78% Civil Eng. 22%

95%
5% (C++)
0%

22%
19%
26%
33%

23%
12%
32%
33%

64%

derived from five questions. Missing answers were

marked as incorrect.

The data for the subjective perception variables

was collected after the post-test. The values for
variable S.1 are normalized averages reflecting the

time needed for understanding and performing the

tasks associated with Weeks 2–12.

The descriptive statistics for the experiment are

summarized in Table 3. The columns ‘Pre-test

scores’ and ‘Post-test scores’ show the calculated

values for mean (�x), median (m) and standard

deviation (s) of the raw data collected, and the
columns ‘Differences’ show the difference between

the post-test and pre-test scores.

Table 4 shows the calculated values for mean,

median and standard deviation of the raw data

collected on subjective perceptions.

As can be seen from Table 4, students of the

control group indicated less need for additional

time to complete the different aspects of the course
than those of the experimental group. Also the

students in the experimental group perceived their

course as easier, more engaging, clearer and more

useful than the students in the control group.

Standard significance testing was used to investi-

gate the effect of the treatments on the dependent

variables J.1 to J5. The null hypotheses were:

H0,1: There is no difference between pre-test scores

and post-test scores within experimental group

(A) and control group (B).

H0,2a: There is no difference in relative learning

effectiveness between experimental group (A)
and control group (B).

H0,2b: There is no difference in absolute learning

effectiveness between experimental group (A) and

control group (B).

For H0,1 , a one-way paired t-test was used because

the data collected for this hypothesis are within-

subjects, i.e. post-test scores are compared with pre-

test scores of subjects within the same group [30].

For testing hypotheses H0,2a and H0,2b, the appro-

priate test was a one-sided t-test for independent

samples [30].

Focusing on the experimental group (A), Table 5
shows the results using a one-tailed t-test for depen-

dent samples. Column one specifies the variable,

two represents the Cohen effect size, d [31], column

Comparison of Approaches when Teaching Programming to Novices 1031

Table 2. Experimental variables

Dependent variables
J.1 Interest in the Java programming language (‘Interest’)
J.2 General knowledge of computer programming (‘Understand general’)
J.3 Understanding of ‘simple’ object-orientated Java programming (‘Understand simple’)
J.4 Understanding of ‘difficult’ object-orientated Java programming (‘Understanding difficult’)
J.5 Understanding of the software development cycle (‘Understand cycle’)

Subjective perceptions
S.1 Available time budget versus time need (‘Time pressure’)
S.2 Course evaluation

Table 3. Scores of dependent variables

Pre-test scores Post-test scores

J.1 J.2 J.3 J.4 J.5 J.1 J.2 J.3 J.4 J.5

Group A
�x
m
s

0.81
0.85
0.11

0.47
0.38
0.28

0.25
0.28
0.27

0.10
0.09
0.21

0.08
0.09
0.24

0.84
0.83
0.13

0.88
0.96
0.13

0.78
0.74
0.12

0.41
0.37
0.15

0.53
0.51
0.13

Group B
�x
m
s

0.76
0.75
0.14

0.46
0.44
0.19

0.29
0.28
0.25

0.14
0.16
0.23

0.11
0.08
0.22

0.77
0.79
0.23

0.51
0.49
0.11

0.66
0.68
0.13

0.37
0.37
0.18

0.32
0.30
0.21

Differences

J.1 J.2 J.3 J.4 J.5
Group A

�x
m
s

0.03
–0.02
0.12

0.41
0.58
0.22

0.53
0.46
0.21

0.31
0.28
0.18

0.45
0.42
0.19

Group B
�x
m
s

0.03
–0.02
0.57

0.05
0.05
0.16

0.37
0.40
0.20

0.23
0.21
0.21

0.21
0.22
0.22

three the degrees of freedom, column four the t-

value of the study, column five the critical value for

the significance value a = 0.10 and column six lists

the associated p-value.Using the suggestions of [25],

testing for the normality assumption, analysis to

detect outliers and the non-parametric tests of

Wilcoxon and the Mann-Whitney U test were

carried out for the hypothesis H0,1 and for the
hypotheses H0,2a and H0,2b respectively. It was

found that no normal distribution of the variables

could be assumed and that all the data laywithin the

±2 standard deviations around the samples’ means.

The non-parametric tests did not show any differ-

ence from the results of the t-tests.

It can be seen from Table 5 that the experimental

group A achieved a statistically and practically
significant result for the dependent variables J.2–

J.5, whereas J.1 did not achieve a significant result.

Table 6 shows the results of testing Hypothesis

H0,1 for the control group (B) using a one-tailed t-

test for dependent samples. The structure of the

table is the same as that of Table 5.

Again for this group the dependent variables J.2–

J.5 achieved statistically and practically significant
results, whereas the dependent variable J.1 did not.

Hypothesis H0,2a, which states that the difference

between the post-test and pre-test scores of groupA

is not significantly larger than those of group B is

not examined. Table 7 shows, separately for each

dependent variable, the results of testing hypothesis

H0,2a using a one-tailed t-test for independent

samples.

It can be seen from Table 7 that the hypothesis

H0,2a can be rejected for the dependent variables

J.2–J.5, and for these dependent variables their

results support the direction of the expected relative

learning effect. For the dependent variable J.1, the

result was not statistically andpractically significant
and did not even support the direction of the

hypothesis.

Table 8 shows, separately for each dependent

variable, the results of testing H0,2b using a one-

tailed t-test for independent samples. The hypoth-

esis H0,2b can be rejected for the variables J.1–J.5,

showing the expected relative learning effect to be

strongly supported both statistically and in practice.

4. Questionnaire results

A questionnaire regarding the difficulty of learning
eight programming design features, as implemented

in Java was given to both the experimental and

control groups, who had completed their courses.

Four of the subjects gave no responses. On a scale of

1(easy) to 5 (very difficult) the subjects were asked to

rate the difficulty in learning program/design fea-

tures of Java in the following: Syntax, Objects,

Methods, GUIs, Arrays, Exceptions, Inheritance
and Polymorphism. The ratings given are subjective

in that what is being reported is what the subjects

perceived as ‘easy’ or ‘difficult’ to learn. Compar-

isons were made between the experimental and

control group responses.

Figure 1 summarizes the results of t-tests. Leve-

ne’s ‘test for equality of variances’ [32] allows the

user to determine whether the variances from the
two groups are equal or unequal, and gives the p-

values for each case.

FromFig. 1 andTable 9 it can be seen that, except

for ‘Syntax’, ‘Objects’ and ‘Arrays’, the tested

D. Adair et al.1032

Table 4. Scores of subjective perceptions

S.1 S.2

Group A
�x
m
s

0.41
0.43
0.32

0.53
0.54
0.17

Group B
�x
m
s

0.39
0.40
0.27

0.42
0.39
0.15

Table 5. Results for ‘post-test’ versus ‘pre-test’ for group A

Variable d df t-value Crit. t0.90 p-value

J.1 0.249 22 1.194 1.321 0.249
J.2 1.878 22 6.572 1.321 0.000
J.3 2.536 22 7.637 1.321 0.000
J.4 1.698 22 6.249 1.321 0.000
J.5 2.331 22 7.322 1.321 0.000

Table 6. Results for ‘post-test’ versus ‘pre-test’ for group B

Variable d df t-value Crit. t0.90 p-value

J.1 0.053 17 0.977 1.333 0.171
J.2 0.322 17 2.407 1.333 0.013
J.3 1.857 17 5.782 1.333 0.000
J.4 1.114 17 4.478 1.333 0.000
J.5 0.976 17 4.191 1.333 0.000

Table 7.Results for ‘performance improvement’ (GroupAversus
B)

Variable d df t-value Crit. t0.90 p-value

J.1 0.000 39 0.000 1.304 0.500
J.2 1.872 39 8.653 1.304 0.000
J.3 0.780 39 5.586 1.304 0.000
J.4 0.409 39 4.045 1.304 0.000
J.5 1.168 39 6.835 1.304 0.000

Table 8. Results for ‘post-test improvement’ (Group A versus B)

Variable d df t-value Crit. t0.90 p-value

J.1 0.375 39 3.872 1.304 0.000
J.2 3.073 39 19.435 1.304 0.000
J.3 0.959 39 6.194 1.304 0.000
J.4 0.241 39 3.105 1.304 0.002
J.5 1.202 39 6.934 1.304 0.000

features were significantly (p < 0.10) perceived as
more difficult to learn by the control group (B) than

for the experimental group (A). The control group

(B) perceived the learning of ‘Syntax’ and ‘Inheri-

tance’ as being easier.

5. Discussion of results

5.1 Controlled experiment

When considering the positive learning effect within

the experimental group (A), a statistically signifi-

cant positive change of scores was found from the

pre-test to post-test for the dependent variables J.2

to J.5. On the other hand, no positive effect could be

found for variable J.1, showing that the course had
not aroused interest in the Java programming

language. A similar result was found for the control

group (B), where again all dependent variable scores

improved except for J.1 ‘Interest’. The reasons for

this initial lack of interest and lack of growth of

interest could be many. These could range from

‘students do not really see computer programming

as an important part of an engineering course’ to
‘the fact that programming is a highly demanding

and detailed procedure’.

With the exception of the variable J.1, testing the

performance of relative and absolute learning effec-

tiveness between groups (hypotheses H0,2a and

H0,2b) showed that the more object-orientated

course yielded significantly better scores for the

relative effectiveness and significantly better results

for the absolute learning effectiveness for all depen-

dent variables.

It was noted that the extra time needed to intro-
duce and implement the software development

cycle, which gave additional time pressure on the

subjects in the experimental group (A) did not have

any negative effect on the scores of variables J.3 and

J.4. It was also noted that implementation of the

software development cycle also produced more

cooperation and teamwork among students.

5.2 Questionnaire

FromFig. 1 and Table 9 it can be seen that, with the

exception of ‘Syntax’, the subjects within the experi-

mental group (A) perceived the acquisition of

knowledge and skills of the Java programming

language as being easier than those of control group

(B). Generally ‘Syntax’ and ‘Arrays’ were seen as
relatively simple, whereas ‘Exceptions’ and ‘Poly-

morphism’ were seen as difficult. It is noteworthy

that the experimental group only perceived ‘Ob-

jects’ and ‘Methods’ as only marginally easier when

compared with the control group, and this could

imply that the more object-orientated approach is

not too difficult for novice students.

5.3 Validity

The validity of the present work is now discussed. It

is first recognized that interest in a topic and

evaluation of a teaching session are difficult to

measure, and to alleviate this problem the instru-

ments for measuring variables J.1 and S.2 were

derived from measurement instruments that have

already been successfully applied in similar kinds of
studies [25, 33].

To alleviate selection threats when dividing the

students into two groups, a randomization proce-

dure was used. This, together with the student

characteristics of similar age, level of programming

experience and general level of education when

starting each programming course gave reasonable

assurance of minimum bias. Also, there was no
change in teaching staff throughout the courses, so

reducing any ‘selection history effect’, and, as none

of the subjects left their respective group, there was

no ‘dropout interaction effect’. Students in both

groups were asked not to discuss their course with

members of the other group to try to reduce the

‘diffusion or contamination’ effect. Also, it was

mentioned to all the students that each course was
a legitimatemethodof acquiring their programming

skills and one course was not necessarily better than

the other. This was an effort tominimize any ‘rivalry

or resentment’ threats.

Comparison of Approaches when Teaching Programming to Novices 1033

Fig. 1 Comparison of mean responses of the experimental group
(A) and control group (B): (1) Syntax; (2) Objects; (3) Methods;
(4) GUIs; (5) Arrays; (6) Exceptions; (7) Inheritance; (8) Poly-
morphism.

Table 9. p-values for experimental group (A) and control group
(B)

Program/Design feature p-value

Syntax
Objects
Methods
GUIs
Arrays
Exceptions
Inheritance
Polymorphism

0.0879
0.1052
0.0054
0.0043
0.2312
0.0007
0.0012
0.0765

After selection any differences in the ability of the

groups was captured by collecting pre-test scores.

The subjects were all novices, so it can be expected

that they are representative of a general under-

graduate population.

6. Conclusions

The empirical studies presented in this paper inves-

tigated theuse of amoreobject-orientated approach
to the teaching and learning of the Java program-

ming language. It was found that this new approach

helped student in the areas of general knowledge of

computer programming, understanding of ‘simple’

object-orientated Java programming, of ‘difficult’

object-orientated Java programming, and of the

software development cycle.

The level of interest in the Java programming
language was not raised by either the more object-

orientated course nor the conventional course and

this is a subject for future research and innovation,

as is the question ‘would the results be different if a

different computer programming language was

investigated?’.

References

1. M. Kölling, The problem of teaching object-orientated
programming, Part 1: Languages, Journal of Object-
Orientated Programming, 11(8), 1999, pp. 8–15.

2. J. Carter andA. Jenkins, The problems of teaching program-
ming: Do they change with time? The Higher Education
Academy, Information and Computer Sciences, 11th Annual
Conference, August 24–26, 2010, Durham, UK.

3. I. Grovender, and D. J. Grayson, Pre-service and in-service
teachers’ experiences of learning to program in an object-
oriented language, Computers & Education, 51, 2008,
pp. 874–885.

4. Q. H. Mahmoud, W. Dobosiewicz and D. Swayne, Rede-
signing introductory computer programming with HTML,
JavaScript and Java, Proceedings of the 35th ACMTechnical
Symposium on Computer Science Education (SIGCSE),
March 3–7, 2004, Norfolk, Virginia, USA, pp. 120–124.

5. M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D.
Hagan, Y. B. D. Kolikant et al., A multi-national, multi-
institutional study of assessment of programming skills of
first year CS students, report by the ITiCSE 2001 Working
grouponAssessment of Programming Skills of First-yearCS
students, 2001.

6. I. Milne and G. Rowe, Difficulties in learning and teaching
programming—views of students and tutors, Education and
Information Technologies, 7(1), 2002, pp. 55–66.

7. A. Benander, B. Benander and J. Sang, Factors related to the
difficulty of learning to program in Java—an empirical study
of non-novice programmers, Information and SoftwareTech-
nology, 46, 2004, pp. 99–107.

8. D. Adair and M. Jaeger, Developing programming skills to
enhance engineering dynamics modeling, Proceeding of the
IETEC’11 Conference, 16–19January, 2011, Kuala Lumpur,
Malaysia.

9. D. Clark, C. MacNish and G.F. Royle, Java as a teaching
language—opportunities, pitfalls and solutions, Proceedings
of the Third Australian Conference on Computer Science
Education, ACM, July, 1998, Brisbane, Australia.

10. M. Kölling and J. Rosenberg, Guidelines for teaching object
orientation with Java, Proceedings of the 6th Conference on
Information Technology in Computer Science Education,
2001, Canterbury, UK.

11. A. Robins, J. Rountree and N. Rountree, Learning and
teaching programming: A review and discussion. Computer
Science Education, 13(2), 2003, pp. 137–172.

12. E.Lahtinen,K.Ala-Mutka et al.,Astudyof the difficulties of
novice programmers, 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education,
ITiCSE’05, 2005.

13. S. Wiedenbeck and V. Ramalingam, Novice comprehension
of small programs written in the procedural and object-
oriented styles Int. J. Human–Computer Studies, 51, 1999,
pp. 71–87.

14. C. Corritore and S. Wiedenbeck, An exploratory study of
program comprehension strategies of procedural and object-
oriented programmers Int. J. Human–Computer Studies, 54,
pp. 1–23.

15. G. White and M. Sivitanides, Cognitive difference between
procedural programming and object oriented programming
Information Technology and Management, 6, 2005, pp. 333–
350.

16. Joint Task Force on Curricula, Computing Curricula 2001
Computer Science, Journal of Educational Resources in
Computing, 1(3): entire issue, 2001.

17. R. Lister, Teaching Java first: experiments with a pigs—early
pedagogy,Australasian Computer Education, 6th Conference,
18–22January, 2004, Dunedin, NZ.

18. K. Ala-Mutka, Problems in learning and teaching program-
ming—a literature study for developing visualizations in the
Codewitz-Minerva project, 2005, Retrieved September 30,
2010, from www. cs.tut.fi/~codewitz/literature_study.pdf.

19. T. Wang, X. Su, P. Ma, Y. Wang and K. Wang, Ability-
training-orientated automated assessment in introductory
programming course, Computers & Education, 2011 (article
in press).

20. A. Mendes, V. Ivanov and M. Marcelino, A web-based
system to support Java programming learning International
Conference on Computer Systems and Technologies,
CompSys Tech’ 2005, 2005.

21. JCreator, Xinox Software, Delft, Netherlands, www.jcrea-
tor.com, 2010.

22. W. P. Sun, A new paradigm to improve computer education
for engineering students: Applying industry-based software
development cycle into programming practices, ASEE An-
nual Conference, June 24–27, 2007, Hawaii.

23. R. S. Pressman, Software engineering—a practitioners’
approach, 6th edition, McGraw-Hill, New York, 2004.

24. J. P. Tremblay and R. B. Bunt, An Introduction to Computer
Science: An Algorithmic Approach, McGraw-Hill, New
York, 1989, pp. 18–23,

25. D. Pfahl, O. Laitenberger, G. Ruhe, J. Dorsch and T.
Krivobokova, Evaluating the learning effectiveness of using
simulations in software project management education:
results from a twice replicated experiment, Information &
Software Technology, 46, 2004, pp. 127–147.

26. R. Bornat,Programming fromFirst Principles, PrenticeHall,
1986.

27. R. Pimmel, Cooperative learning instructional activities in a
capstone design course, Journal of Engineering Education,
90(3), 2001, pp. 413–421.

28. W. P. Sun and J. Anderson, Teaching plant design/material
handlingbyusingproject-basedapproach,Proceedings of the
2006 ASEE Annual Conference & Exposition, 2006.

29. R. Likert, A technique for the measurement of attitude,
Archives of Psychology, 22(140), 1932.

30. D. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures, CRC Press, Boca Raton, 1997.

31. J. Cohen, Statistical Power Analysis for the Behavioral
Sciences, 2nd edn, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1988.

32. H. Levene, Robust tests for equality of variances. In I. Olkin
(ed.), Contributions to Probability and Statistics, Essays in
Honor of HaroldHotelling, StanfordUniversity Press, 1960,
pp. 278–292.

33. J. A. M. Vennix, Mental models and computer models:
design and evaluation of a computer-based learning environ-
ment for policy making, Doctoral Dissertation, Katholieke
Universiteit Nijmegen, 1990.

D. Adair et al.1034

Appendix A: Teaching syllabuses

A.1 Java programming course syllabus

� Content

� Unit introduction, Programming terms & tools, Computing terms & tools

� Solving problems with computers. Data storage primitive types, Data storage manipulation of primitive

data

� Using class libraries, Object methods, Class methods

� Flow of control branches, Planning & implementing branches, Multi-way branching
� Flow of control loops, Implementing loop algorithms, Nesting flow

� Extending existing classes, Parameters & return values, Extending classes, Graphical User Interface

� New classes simulating real world objects, Implementing and using new classes, Testing & Documenting

programs

� New classes to organize tasks, Method decomposition, GUI interface adding components

� Structured data, Arrays, Declaring & filling arrays, Using arrays inheritance polymorphism

� Standard array algorithms, Sorting algorithms, Searching algorithms

� GUI interactivity event driven programs, GUI implementation events, Input from the GUI
� Run time errors exceptions, Recursion concepts, Recursion implementation

In addition, two major assignments, done on an individual basis, were completed by the students.

Appendix B. Example questions

Dependent variable J.1

I consider it very important for engineering students to know as much as possible about computer

programming. (1 = fully agree / 5 = fully disagree) Circle number below.

Agree 1 2 3 4 5 Disagree

Dependent variable J.2

Computer software is important to the following areas of engineering:

Control engineering True/False
Thermodynamics True/False

Materials True/False

Dependent variable J.3

What is the output of the following code?

public class Example {
public static void main(String[] args) {
int num = 3;
if (num == 3) {
System.out.println(‘Hello world!’);

}
}

}

Dependent variable J.4

What can go wrong if you replace && with & in the following code:
String a=null;
if (a!=null && a.length()>10)
{ . . .}

Dependent variable J.5

What is the developer’s goal?

Comparison of Approaches when Teaching Programming to Novices 1035

Subjective perception S.1

I did not have enough time to:

- complete the tutorials

- complete the computer laboratory sessions

- write up the assignments

- complete the post-test

Subjective perception S.2

I consider the explanations/ provided for the computer laboratory sessions

1 2 3 4 5

Useful Useless

Engaging Boring

Easy Difficult

Clear Confusing

Desmond Adair holds a Ph.D. in Mechanical Engineering from Imperial College, London. He spent a number of years

working as a SeniorResearchEngineerwithNASA inCalifornia andNPL inTeddington, England.Dr. Adair has worked

for British Aerospace and the UAE Defence Forces in senior education positions, and is a Research Associate with the

University of Tasmania, Australia.

Martin Jaeger holds a Ph.D. in Civil Engineering (Construction Economy and Management) from the University of

Wuppertal, Germany. He spent the last ten years working as site manager, consultant, and lecturer in Germany and the

Middle East and is a Research Associate with the University of Tasmania, Australia.

Jonathan Stegen is a graduate of the University of Canterbury, New Zealand and has worked in many countries including

Japan, England andSaudiArabia.He has alsoworked as a consultant forRusal (RussianAluminium) inMoscowand is at

present a Senior Instructor at the Australian College of Kuwait.

D. Adair et al.1036

