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In an effort to predict student performance in an engineering course, Rough Set Theory (RST) is employed as the core of a

knowledge discovery process. Student performance is captured in terms of successful course completion. Therefore,

students are classified into two categories: thosewho pass a course and thosewho do not. TheRough Set Theory paradigm

presented here analyzes each student based on a set of attributes. These attributes are collected through a series of surveys

conducted in the first week of the course, allowing for early identification of potential unsuccessful students. Variations of

theRoughSet approach are evaluated todetermine theonemost suited for the particular dataset. The results are promising

since the accuracy of student performance prediction presents an Area under the Receiver Operating Characteristic Curve

equal to 80%. The benefits anticipated from early identification of weak and/or potentially unsuccessful students will

enable educators to engage these students at the onset of the course and enroll them in additional activities to improve their

performance.
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1. Introduction

Knowledge discovery is the research area concerned

with analyzing existing information and extracting

implicit, previously unknown, hidden and poten-
tially useful knowledge in an automated manner [1,

2]. The core of the presented knowledge discovery

process is Rough Set Theory (RST) [1], an extension

to classical Set Theory used to represent incomplete

or imperfect knowledge. RST combines theories

such as fuzzy sets [3], evidence theory [4] and

statistics, hence is able to cope with the shortcom-

ings of these underlying theories.
In this paper, we describe the application of an

RST-based knowledge discovery process in predict-

ing student performance in an undergraduate en-

gineering course. We measure student performance

in terms of successful completion of a course. In this

context, we classify students into two categories:

Passing students are those who complete the course

with a passing grade and Failing students are those
who fail to complete the course or receive a failing

grade.Note that the failing students category is used

in the generic sense and includes those students who

withdraw from it. The dataset for this study consists

of information collected from twodistinct groups of

students enrolled in two different classes of the

course. Student information was collected through

a series of surveys conducted in the first week of the
classes.

The rest of the paper is organized as follows:

Section 2 presents a review of the recent work in
predicting student performance in a single course.

Section 3 describes the dataset utilized in this study

and Section 4 presents in detail each of the steps

involved in the RST-based knowledge discovery

process and their application to predicting student

performance. Section 5 discusses our results and

finally, Section 6 concludes this paper.

2. Literature review

A variety of methodologies has been proposed to

predict student performance in academic settings

with the majority of them relying on statistical and

soft computing techniques. The specific topic of

academic performance prediction in a single course

is dominated by regression-based statistical ap-
proaches. Recent notable efforts based on regres-

sion analysis appear in [5–15].

Soft computing techniques have found applica-

tion in student performance prediction in the

broader sense of overall academic success and

retention in [16–19]. There are also notable efforts

in applying these techniques to student performance

prediction in a single course.
Hamalainen andVinni [20] compared five student

performance classification methods; two multiple

linear regression and three versions of naı̈ve Bayes

classifiers. Students were classified into a passing
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and failing group based on the final course grade.

The factors considered for all five classifiers were

based on six cognitive areas of programming

courses. The authors show that the Bayes classifier

had very good prediction accuracy.

Vandamme et al. [21] proposed three classifica-
tion models to measure the probability of failing a

course. The authors considered in their study socio-

logical attributes, class attendance, prior academic

experience regarding mathematics, study skill, and

student self-confidence. The authors used data from

three academic institutions from Belgium.

Fang and Lu [22] developed a prediction metho-

dology based on a decision tree to predict student
performance in a core engineering course. Based on

the grades of four prerequisite courses and the

cumulative GPA of the student, nine ‘‘if-then’’

decision rules were generated to predict student

performance represented by the final course grade.

It was revealed that a student’s grade in one of the

prerequisite courses and the cumulative GPA gov-

ern student performance. The prediction accuracy
of the Decision Tree model was tested using data

from two different semesters with remarkable accu-

racy. The results were superior to those of tradi-

tional multivariate statistical approaches.

Fan and Matsuyama [23] presented a rough set

theory-based approach to analyze academic perfor-

mance in aWeb-based learning support system. The

study included the analysis of 28 student profiles
considering general attributes such as age, gender,

financial aid, marital status, dependents, etc. No

results regarding the predictive capability of the

model were presented. The authors emphasized

the importance of personalized learning particu-

larly in web-based environments.

Most recently Pai et.al. [24], presented a model

based on RST to analyze academic achievement in
terms of overall course grades in junior high school

students. To predict a student’s performance, the

authors considered external relationships, such as

teacher–student interaction, parental expectations,

learning styles, and socio-demographic attributes

such as family income per month. Linear discrimi-

nant analysis was used to identify the nine attributes

significant to academic performance. The authors
compared the RST model based on linear discrimi-

nant analysis to five different data mining algo-

rithms and concluded that the RST model

performed better in terms of classification accuracy.

While this effort is not necessarily in the same topic

as addressed in this paper, to our knowledge, it is the

only significant example of usingRST-based knowl-

edge discovery methodologies in educational re-
search.

The work presented in this paper is unique in the

sense that it is the first example of applying an RST-

based knowledge discovery process for predicting

student success in a course. To ensure that the

prediction model is generally applicable, the data

used in the prediction model are universal and not

course specific. Furthermore, the model attributes

are limited to data that are available before or at the
time of course registration which allows the out-

comes of the prediction model to be effectively used

to benefit the students during the course.

3. Description of dataset

The dataset employed in this study consists of
information collected from two distinct groups of

students. The first group comprises 60 students

enrolled in the Introduction to Linear Systems

course during the spring term of the 2007–2008

academic year at the University of South Florida.

The second group consists of 70 students enrolled in

the same course during the spring term of the 2009–

2010 academic year at the same university.
The datasets collected from each group of stu-

dents have unique roles in the knowledge discovery

process. Specifically, we use the data from the first

groupof students todevelop the predictionmodel to

classify students as passing or failing (training

dataset) and the data from the second group to

validate the accuracy of the developed model (test-

ing dataset). By utilizing different datasets for
development and validation, we overcome pro-

blems related to overfitting and, hence, enhance

the robustness of the prediction model across

different student populations within the same

course.

We define student profile as the set of attributes

that capture information regarding the demo-

graphics, workload, and student’s previous perfor-
mance. These are few candidate attributes which we

believe to have a significant influence on the ex-

pected performance of the students in a particular

course. A complete list of the attributes considered

in this study is presented in Table 1. Student profiles

are populated through a set of surveys administered

at the beginning of both courses. Note that the

generic aspect of the attributes considered will allow
utilization of this basic student profile across var-

ious disciplines.

Analysis of the captured information was con-

ducted based on RST. In the RST framework, data

are represented by a two-dimensional table. Each

row represents a student and each column repre-

sents an attribute in the student profile. These

attributes are called condition attributes. To facil-
itate the student classification process, we define a

decision attribute named ‘‘performance’’ to indicate

whether a student was successful (he/she received a

passing score of A, B or C) or unsuccessful in the

Predicting Academic Performance Using RST-Based Methodology 993



class (he/she receive a failing grade (D, F) or

dropped the course). Table 2 is a decision table

which shows an instance of the dataset used in this

study including the decision attribute.

4. Knowledge discovery process

The objective of the knowledge discovery process is

to identify meaningful relationships between condi-

tion and decision attributes. A comprehensive de-

scription of the RST-based knowledge discovery
process is outlined in Figure 1. The main steps

involved can be categorized in three phases: pre-

processing, data mining, and post-processing. The

rest of this section describes in detail each of these

phases.

4.1 Data preprocessing

The first step in the knowledge discovery process is

to identify and resolve missing values in the dataset.

Several methodologies have been described in the

literature [25–27] for imputing missing values such

as bootstrapping, pattern analysis, deletion, mean

substitution, and maximum likelihood estimation.

In this study, all but one of the student profiles
collected were complete. Therefore, we proceeded

with deletion of the particular profile.

Next step in the knowledge discovery process is to

split the entire dataset into two distinct datasets.

One of the datasets will be used as the training set

and the other as the testing set. In this study, we used

the 2007–2008 student profiles as the training set

and the 2009–2010 student profiles as the testing set.
Table 3 shows the distribution of student perfor-

mance in these two sets.

The RST-based knowledge discovery process

continues with the discretization step which in-

volves the representation of data using intervals

and ranges in lieu of exact observations to define a

coarser and more qualitative rather than quantita-

tive representation of the data. The data discretiza-
tion problem has been extensively studied and

various heuristic search algorithms have been pro-

posed [28–31]. In this work, all attributes in the

student profiles are categorical as shown in Table 1;

therefore the discretization step is not required.
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Table 1.Attributes. There are 8 condition attributes in each student profile. The table defines the code name, the description, and the value
range for each attribute

Attribute Description Attribute range

Age The age of the student <21: Less than 21 years old
22–26: Between 22 and 26 years old
>26: greater than 26 years old

Child The student has children Yes
No

Crhr Number of credit hours the student is taking during the
semester

1–5
6–11
>12

Wrhr Number of hours/week a student spend working outside the
school

0–10
11–20
21–30
>30

Trnsf The student has been transferred from another institution Yes
No

Crch The student has made a career change Yes
No

Calc Number of semesters elapsed since taking a prerequisite course <4
>4

GPA Overall GPAof a student (On a scale of 0.0 to 4.0. However, no
students with GPA<2.0 were in the courses.)

2.0–2.5
2.5–3.0
3.0–3.5
3.5–4.0

Table 2. Decision Table. The decision table presents the relationship between condition attributes and the corresponding decision
attribute. Here, the decision attribute, performance, is used to classify a student as failing or passing the course

The condition attributes Decision attribute

Student Age Child Crhr Wrhr Trnsf Crch Calc GPA Performance

1 <21 NO >12 0–10 NO NO <4 2.5–3.0 Failing
2 >26 YES >12 >30 YES YES <4 3.5–4.0 Failing
3 22–26 NO >12 0–10 YES NO <4 3.5–4.0 Passing
4 <21 NO >12 11–20 NO NO <4 3.5–4.0 Passing



4.2 Reduct generation

The reduct generation step is utilized in an effort to

reduce the dimensionality of the dataset by remov-
ing redundant information and consequently de-

creasing the complexity of the mining process.

Formally, a reduct is the minimal set of attributes

that enable the same classification as the complete

set of attributes without loss of information. There

are many algorithms for computing reducts. As will

be shown later in this paper, the effect of the reduct

generation algorithm to the classification perfor-
mance is critical. Therefore, the optimal algorithm

is identified as the one producing the best classifica-

tion results. However, since the computational

complexity of the reduct generation problem is

NP-hard [28, 32], various suboptimal techniques

have been proposed. The technique most appropri-

ate to the problem is the one that generates better

classification accuracy in the testing dataset. In this
work, two techniques are used for reduct genera-

tion: genetic algorithms and dynamic reducts. The

rest of this section describes these techniques.

4.2.1 Computing reducts using genetic algorithms

The computational cost for reduct computation is

exponential with respect to the size of the decision

table. Genetic algorithms, operating based on the
principle of survival of the fittest, can be used to

reduce the computational complexity [32–34].

Given a function f : Sþ, the goal of a genetic

algorithm is to find an x0 2 S for which

f ðx0Þ ¼ maxðf ðxÞ : x 2 SÞ. Elements ofS are called
individuals and the function f is the fitness function.

The values of function f ðxÞ correspond to the ability
of the individual x to survive the evolution process.
The evolution process begins by creating a random

initial fixed size population of individuals. In an

iterative manner, the algorithm generates a new

population of individuals. First, the fitness of each

individual in the current population is calculated

and those individuals with high fitness are selected

as parents which interact based on a genetic opera-

tor (e.g.mutation and crossover) toproduce the new
population, child. The process is repeated until

some stopping condition is achieved.

The genetic algorithm for the reduct generation

uses as individuals the attributes in the student

profile, and as fitness function the output of a

heuristic algorithm that evaluates the quality of

each reduct generated. The details of the genetic

algorithm used for the reduct generation are pre-
sented in [32]. Using genetic algorithms, one reduct

{Age, Crhr, Wrhr, Trnsf, GPA} is generated which

includes 5 out of the 8 attributes.

4.2.2 Computing dynamic reducts

The main advantage of utilizing genetic algorithms

for reduct generation is the reduction in computa-

tional complexity. However, the results obtained
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Fig. 1. Knowledge discovery methodology. There are three phases in the knowledge
discovery process: data preprocessing, data mining, and data post processing.

Table 3. Performance distribution in training and testing sets

Dataset Failing Passing

Training set 58.33% 41.67%
Testing set 37.68% 62.32%



are highly dependent on the specific training dataset

and therefore could change each time a different

training set is selected. A strategy that generates

reducts invariant to the training set is expected to

generate more stable reducts. To this end, Bazan et.

al. [28, 32, 35], proposed a reduct generation tech-
nique called Dynamic Reducts. This technique aims

at obtaining the most stable sets of reducts for a

given dataset by sampling within this dataset. For

example, in an iterative manner different samples of

the testing set are selected for which reducts are

computed using a genetic algorithm. The reducts

appearing more frequently in these samples are

selected as the most stable.
Based on the principle of the dynamic reducts

technique, we have randomly selected 100 subdivi-

sions of the training set to use for reduct generation.

The actual number of student profiles included in

each subdivision of the training set varies as follows:

10 subdivisions with number of student profiles

equal to 50% of the training data set

10 subdivisions with number of student profiles

equal to 60% of the training data set

10 subdivisions with number of student profiles

equal to 70% of the training data set
10 subdivisions with number of student profiles

equal to 80% of the training data set

10 subdivisions with number of student profiles

equal to 90% of the training data set

The reducts for each subdivision as well as the

reduct from the complete training set are computed.

The most stable reducts obtained are as follows:

{Age, Crhr, Wrhr, Trnsf, GPA}

{Age, Wrhr, Trnsf, Calc, GPA}

{Age, Wrhr, Trnsf, GPA}

{Age, Crhr, Wrhr, Calc, GPA}

{Crhr, Wrhr, Trnsf, Calc, GPA}

{Age, Crhr, Wrhr, GPA}

{Wrhr, Trnsf, Crch, Calc, GPA}
{Age, Crhr, Trnsf, Calc, GPA}

{Age, Crhr, Trnsf, Crch, GPA}

{Age, Child, Crhr, Trnsf, GPA}

{Wrhr, Trnsf, Calc, GPA}

{Crhr, Wrhr, Trnsf, GPA}

{Wrhr, Trnsf, Crch, GPA}

{Child, Wrhr, Trnsf, GPA}

{Age, Crhr, Trnsf, Crch, Calc, GPA}
{Wrhr, Trnsf, GPA}

{Age, Wrhr, GPA}

{Age, Child, Wrhr, Trnsf, Calc}

When dealingwithmultiple sets of reducts, themost

significant attributes of the dataset can be identified.

These attributes are called core attributes and ap-

pear in every reduct. Omitting core attributes from

the classification process considerably affects the

classification accuracy. In the aforementioned list of

reducts, there is no attribute common among all the

reducts. Therefore, the set of core attributes is

empty. However, the attribute GPA appears in 17

out of the 18 reducts indicating that GPA can be

considered as a significant attribute in classifying
student performance. Similarly, the attributes Trnsf

andWrhr appear in 15 and 14 reducts, respectively

and are considered critical to the classification

model.

4.3 Rule induction

The ultimate goal of the RST-based knowledge

discovery methodology is to generate decision rules

which will be used in classifying each student as

failing or passing. A decision rule has the form if A

then B (A! B), where A is called the condition and

B the decision of the rule. Decision rules can be

thought of as a formal language for drawing con-

clusions from data.

A decision rule is generated using the attributes in

a student profile that are included in a reduct. For

example, consider the decision table shown in Table

2 and the reduct {Age, Crhr, Wrhr, Trnsf, GPA}
obtained using genetic algorithms. Since the reduct

includes only five attributes, the decision table can

be represented by Table 4. From the Reduced

Decision Table in Table 4 we can define four

decision rules as follows:

If the student is younger than 21 years old, takes

more than 12 credit hours in a semester, works for

less than 10 hours, is not a transfer student and

has GPA between 2.5 and 3.0, he/she will fail the
class.

If the student is older than 26 years old, takes more

than 12 credit hours in a semester, works formore

than 30 hours, is a transfer student and has GPA

between 3.5 and 4.0, he/she will fail the class.

If the student is between 22 and 26 years old, takes

more than 12 credit hours in a semester, works for

less than 10 hours, is a transfer student and has
GPA between 3.5 and 4.0, he/she will pass the

class.

If the student is younger than 21 years old, takes

more than 12 credit hours in a semester, works for

11 to 20 hours, is not a transfer students and has

GPAbetween 3.5 and4.0, he/shewill fail the class.

Considering the attributes in the reduct {Age,

Crhr,Wrhr, Trnsf, GPA} and the complete training

set, we can create 43 decisions rules. A portion of
these rules with the highest LHS Support are listed

in Table 5. The LHS Support indicates the number

of students satisfying the condition of the rule while

the RHS Support indicates the number of students

satisfying the decision of the rule.

E. Gil-Herrera et al.996



4.4 Classification process

Based on the set of rules generated, we can classify

students as passing or failing. However, as seen in

Table 5, not all rules are conclusive. Consider rules 1
and 3 in Table 5. Students with profiles identical to

the conditions of the rules are not decisively classi-

fied as passing or failing. In addition, there are

situations of contradictory rules, e.g. one or more

rules classify a student as passing and some other

rules classify the same student as failing. To over-

come these problems, a standard voting algorithm

[28] is usedwhich allows all rules to participate in the
decision process and classify a student based on

majority voting.

Let RUL denote the set of all decision rules

obtained from the training set. When a student

with student profile x from the testing set is pre-

sented for classification, the standard voting algo-

rithm operates as follows:

1. Assume that a student with profile x = {age

<21, Crhr >12, Wrhr = 0-10, Trnsf = NO, GPA

= 3.5-4.0} is to be classified. Let

RULðxÞ � RUL denote the set of firing rules

(those with the same conditions as student
profile x).

� If RULðxÞ is empty, then no classification

can be made and x is declared undefined.

� IfRULðxÞ is not empty, an election process is
performed among the rules in RULðxÞ as

follows: Compute the number of votes each

rule contributes to student profile x. Each

rule r 2 RULðxÞ, casts a number of votes in
favor of the decision class the rule indicates.

Typically the number of votes is related to the

RHS support of the rule. For example, con-

sider the 1st rule presented in Table 7 with
RHS Support ¼ 1; 6. Then votesð1strule;
FailingÞ ¼ 1 and votesð1strule;PassingÞ ¼ 6.

2. Compute the normalization factor associated

with the student profile x and the number of

rules fired: A normalization factor normðxÞ is
computed for each student profile as the sum of

all votes from all rules fired to serve as a scaling

factor. In our example, since only the first rule

fired for x, normðxÞ ¼ 7.

3. Calculate the certainty coefficient associated
with each decision class as follows:

� Certaintyðx;FailingÞ ¼Pi
votesðrx;i ;FailingÞ

normðxÞ ;

with rx;i denoting all rules fired for student x.
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Table 4.Decision table and reduced decision table. The reduced decision table is used to generate the decision rules for the classification
model. Here, the reduced decision table has three attributes fewer than the original decision table

Original Decision Table

Condition attributes Decision attribute

Student Age Child Crhr Wrhr Trnsf Crch Calc GPA Performance

1 <21 NO >12 0–10 NO NO <4 2.5–3.0 Failing
2 >26 YES >12 >30 YES YES <4 3.5–4.0 Failing
3 22–26 NO >12 0–10 YES NO <4 3.5–4.0 Passing
4 <21 NO >12 11–20 NO NO <4 3.5–4.0 Passing

Reduced Decision Table based on reduct {Age, Crhr, Wrhr, Trnsf, GPA}

Condition attributes Decision attribute

Student Age Child Crhr Wrhr Trnsf Crch Calc GPA Performance

1 <21 >12 0–10 NO 2.5–3.0 Failing
2 >26 >12 >30 YES 3.5–4.0 Failing
3 22–26 >12 0–10 YES 3.5–4.0 Passing
4 <21 >12 11–20 NO 3.5–4.0 Passing

Table 5.A subset of decision rules based on genetic algorithm. The table presents a subset of rules generated using the reduct {Age, Crhr,
Wrhr, Trnsf, GPA}. LHS support and RHS support correspond to the number of students satisfying the condition of the rule and the
number of students satisfying the decision of the rule respectively. For rules with dual decision (e.g. rule 1) there are two values for RHS
Support corresponding to each decision

Rule Description LHS Support RHS Support

1 Age(<21) AND Crhr(>12) ANDWrhr(0–10) AND Trnsf(NO) ANDGPA(3.5–
4.0) Then Performance(Fail) OR Performance(Success)

7 1; 6

2 Age(<21) AND Crhr(>12) ANDWrhr(0–10) AND Trnsf(NO) ANDGPA(2.5–
3.0) Then Performance(Pass)

4 4

3 Age(<21) AND Crhr(>12) ANDWrhr(11–20) AND Trnsf(NO) AND GPA(3.0–
3.5) Then Performance(Fail) OR Performance(Pass)

3 2; 1



� Certaintyðx;PassingÞ ¼
P

i
votesðrx;i ;PassingÞ

normðxÞ .

For our example, Certaintyðx;FailingÞ ¼ 1
7

and Certaintyðx;PassingÞ ¼ 6
7
.

4. Finally, classify the student with profile x in the

decision class for which the certainty factor is

greater than a threshold value (�) which is
typically fixed at 0.5. In this example, the

student with profile x is classified as Passing.

5. Results

This section compares the performance of the

classification processes based on the decision rules

generated using the reduct generation techniques
described in sections 4.2.1–4.2.2. At this stage of the

knowledge discoverymethodology, the objects (stu-

dent profiles) in training dataset are classified as

passing, failing or undefined based on the induced

rules and the classification process described. The

results are presented in a confusion matrix form.

The confusion matrix for each model includes the

numbers ofTrue Positive (TP), TrueNegative (TN),
False Positive (FP) and False Negative (FN) results.

Our perspective on positive and negative results

relates to the necessitation for action for failing

students. Specifically, we define:

TP: the number of students classified as failing the

course, when in fact failed the course (shown in

the top left cell of the confusion matrix).

FP: the number of students classified as failing the

course, when in fact passed the course (shown in

the bottom left cell of the confusion matrix).

TN: the number of students classified as passing the

course, when in fact passed the course (shown in

the bottom right cell of the confusion matrix).

FN: the number of students classified as passing the
course, when in fact failed the course (shown in

the top right cell of the confusion matrix).

Using these values we can compute the measures of

specificity and sensitivity as:

Sensitivity: The fraction of failing students correctly

classified by the classification algorithm.

Sensitivity ¼ TP

TPþ FN
(1)

Specificity: The fraction of passing students cor-

rectly classified by the classification algorithm.

Specificity ¼ TN

TN þ FP
(2)

The accuracy of each classification model is re-

ported in terms of Area under the Receiver Operat-
ing Characteristic (ROC) curve (AUC). The ROC

curve graphs the sensitivity of the classification

algorithm in terms of (1-specificity). The best pos-

sible classification is achieved whenAUC is equal to

1, while no classification ability exists when AUC is

equal to 0.5.

5.1 Performance of the classification algorithm

using reducts generated by genetic algorithms

Table 6 presents the confusion matrix for the

classification model based on reducts generated

using genetic algorithms. The classifier consists of

43 rules. With sensitivity equal to 80%, the classifier

demonstrates an ability to correctly identify the
failing students, however, the specificity score is

much lower (20%), which implies that the classifier

fails to correctly identify passing students. The term

undefined in Table 6 refers to 59 students (almost

85.5% of students in the testing sample) for whom

the classification algorithm was unable to classify

either as passing or failing. The coverage of the

classifier (defined by the ratio of objects classified to
the total number of objects in the testing set) is

14.5% since we are able to classify 10 students from

the 70 in the training set. Overall, the AUC score is

equal to 0.5 indicating classification inability.

5.2 Performance of the classification algorithm

using dynamic reducts

Table 7 shows the confusion matrix for the classifi-

cation model based on dynamic reducts. There are

593 decision rules. The classifier’s ability to cor-

rectly identify failing and passing students is 0.68

and 0.675, respectively. The overall classification
performance as indicated by the AUC is equal to

0.8, considerably better compared to the genetic

algorithm classifier. In addition, the number of

undefined cases has been decreased to four student

profiles and the coverage of the classifier is 96%.

Using dynamic reducts instead of genetic algo-
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Table 6. Confusion matrix. The classifier presents AUC equal to
0.5 indicating classification inability

Predicted

Failing Passing Undefined

Actual
Failing 4 1 21
Passing 4 1 38

Sensitivity: 0.8, Specificity: 0.2, AUC: 0.5

Table 7. Confusion matrix. The classifier presents AUC equal to
0.8 indicates good classification ability

Predicted

Failing Passing Undefined

Actual
Failing 17 8 1
Passing 13 27 3

Sensitivity: 0.68, Specificity: 0.675, AUC: 0.8



rithms for reduct generation improved the overall

classification performance.

Table 8 summarizes our findings regarding the

performance of each classifier in predicting student

performance.

6. Discussion

The threshold value (�) in the classification process
described in Section 4.4 has a significant impact on

the accuracy as well as the usability of the classifica-

tion process, especially in this application of student

performance prediction. To better understand the

role of this threshold value, consider the definitions

of sensitivity, the fraction of failing students cor-

rectly classified, and specificity, the fraction of

passing students correctly classified by the classifi-
cation algorithm. In our particular application of

predicting student performance in a course, to

engage the potentially unsuccessful students early

on and to improve their performance, the ‘‘cost’’ of

misclassifying a failing student (as passing) is much

higher than that of misclassifying a passing student

(as failing). After all, if a potentially weak/unsuc-

cessful student is misclassified as passing, the op-

portunity to engage this student early is lost. On the

other hand, if a passing student is misclassified as

failing and is enrolled in activities to improve his/her

performance, he/she may actually end up with an

improved grade. Therefore, especially in this parti-
cular application, it is significantly more important

to ensure that the sensitivity value is closer to 1 than

the specificity value.

The threshold value is the parameter that estab-

lishes the relation between sensitivity and specificity

in the classification process. A higher threshold

value would require a higher certainty coefficient

value (making it more difficult) for a student to be
classified as failing, decreasing the sensitivity and

increasing specificity. In the same manner, a lower

threshold value would increase sensitivity and re-

duce specificity, which is the more desirable condi-

tion in this application.

The ROC curve describes the predictive behavior

of a classifier for varying values of the threshold

(0 � � � 1), in terms of sensitivity, specificity and
classifier accuracy. Figure 2 shows the ROC curve

generated from the classification model based on

dynamic reducts. The area under the ROC curve

characterizes the overall accuracy of the classifier.

Each point on the curve corresponds to a different

pair of sensitivity and specificity values based on

varying the value of the threshold (� ).
Table 9 shows some selected points on the ROC

curve and the associated threshold value used dur-

ing the classification process. For example, the

default value of � ¼ 0.5 leads to the sensitivity and

specificity values reported in Table 7. The condi-

tional maximum values of both sensitivity and

specificity are obtained when the threshold values
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Table 8. Comparison of classifiers. A classifier has been created
based on each reduct generation technique described in sections
4.2.1–4.2.2

Strategy

Performance measures Genetic Algorithms Dynamic reducts

Sensitivity 0.8 0.68
Specificity 0.2 0.675
AUC 0.5 0.8
Coverage 14.5% 94%
# of reducts 1 18
# of decision rules 43 593

Fig. 2. ROC Curve for the classification model based on dynamic reducts. The specificity and sensitivity are controlled by the threshold
value.



is 0.416. The confusion matrix for this threshold
value is shown in Table 10.

Considering the nature of this particular applica-

tion where the intent may lean towards maximizing

sensitivity, point 2 in Fig. 2 results in possibly the

most effective classification where only three failing

students were misclassified and 22 were correctly

classified. On the other hand, nearly half of the

passing students were classified as failing greatly
increasing the total number of students classified as

failing. The decision of which threshold value to use

for classification is a subjectivematter depending on

the cost and capacity of the available programs and

activities to improve student performance. For

example, if the planned activity to help potentially

unsuccessful students is aweb-based activity such as

endless quizzes [36] where questions and grading are
done automatically by the computer, then the addi-

tional number of students may not be prohibitive.

Point 5 inFig. 2 corresponds to threshold equal to

0.5 which results in sensitivity 0.68 and specificity

0.675 (Table 7).

As the value of threshold decreases, the sensitivity

of the classification model increases in the expense

of specificity. For the student performance applica-
tion, an increased sensitivity is a desirable outcome.

7. Conclusions

Thepresentedwork is significant in the sense that, to

our knowledge, it is the first example of applying an

RST-based knowledge discovery process for pre-

dicting student success in a single course in academic

settings. Most relevant research associated with the

use of soft computing approaches focuses exclu-
sively on the development and evaluation of the

data mining techniques neglecting pre and post

mining phases crucial to the effective use of the

data mining results. The work presented addresses

all stages of the knowledge discovery process and

describes how the classificationmethodology can be

tailored to varying levels of sensitivity and specifi-

city, and provide effective decision support depend-
ing on the cost and capacity of the available

programs and activities to improve student perfor-

mance.

Another important distinctive feature of thework

presented is that the training and testing sets are

distinct sets of students. Many of the proposed

methodologies in the field of educational perfor-

mance prediction do not validate their findings in
different student populations and may often suffer

from over-fitting, which has been proven to cause

poor prediction performance when applied to dif-

ferent datasets.

In the prediction model presented, the condition

attributes are general and limited to data that can be

collected by administering a brief in-class survey at

the beginning of the course. We note that the
accuracy of this baseline prediction model may be

further improved by incorporating more cognitive

factors such as attributes related to metacognitive

skills and self-efficacy. A discipline-neutral predic-

tionmodel may further be focused by incorporating

attributes related to the discipline-specific skills. For

example, analytical and math skills would be likely

candidates for engineering courses. The degree of
complexity of the predictive model and the effort

required for data collection should be carefully

evaluated in accordance with the objectives and

scope of the predictive model.

The long-term goal of our research is the devel-

opment of a decision support system that enables

both students and educators to actively participate

in the development of a personalized education plan
taking into consideration the needs of the individual

student as well as the availability of resources to

provide the personalization.

References

1. Z. Pawlak,Rough sets: Theoretical aspects of reasoning about
data, Kluwer Academic Publishers, Norwell, MA, 1991.

2. Z. Pawlak,Rough set approach to knowledge-based decision

E. Gil-Herrera et al.1000

Table 9. Sensitivity and specificity values for varying threshold
values

Point # Sensitivity Specificity Threshold(t)

1 0.88 0.500 0.330
2 0.88 0.525 0.380
3 0.84 0.525 0.400
4 0.76 0.675 0.416
5 0.68 0.675 0.500

Table 10.ConfusionMatrix using t=0.416. The smaller threshold
value results in higher sensitivity and lower specificity values.
Compared to Table 7, 2 more students have been correctly
identified as failing

Predicted

Failing Passing Undefined

Actual
Failing 19 6 1
Passing 13 27 3

Sensitivity: 0.76, Specificity: 0.675, AUC: 0.8

Table 11.ConfusionMatrix using t=0.38. Compared to Table 10
more students have been correctly identified as failing while 6
students have been incorrectly identified as not passing the course

Predicted

Failing Passing Undefined

Actual
Failing 22 3 1
Passing 19 21 3

Sensitivity: 0.88, Specificity: 0.525, AUC: 0.8



support, European Journal of Operational Research, 99(1),
1997, pp. 48–57.

3. G. J.Klir andB.Yuan,Fuzzy sets and fuzzy logic: Theory and
Applications, Prentice Hall PTR, New Jersey, 1995.

4. S. Glenn, A mathematical theory of evidence, Princeton
University Press, New Jersey, 1976.

5. L. M. Tho, Self-efficacy and Student Performance in an
Accounting Course, Journal of Financial Reporting and
Accounting, 4, 2006, pp. 129–146.

6. K. Eunhee, F. B. Newton, R. G. Downey and S. L. Benton,
Personal Factors Impacting College Student Success: Con-
structing College Learning Effectiveness Inventory (Clei),
College Student Journal, 44(1), 2010, pp. 112–125.

7. I. D. Cherney and R. R. Cooney, Predicting Student Perfor-
mance in a Statistics Course using The Mathematics and
Statistics Perception Scale (MPSP), Transactions of the
Nebraska Academy of Sciences and Affiliated Societies, 30,
2005, pp. 1–8.

8. V.Garcia, J.Alvarado, andA. Jimenez,PredictingAcademic
Achievement: Linear Regression versus Logistic Regression,
Psicothema, 12(2), 2000, pp. 248–252.

9. A. Luuk and K. Luuk, Predicting Students’ Academic
Performance in Aviation College from their Admission
Test Results, in European Association for Aviation Psychol-
ogy (EEAP), 2008.

10. C. M. Cornwell, D. B. Mustard and J. van Parys, HowDoes
the New SAT Predict Academic Achievement in College?,
Georgia Tech2008.

11. N. Carupatanapong, W. C. McCormick and K. L. Rascati,
Predicting Academic Performance of Pharmacy Students:
Demographic Comparisons, American Journal of Pharmacy
Education, 58(3), 1994, pp. 262–268.

12. S. D. Ridgell and J. W. Lounsbury, Predicting Academic
Success: General Intelligence, ‘‘Big Five’’ Personality Traits,
And Work Drive, College Student Journal, 38(4), 2004,
pp. 607–618.

13. M. A. Geiger and E. A. Cooper, Predicting Academic
Performance: The Impact of Expectancy and Needs Theory,
The Journal of Experimental Education, 63(3), 1995, pp. 251–
262.

14. M. Potgieter,M.Ackermann, and L. Fletcher, Inaccuracy of
Self-Evaluation as Additional Variable for Prediction of
Students at Risk of Failing First-Year Chemistry, Chemistry
Education Research and Practice, 11(17–24), 2010.

15. B. Friedman and R. Mandel, The Prediction of College
Student Academic Performance and Retention: Application
of Expectancy andGoal Setting Theories, Journal of College
Student Retention: Research, Theory and Practice, 11(2),
2009, pp. 227–246.

16. H.Guruler, A. Istanbullu andM.Karahasan,A new student
performance analysing system using knowledge discovery in
higher educational databases,Computers &Education, 55(1),
2010, pp. 247–254.

17. G. Mendez, T. Buskirk, S. Lohr, and S. Haag, Factors
associated with persistence in science and engineering ma-
jors: An exploratory study using classification trees and
random forests, Journal of Engineering Education, 97(1),
2008, p. 57.

18. P. Ramasubramanian, V. Suresnkumar, P. Iyakutti and P.
Thangavelu,MiningAnalysis of SISDatabase UsingRough
Set Theory, in IEEE International Conference on Computa-

tional Intelligence andMultimediaApplications, 2008, pp. 81–
87.

19. A. Salazar, J.Gosalbez, I. Bosch,R.Miralles andL.Vergara,
A case study of knowledge discovery on academic achieve-
ment, student desertion and student retention, in IEEE
International Conference on Information Technology: Re-
search and Education, 2005, pp. 150–154.
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