
Assessment Technique to Encourage Cooperative Learning

in a Computer Programming Course*

MIGUEL AREVALILLO-HERRÁEZ and JOSÉ M. CLAVER
Computing Department, University of Valencia, Spain, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain.

E-mail: {miguel.arevalillo,jclaver}@uv.es

Cooperative learning has been reported to produce greater student achievement than other traditional learning

methodologies. However, difficulties are usually found with plagiarism and with achieving the equal commitment of all

members. In this paper, we propose a teachingmethodology that aims at avoiding plagiarism, promoting cooperation and

encouraging participation of groupmembers. To this end, a number of collaborative tasks are set using a typical Problem

Based Learning (PBL) approach. Instead of evaluating student performance by means of a typical report (or portfolio),

students are assessed by means of a written test, composed of questions that are closely related to the collaborative task.

Furthermore, student grades are made dependent on the individual grades obtained by all other members in the group. In

this way, students are encouraged to help each other, and their level of commitment is increased. This technique has been

applied to a group of 46 students taking the ‘Programming Languages’ module, a third level module of the Degree in

Computing at the University of Valencia (Spain). Results have shown a significant improvement in student performance.

Moreover, individual questionnaires have provided evidence that students prefer this technique to other more conven-

tional teaching methods.

Keywords: collaborative learning; active learning; problem based learning; plagiarism

1. Introduction

Active learning is generally defined as any instruc-

tional method that engages students in meaningful

learning activities [1]. In this context, active learning

activities refer to those that involve students in

doing things, and thinking about what they are

doing. A typical active learning strategy is Pro-

blem-Based Learning (PBL), an instructional

method where relevant problems are introduced at
the beginning of the instruction cycle, and used to

provide the context and motivation for the learning

that follows [2]. Although it is not necessary, PBL is

often combined with cooperative learning, a struc-

tured form of group work where students pursue

common goals while being assessed individually [3].

Despite the benefits of using cooperative strate-

gies in computer assignments, these need to be
carefully designed so that collaboration is inte-

grated into assignments and assessments [4]. In

addition, the following five components should be

included: individual accountability, mutual positive

interdependence, face-to-face promotive interac-

tion, appropriate practice of interpersonal skills,

and regular self-assessment of team functioning

[5]. Apart from this, specific mechanisms are re-
quired to deal with plagiarism and the presence of

uncooperative members that hinder the work of the

rest of the team. In this paper, we present an

integrated teaching and assessment method applied

in a computer programming course module, one

which inherently contributes to avoiding both of

these problems.
Previous proposals in this direction have mainly

focused on evaluation strategies that consider the

individual’s contribution to group projects as a

means of enhancing the participation of group

members in cooperative work, for example, [6, 7].

Relative evaluation has also been common, despite

the negative effects on student interaction, which

can become an obstacle to cooperative learning [8].
Conferences and books devoted entirely to plagi-

arism denote an increasing concern about this topic,

and two major schools of thought can easily be

identified. The first is based on detection, while the

other relies on prevention.

On the detection side, research has mainly focus

on the design, provision and usage of Plagiarism

Detection Software/Services (PDS). This may focus
on detected cut and pasted text from known sources

of information (including the Internet) [9]; or be

designed to detect more complex forms of plagiar-

ism (such as programming code). Examples in this

last category are [10, 11]. A review of existing PDS

can be found in, for example, [12], and a very recent

investigation about the limitations of current PDS is

provided in [13], including proposals for using
various existing technologies to tackle them in

future systems.

On the prevention side, two major approaches

have been adopted. On the one hand, a period of

academic apprenticeship has been proposed as a

* Accepted 10 March 2011. 867

International Journal of Engineering Education Vol. 27, No. 4, pp. 867–874, 2011 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2011 TEMPUS Publications.

means of decreasing plagiarism. For example, the

use of an anti-plagiarism tutorial has been shown to

reduce the likelihood of plagiarism [14] substan-

tially, and Bolin [15] proposes spending more time

and effort on teaching students accepted definitions

of plagiarism and how to work within the conven-
tions of academic writing before resorting to detec-

tion when suspicious writing warrants it. On the

other hand, some authors (for example [16]) defend

the use of course design and assessment as instru-

ments to deter plagiarism. Setting assignments that

require that students think critically and make use

of their reasoning skills is one such strategy that has

been defended by several authors (for example [17,
18]).

The technique presented in this paper can be

classified in this last group of strategies. However,

instead of asking students to think critically, the

evaluation of the collaborative tasks has been re-

placed by a written test composed of questions that

are closely related to the work performed. Then,

individual grades take into consideration the grades
obtained by all othermembers whowere involved in

the collaborative task. Although the strategy is

presented in the context of a third year module of

a Computing degree, it can easily be extended and

applied in courses in other levels and degrees, as

long as the collaborative tasks can be evaluated by a

written examination.

2. The module

‘Programming Languages’ is a compulsory course

module delivered at the third level of the degree in

Computing at the University of Valencia (Spain).

This is a two-semester course that presents some of

the major programming paradigms. The module is
composed of a total of 90 contact hours, which are

delivered over 30 weeks (at a rate of 15 weeks per

semester). Fromweek1, students receive a two-hour

lecture session per week. Laboratory sessions last

for 3 hours and take place once every two weeks,

starting at week 3 of each semester.

During the first semester, the subject focuses on

object-oriented programming, generic program-
ming, event-based programming and concurrent

programming; Java programming language is

used. The second semester deals with logic and

functional programming, and concepts are illu-

strated using PROLOG and LISP, respectively.

The objectives of this module are not limited to

teaching programming skills. On the contrary, a

number of important concepts that require a stu-
dent to change his or her way of thinking are taught.

In this respect, this module is especially suitable for

the implementation of collaborative learning stra-

tegies. In general, programming solutions are not

unique, and this type of environment allows stu-

dents to explore alternative problem solutions

through discussion. This helps to clarify ideas, and

contributes to the development of critical thinking

skills. As an additional benefit, this style of learning

benefits the improvement of other more general
competencies, such as team work, social interaction

and communication skills.

3. The teaching method

In previous years, major efforts have been made to

incorporate PBL and cooperative learning strate-

gies into the course. Unfortunately, many of the

attempts have not achieved the success expected,

mainly because of plagiarism and the presence of

shirkers. During the academic year 2008–9, a teach-
ing method that placed special emphasis on these

two issues was designed and successfully applied.

In this section, the teaching strategy is described

in detail. To allow for a comprehensive evaluation

of the method, it was applied only during the first

semester. In this way, comparative analyses both

between the two semesters, and with the previous

academic year, were made possible.
The teaching method consists of a series of itera-

tions of the loop shown in Fig. 1. The contents

delivered in the first semester have been divided into

four learning units, namely: principles of object

oriented programming; UML notation; exceptions

and event-based programming; and concurrent

programming. Each of these units is first introduced

during the lecture sessions, and the main concepts

M. Arevalillo-Herráez and J. M. Claver868

Fig. 1. Iterative teaching method.

are practised through a number of in-class indivi-

dual and group-based exercises. Then students are

required to work cooperatively on some further

activities aimed at gaining a more in-depth under-

standing of the learning unit. To close the loop, the

student knowledge on the unit is evaluated indivi-
dually. In order to encourage cooperation, the grade

of a student in a learning unit depends on the grades

obtained by all the other members of the same

group. Further details about each loop stage are

provided below.

3.1 Knowledge acquisition

This task is mainly related to the first three levels of

Bloom’s taxonomy (knowledge, comprehension

and application) [19]. A series of lectures and in-

dividual and group exercises are performed at the

first stage of the learning loop. These aim at provid-

ing an understanding of the basics of each learning

unit. To achieve a clear alignment between learning

objectives and the last stage of the loop (assess-
ment), the first lecture activity consists of stating the

learning objectives for the unit, in a form that

facilitates self-assessment by reflective thinking

[20]. Then, lectures are combined with in-class ex-

ercises that students have to hand in.Although these

exercises are not used for grading purposes, they are

corrected and used as a form of formative assess-

ment to aid learning. Their purpose is two-fold: to
provide feedback on the student’s work, and to

allow the lecturer to monitor student learning bet-

ter.

As an example, in the UML learning unit, the

basics of the notation are introduced in class, inter-

spersing the explanations with some simple exer-

cises that students have to resolve in teams and hand

back to the lecturer. To avoid the effort of correcting
these exercises on an individual basis, these are

resolved in class (with the active participation of

the students, for example stimulating discussion or

taking a student to the board). As such, the solu-

tions handed in by students are used to detect

possible misunderstandings and as a non-intrusive

method of attendance control.

3.2 Active experimentation

Programming is a skill that requires practice, and

thus this should have a major role in the delivery of

the module. Once the foundations of the learning

unit have been acquired, an active experimentation

phase takes place.

This stage is composed of two main activities in

which studentswork in teams of three to practise the
concepts that they have learned during the previous

stage. Both activities aim at covering the last two

levels of Bloom’s taxonomy (synthesis and evalua-

tion) and promoting self-learning.

In a first activity, an exercise bulletin is handed to

the students. These have been carefully structured in

two parts and are designed to help knowledge

building. Part A covers the fourth level of Bloom’s

taxonomy (analysis). Students are asked, for exam-

ple, to examine pieces of code and predict the out-
put. To encourage discussion and critical thinking,

it is suggested that students do this task individually,

discuss the results within the group and then execute

the code on themachine to verify the results. In Part

B, a series of programming tasks that require some

further research on concepts not seen in class are

requested. These are usually designed so that they

admit multiple solutions, again in order to encou-
rage cooperation and critical and creative thinking.

To establish a clear relation between the activities

and the learning objectives initially established for

the unit, each exercise/task in the bulletin is expli-

citly related to one or more learning objectives.

The second activity comprises the laboratory

sessions, for which a problem-based learning ap-

proach has been adopted. PBL is defined as a
process of teaching that uses concrete problems to

motivate students, and that focuses on student

centred activities [21]. It has been widely used in

the design of computing curricula (see, for example,

[22]). In this case, students are given a problem that

they have to analyse outside the class, commonly

using some of the research concepts that they have

worked on in Part B of the exercises bulletin.
In the case of the UML learning unit, Part A of

the bulletin asks the student to produce skeleton

codes from given UML diagrams and vice versa.

The objective of these exercises is to establish a clear

relation between the contents learned in this and the

previous learning unit (principles of object oriented

programming). Part B contains two types of exer-

cises. In the first exercises, students are given pairs of
UML diagrams and problem specifications, and

they are requested to reflect a number of specifica-

tion changes in the corresponding UML diagrams.

The second type of exercises consists of producing

UML diagrams for relatively simple specifications.

The laboratory session consists of a single more

complicated exercise. Amore complex specification

is given, and students are requested first to produce
the correspondingUMLdiagrams, and then to code

the specification in Java, according to the UML

produced. In all the exercises, the solutions to the

problems are not unique, and students should be

able to evaluate the most appropriate one. This

encourages discussion andhigh-level thinking skills.

3.3 Assessment

Simply working in groups does not imply a form of

cooperative learning. For cooperative learning to

exist, it is necessary that students work together to

Technique to Encourage Cooperative Learning in Programming Course 869

accomplish shared goals and maximize everyone’s

learning [23].

In the design of the assessment strategy for this

course, a continuous evaluation approach has been

adopted, and a special emphasis has been placed on

facilitating self-assessment and encouraging coop-
erative learning.

Regarding self assessment, the objectives that are

specified for each learning unit can easily be used as

a checklist. In addition, once students have com-

pleted the laboratory sessions, a self-assessment

working sheet with tentative exam questions (to be

solved either individually or in teams) is handed to

them, along with sample answers. This document
helps the students to understand and recognize the

desired standards, and it constitutes another form

of formative assessment.

To encourage students to help each other and set

a common goal, the final grade is composed of an

individual and a team component. To close the

learning loop, students have to take a final indivi-

dual test for each learning unit. This test aims to
measure the student’s individual progress with re-

ference to the stated learning objectives; it employs a

format that is consistent with the course activities

performed. Students have to take four such tests

during the semester (one per learning unit), and the

final grade is obtained from the average of the scores

achieved at each one of them. However, each of

these scores is influenced by the geometric average
of those obtained by each member of the team. In

particular, the individual score for each examina-

tion is averaged with the geometric average of the

grades obtained by all team members. With this

scheme, low grades strongly penalize the rest of the

team members, and individual accountability is

reinforced.

Although this may seem too strict, exam ques-
tions are set so that they are closely related to the

analysis, synthesis and evaluation activities per-

formed during the previous stages. In general,

most questions in the examination are variations

of some that appeared in the bulletins (in the case of

UML, exercises that appeared in the bulletin, with

sufficient modifications so that memorizing the

answer is not sufficient to resolve the questions
adequately). This makes it extremely rare that a

student who has performed his or her work follow-

ing the suggested guidelines obtains a low grade. At

the same time, studentswhohave not participated in

the researchwork involved in the groupassignments

are likely to fail at these questions. This encourages

post-discussion sessions to facilitate an explanation

of the results among team members, which are
useful even though some teamsmay decide to divide

the work between their members. This favours

learning by explaining, an approach for which there

is solid evidence that it is a powerful learning

method, leading to a deeper understanding when

learning new material [24, 25].

In general, this assessment strategy establishes a

common goal for the team, and enables student

collaboration. On the one hand, weak students
become morally obliged to make an effort, so that

the grades of other teammembers are not negatively

affected. On the other hand, they feel supported by

the rest of the teammembers who are also interested

in pulling their own grades up. Moreover, it forces

teams to adopt a stronger position against shirkers.

In many cases, members of a teammight have to do

an extra amount of work to compensate for the
presence of a shirker. However, this assessment

strategy causes shirkers to be rejected by other

teammembers. To encourage this attitude, students

were informed that conflicts and non-contributing

members should be reported before the test date,

otherwise the entire teamwould be obliged to accept

the consequences of the impact on his or her low

grade.
To increase the student’s commitment to the

group, they are allowed to group themselves as

desired. Although most collaborative work re-

searchers advocate random assignment, for exam-

ple, [23], in this case an existing social relationship

may constitute an extrinsicmotivation thatworks in

favour of the strategy.

3.4 Planning

A more detailed sequence of the teaching and

learning activities involved at each learning unit is

illustrated in Fig. 2. In this figure, each activity is

also related to the most active levels of thinking in
Bloom’s taxonomy.

To be able to coordinate the activities in the

loops, they have been organized in such a way that

the collaborative work and the out-of-the-class

activities for a learning unit are performed at the

same time as the in-class activities that correspond

to the next learning unit.

4. Results

In this section, two types of results obtainedwith the

methodology presented in this paper are discussed,

both referring to a group of 46 students taking the

module described in Section 2.

First, the students’ grades are compared with

those obtained by the same students in the second

semester (without using cooperative learning stra-
tegies) and to those obtained by the previous year’s

students in the same semester. Second, the results of

a questionnaire filled out by students are also pre-

sented.

M. Arevalillo-Herráez and J. M. Claver870

4.1 Student grades

An ideal comparison of different learning methods

would involve a study of the results obtained by the
same students on the same contents using each of

the methods. However, the inherent difficulties of

this approach make it impossible to implement in

practice.

Instead we have used this learningmethod during

the first semester and compared the results obtained

by the students against the following:

1. The results obtained by students attending the
course module during the previous year. In this

case, the contents are the same but the students

are different (except for students re-taking the

course).

2. The results obtained by the same students dur-

ing the second semester. In this case, the stu-

dents are the samebut the contents are different.

Figure 3(a) shows the student dropout rates at

each semester. It can be seen that the use of the

Technique to Encourage Cooperative Learning in Programming Course 871

Fig. 2. Learning loop and relation with levels of thinking in Bloom’s taxonomy.

Fig. 3. (a) Student dropout rates as a percentage of the students enrolled at each semester. (b) Percentage of students
who completed the module successfully (before re-sit examinations).

integrated learning strategy presented has had a

large impact on this variable, leading to a significant

reduction. Figure 3(b) also shows that the number

of students who successfully completed the module

has also increased (student dropouts have been

excluded in the calculation of the percentages).
Another important result is related to the final

grades obtainedby the same students during thefirst

and second semesters. In Fig. 4, a dispersion graph

of these grades is presented to study possible corre-

lations visually (these are specified according to the

Spanish educational system, on a scale of 0 to 10, 5

being the minimum pass grade). Only grades of

students who did not drop any of the semesters

have been plotted. Surprisingly, not much correla-

tion is observed. Some students who obtained a

good grade during the first semester did not perform

that well during the second (and vice versa). The

bottom-right quadrant of this figure is especially

telling in this respect, illustrating a significant num-
ber of students who passed the first semester but

struggled during the second semester of the course.

This effect may in part be produced by the students’

preferred learning style, supporting existing the-

ories that assert that this has a significant effect in

their performance [26, 27].

With reference to the distribution of grades, Fig. 5

shows a histogram of grades for the first and second
semesters.Nograde adjustment has beenperformed

in either case. As can be seen, first semester grades

adjust quite well to a normal distribution. This is the

natural effect of averaging a large number of partial

scores, and inherits the advantages of bell-curve

grading (differences in test difficulty are compen-

sated), but not some of the important drawbacks (in

this case, grades are not referenced to the perfor-
mance of the rest of the students in the class).

It is also worth noting that student grades of

members who belong to the same team were homo-

geneous inmost cases. In fact, significant differences

were only found in two groups. They both decided

to communicate the problem after the test for the

first learning unit, and ad hoc solutions were

adopted in these cases, reallocating team members.
To facilitate the integration of rejected students into

another team, teams accepting the student were

given a bonus. This had validity for a single learning

unit, and consisted of considering the grade of the

new member only if it was above the average of the

grades obtained by all other members in the team.

4.2 Student questionnaire

To derive useful information about the student

perception of the methodology, they were ask to

fill out an anonymous questionnaire, composed of a
series of statements that they had to evaluate on a

scale of 1 to 5, with 1 meaning complete disagree-

ment and 5 full agreement with the statement.

The questionnaire was organized into five major

sections, as presented below:

Exercise Bulletins:

1. The bulletins help me to prepare the tests for

the learning units.

2. I consider that bulletin and exam contents are

closely related.
3. Bulletins help me to keep the module up to

date.

4. In general, I think that bulletins are a good

idea.

M. Arevalillo-Herráez and J. M. Claver872

Fig. 4. Dispersion graph of grades obtained in
second semester vs. grades obtained in first seme-
ster.

Fig. 5.Grades histogram for (a) first semester and
(b) second semester.

Student Effort:

5. The assessment method used in this module

increments the amount of individual effort.

6. In general, I consider that the workload for the

module is appropriate.

Team Work:

7. I prefer working in groups rather than indivi-

dually.

8. The fact that my grade influences other team

members’ grades has increased my level of

commitment to the group.

9. I think that the inclusion of cooperative work

in the module has been positive, and that it is a
learning method which should be used more

intensively during the degree.

Assessment:

10. All questions in the tests were included in the

learning objectives for the learning units.

11. By using this assessment system, it is clearer

what I have to do to pass the module.

Teaching Method:

12. I consider that lectures and bulletins are well
coordinated and that they aid comprehension

of the concepts.

13. I think that I learnmore and better by using this

teaching methodology.

14. In general, I think that the teaching methodol-

ogy that has been used in this module is ade-

quate.

In addition, students were asked about the number

of hours that they dedicated to the module (per

week), the number of times that they attended

personalized tutorial sessions and the average dura-

tion of these sessions.
A total of 31 questionnaires were processed.

Table 1 shows the average score and corresponding

standard deviations for each statement in the ques-

tionnaire. Table 2 shows the samedata for questions

requiring a numerical answer.

These results show that students value highly

both the assessment methodology and the teaching

method used in this module; questions relating to

these aspects all scored above 4. Questions that

relate to learning objectives, exercise bulletins and
exam questions (Q1, Q2 and Q10) have also ob-

tained high scores.

Another important result concerns question 6,

which received the lowest score overall. Although

the average score in this question indicates a degree

of disagreement, the number of hours of indepen-

dent effort indicated by the students exactlymatches

the equivalent amount of ECTS credits (counting
each credit as 30 hours of independent effort). This

implies relevant differences between academic

guidelines and the student’s perception of the

amount of effort that they should dedicate to each

module.

Each student attended an average of 2.25 perso-

nalized tutorial sessions and each session had an

average duration of 42 minutes. This implies that
each student has benefited from, on average, one

and a half hours of individual attention during the

semester. This has been possible because of the

relatively low number of students on the course.

5. Conclusions

Results from this work suggest that preventing may
be more effective than detecting at dealing with the

problem of plagiarism. Although detection is an

important issue, the use of carefully designed teach-

ing methodologies and assessment strategies may

make it unnecessary. In particular, assessment tech-

niques that indirectly reward individual contribu-

tions and naturally avoid plagiarism constitute an

interesting alternative to others that simply control
and punish plagiarism. Furthermore, students’ opi-

nions on the methodology reported in this paper

indicate an additional positive side effect of this type

of strategy, producing an increase in student satis-

faction and a decrease of student dropout rates.

In addition,meaningful collaboration can also be

easily encouraged by making individual grades

dependent on the grades obtained by the rest of
the team members. This type of strategy also yields

some additional desirable effects such as the

achievement of a moral commitment, the establish-

ment of a common goal that benefits cooperative

Technique to Encourage Cooperative Learning in Programming Course 873

Table 1. Average score for each statement in the questionnaire

Exercise bulletin Student effort Team work Assessment Teaching method

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Average 4.55 4.65 4.39 3.94 4.13 3.58 3.94 4.03 3.84 4.42 4.52 4.03 4.23 4.29
Std dev. 0.89 0.55 0.72 1.09 0.67 0.96 1.15 0.84 1.07 0.67 0.63 0.75 0.96 0.90

Table 2. Numerical answers in questionnaire

Average Std dev.

Number of hours of independent effort 4.00 1.52
Number of times attending tutorials 2.25 2.04
Average time per tutorial (minutes) 42 23

learning and the encouragement of students to learn

from one another.

Acknowledgements—The authors would like to thank the Euro-
peanConvergence office at the University of Valencia (Spain) for
the funding provided through Projects DocenTIC and Finestra
Oberta 08/DT/04/2009, 18/DT/05/2010 and 47/FO/35/2010.

References

1. C. C. Bonwell and J. Eison, Active Learning: Creating
Excitement in theClassroom.ASHE-ERICHigher Education
Report No. 1, George Washington University, Washington,
DC, Tech. Rep., 1991.

2. M. Prince, Does active learning work? A review of the
research, Journal of Engineering Education, 93(3), 2004,
pp. 223–231.

3. P. Feden and R. Vogel, Methods of Teaching: Applying
Cognitive Science to Promote Student Learning, McGraw
Hill Higher Education, 2003.

4. S. J. Swan, K. and S. R. Hiltz, Assessment and collaboration
in online learning, Journal of Asynchronous Learning Net-
works, 10(1), 2006, pp. 45–62.

5. D. Johnson, R. Johnson and K. Smith, Active Learning:
Cooperation in the College Classroom, 2nd edn, Interaction
Book Co., Edina, MN, 2006.

6. R. Conway, D. Kember, A. Sivan and M. Wu, Peer assess-
ment of an individual’s contribution to a group project,
Assessment and Evaluation in Higher Education, 18(1),
1993, pp. 45–54.

7. S. Divaharan, An attempt to enhance the quality of coop-
erative learning through peer assessment, Journal of Educa-
tional Enquiry, 3(2), 2002, pp. 72–83.

8. E. Tatar and M. Oktay, Relative evaluation system as an
obstacle to cooperative learning: the views of lecturers in a
science education department, International Journal of En-
vironmental & Science Education, 3(2), 2008, pp. 67–73.

9. M. Donnelly, R. Ingalis, T.A. Morse, J. Castner and A.M.
Stockdell-Giesler, (Mis)trusting technology that polices in-
tegrity: A critical assessment of Turnitin.com, Inventio, 1(8),
2006.

10. J. McCart and J. Jarman, A technological tool to detect
plagiarized projects in Microsoft Access, IEEE Transactions
on Education, 51(2), 2008, pp. 166–173.

11. F. Rosales, A. Garcia, S. Rodriguez, J. Pedraza, R. Mendez
and M. Nieto, Detection of plagiarism in programming
assignments, IEEE Transactions on Education, 51(2), 2008,
pp. 174–183.

12. B. Scaife, IT consultancy plagiarism detection software
report for JISC Advisory Service, NCC Group plc., Man-
chester, 2007.

13. M. Mozgovoy, T. Kakkonen and G. Cosma, Automatic
student plagiarism detection: future perspectives. Journal
of Educational Computing Research, 43(4), 2010, pp. 507–
527.

14. T. S.Dee andB.A. Jacob,Rational ignorance in education: a
field experiment in student plagiarism (Technical Report),
National Bureau of EconomicResearch, ERWorking Paper
Series, Vol. w15672, January 2010.

15. B. Bolin, Addressing plagiarism with stasis theory, currents
in teaching and learning, 2(2), 2010, pp. 13–21

16. J. Carroll, A Handbook for Deterring Plagiarism in Higher
Education, 2nd edn, Oxford Centre for Staff and Learning
Development, Oxford Brookes University, 2007

17. M. R. Olt, A new design on plagiarism: Developing an
instructional design model to deter plagiarism in online
courses, Ph.D. thesis, Dissertation Abstracts International,
68(09), 2007

18. M.Hamalainen,Useful tips on avoiding plagiarism, Library
Media Connection, 25(6), 2007, pp. 40–41.

19. B. S. Bloom, Taxonomy of Educational Objectives, Allyn and
Bacon, Boston, MA, 1984.

20. M. Huyck, D. Ferguson,M. Cama and E. Howard,Work in
progress—evaluating the impact of reflective thinking on
learning objectives in undergraduate multidisciplinary pro-
ject teams, 37th Annual Frontiers In Education Conference—
Global Engineering: Knowledge Without Borders, Opportu-
nities Without Passports, 2007 (FIE ‘07), October 2007,
pp. F4C–26–F4C–27.

21. N.Hoic-Bozic, V.Mornar and I. Boticki, A blended learning
approach to course design and implementation, IEEETrans-
actions on Education, 52(1), 2009, pp. 19–30.

22. N. Linge and D. Parsons, Problem-based learning as an
effective tool for teaching computer network design, IEEE
Transactions on Education, 49(1), 2006, pp. 5–10.

23. D. Johnson and F. Johnson, Joining Together. Group Theory
and Group Skills, 10th edn, Pearson, New Jersey, 2009.

24. E. B. Coleman, A. L. Brown and I. D. Rivkin, The effect of
instructional explanations on learning from scientific texts.
Available at http://www.jstor.org/stable/1466776.

25. J. Holmes, Designing agents to support learning by explain-
ing, Computers and Education, 48(4), 2007, pp. 523–547.

26. R. Dunn and K. Dunn, Teaching Students Through their
Individual Learning Styles: A Practical Approach. Reston
Publishing Company, Reston, VA, 1978.

27. M. Sprenger, Differentiation Through Learning Styles and
Memory, 2nd edn, Corwin Press, ThousandOaks, CA, 2008.

Miguel Arevalillo-Herráez received his first degree in computing from the TechnicalUniversity of Valencia, Spain, in 1993;

his BSc in Computing from Liverpool JohnMoores University, UK, in 1994; and his PgCert in Teaching and Learning in

Higher Education and Ph.D. in 1997, both also from Liverpool JohnMoores University, UK. He was a senior lecturer at

this institution until 1999. He then left to work for private industry for a one year period, and came back to the academy in

2000. He was the programme leader for the computing and business degrees at the Mediterranean University of Science

and Technology until 2006. Since then, he has lectured at the University of Valencia (Spain), delivering programming and

networking modules. His research now concentrates on education and applied artificial intelligence.

José M. Claver received his M.Sc. in physics from the University of Valencia, Burjassot, Spain, in 1984, and his Ph.D. in

computer science from theTechnicalUniversity ofValencia, Spain, in 1998. From1985 to 1990 hewaswith the Electronics

and Computer Architecture Department, University of Castilla-LaMancha, Albacete, Spain. From 1991 to 2008, he was

with the Department of Computer Science, Jaume I University, Castellón, Spain. Since 2007, he has been an Associate

Professor at the Computing department of the University of Valencia. He has taught undergraduate courses on computer

architecture and embedded systems and graduate courses on high-speed networks, advanced computer architecture, and

parallel computing. His research interests include education, computer architecture, parallel computing, high-speed QoS

networks, network protocols, embedded systems, and reconfigurable computing. He is the author or co-author of more

than forty research publications on these subjects.

M. Arevalillo-Herráez and J. M. Claver874

