Int. J. Engng Ed. Vol. 24, No. 4, pp. 717-728, 2008
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2008 TEMPUS Publications.

Teaching GoF Design Patterns through
Refactoring and Role-Play*

GUILLERMO JIMENEZ-DIAZ, MERCEDES GOMEZ-ALBARRAN and

PEDRO A. GONZALEZ-CALERO

Dept. de Ingenieria del Software e Inteligencia Artificial, Universidad Complutense de Madrid, C| Prof.
José Garcia Santesmases sin. 28040. Madrid, Spain. E-mail: gjimenez@fdi.ucm.es

In order to fully understand the implications of object-oriented design patterns, students need to
consider alternative designs to a problem and to analyse these solutions in terms of coupling,
cohesion and extensibility. Lecture-based approaches to teaching design patterns do not provide
students with the insights needed unless they already have experience in object-oriented design. In
this paper we present an approach to teaching design patterns that promotes active learning and
makes students participate in refactorings through role-play sessions. We describe two experiments
that demonstrate student acceptance and present promising results on the effectiveness of the

approach.

Keywords: pattern-directed refactoring; active learning; role-play; object-oriented design pat-

tern learning

INTRODUCTION

PROFESSIONAL SOFTWARE DEVELOPERS
address recurring design challenges every day. To
solve them, they resort to their own experience,
applying some variation of a solution that has
worked well in a similar situation in the past.
Some records of this professional knowledge
about software design have been abstracted and
named as design patterns. In industry, the use of
design patterns has a great impact on the way
software is developed. Through the years, they
have been widely used and applied to very different
kinds of software applications [l-4]. Design
patterns are created from these experiences and
they capture the essential parts of a software
design. They also provide a common design voca-
bulary for sharing design information among
developers [5].

Although there are many different types of soft-
ware patterns (procedural patterns, distributed
processing patterns, anti-patterns . . .) our interest
centres on the object-oriented design patterns
catalogued by Gamma, Helm, Johnson and Vlis-
sides, called the Gang of Four (GoF) design
patterns [6], which are an indispensable body of
knowledge for any Computer Science or Software
Engineering student. An object-oriented design
pattern comprises: the pattern’s name; the prob-
lem, which defines the context where the pattern
can be applied; the abstract solution that the
pattern defines; and the consequences and draw-
backs of adopting the solution defined by the
pattern. The solution provided by an object-
oriented design pattern identifies the classes that

* Accepted 25 April 2008.

717

participate in the solution, their roles, responsibil-
ities and collaborations and how they interact to
distribute responsibility. The abstract solution is
often accompanied by an example of the pattern
implementation in a concrete programming
language.

Design patterns are also a learning aid for
novice developers, who learn skills and design
concepts that are independent from current tech-
nology and use good practices described in the
shared vocabulary of a professional development
team. In recent years, design patterns have become
so central to Computer Science and Software
Engineering curricula [7, 8] that several works
have advocated their use in introductory courses
in object-oriented programming [9-13]. Lecturing
is one traditional teaching style followed in order
to explain design patterns to the students. Our
experience teaching design patterns has revealed
that the lecture-based teaching approach, by itself
or combined with the use of isolated examples
(such as the ones in [6]) and study groups that
read about patterns and discuss their advantages
and disadvantages, is quite effective for graduate
students. These students have enough experience in
object-oriented design to appreciate the ideas
behind the patterns and to relate them to problems
previously faced.

However, the teaching approaches previously
mentioned are quite ineffective for an undergrad-
uate audience. These students lack the experience
needed to understand the subtleties and implica-
tions of the design ideas given by the patterns.
Undergraduate students tend to measure the
correctness of a program by evaluating its beha-
viour rather than the qualitative properties of its
design. They do not pay attention to some impor-

718 Guillermo Jiménez-Diaz et al.

tant aspects that determine the quality of a good
design, such as scalability, robustness to changes
or its degree of flexibility and extensibility [14].

Moreover, they do not feel confident with sket-
chy real world examples such as those described in
[6]. For example, they do not completely under-
stand either the TCP connection protocol
employed to motivate the State pattern, or the
line-breaking algorithms that motivate the Strategy
pattern. Undergraduate students simply assume
the design pattern as an obvious solution, without
reflecting on it and without analysing the advan-
tages it provides with regard to other alternatives.

The problems encountered when teaching
object-oriented design patterns to undergraduate
students can be summarized in the following two
main ideas: a simple example about how to imple-
ment a pattern is not enough to ease the compre-
hension of the pattern, and undergraduate students
do not have enough design experience to appreciate
the patterns. As stated in [15], the real problem
when learning design patterns is not only how to
implement them, but to understand the problem, to
decide which design pattern solves it and to know
which are the implications of applying this pattern,
in order to evaluate if another pattern fits better.

Despite the quantity of work in teaching design
patterns, this area still presents interesting peda-
gogical challenges to instructors. Evidence of that
fact is the workshop series “The Killer Examples
for Design Patterns and Object First’, which
have been held annually at the ACM SIGPLAN
International Conferences on Object-Oriented
Programming, Systems, Languages and Applica-
tions (OOPSLA) since 2002 [14]. Most research
works on teaching design patterns consider that
they are taught more effectively when they are
presented in real world case studies. A case study
is a complete software application that includes a
narrative explanation of its development process
and questions to engage students to analyse, judge
and evaluate different issues from its design [16]. A
wide diversity of case studies appear in design
pattern literature: the elevators of a building [17],
a maze [18], a musical composition project [19], a
computer game [20] or a presenter [14]. Other
works have even proposed the use of professional
object-oriented frameworks [21] as complex
generic software systems whose architecture can
be explained in terms of design patterns. We agree
with the use of real world case studies. However,
although a framework is generally an example of
good design ideas, we do not agree with the use of
object-oriented frameworks as initial case studies
when teaching novice students because of their
high complexity. For instance, even a framework
developed with pedagogical goals in mind such as
JHotDraw [22] consists of more than 180 classes,
where patterns are combined and a class intervenes
in different instantiations, playing different roles in
the same pattern, or in different patterns. We
postpone the use of frameworks until the students
have a basic knowledge of the patterns.

Apart from this, students learning design
patterns should feel the pain of a design which
has some pitfalls in order to appreciate the conve-
nience of applying a concrete design pattern [23].
We agree with [19] that design patterns are not
‘solutions in search of a problem’ like data struc-
tures. Instead, design patterns are a technique to
generate solutions in software design, so students
should experience their use in practice. For this
reason, we agree with those approaches that
promote a more active participation of the student
in the design of the case study, such as the teachlets
described in [24].

This article describes an innovative approach to
teaching design patterns to undergraduate students
which has been successfully applied throughout
several academic years at the Complutense Univer-
sity of Madrid (Spain). Our learning-by-doing
approach helps students not only to gain insight
into the how and the why of design patterns but,
more importantly, it helps students learn to apply
them. Following the axiom ‘Good design comes
from experience, and experience comes from bad
design’ [10], our students learn to use GoF design
patterns by collaboratively identifying pitfalls in
existing designs, analysing the potential alternatives
and their advantages and drawbacks, and achieving
a better solution by means of a pattern-directed
refactoring of the initial design. In order to promote
active learning [25, 26] and student participation,
the analysis and comprehension of alternative
designs are developed through role-play sessions.
Several authors have emphasized the importance of
identifying the roles that intervene in a design
pattern and their relationships and collaborations
in order to distribute responsibilities [9, 15]. There-
fore, in our approach each student performs the
role of an object within the case study in order to
understand better the collaborations among the
objects by simulating the execution of a use case.

The next section describes the pedagogical tools
used to teach design patterns when following the
pedagogical approach described in the section that
follows it. The section Experience reports illus-
trates the application of this teaching approach
during the last two years in our institution. This
section also contains the evaluation of the experi-
ence from two different points of view: the subjec-
tive evaluation from the students, and the
effectiveness evaluation according to the student
grades. This article concludes with a proposal of
future extensions of the approach according to the
conclusions extracted from the experience evalua-
tion.

TAKING A GLANCE AT THE
PEDAGOGICAL TOOLS USED

According to the principles and challenges of
our approach, in our classes we make use of two
pedagogical tools: pattern-directed refactoring
episodes and role-play sessions.

Teaching GoF Design Patterns through Refactoring and Role-Play 719

Refactoring episodes

Refactoring is a technique widely used in soft-
ware development communities for cleaning up
and improving software structure in an efficient
and controlled manner. A refactoring is a change
in the structure of software to make it easier to
understand and cheaper to modify without chan-
ging its observable behaviour [27].

Instead of applying primitive refactorings like
‘Rename method’ or ‘Move method” [27], we
propose that the students follow a pattern-directed
refactoring strategy to yield a better software
design. Some examples of pattern-directed refac-
torings appear in [28]. Some research works
describe the application of primitive refactoring
methods in introductory computer science courses
[29, 30] but we do not know about the application
of pattern refactorings with pedagogical purposes.

Presenting design patterns as a result of a
refactoring process is not only useful from a
pedagogical point of view, taking the student
from simple obvious solutions to more elaborated
ones, but is also in line with modern methodologies
for software engineering such as Extreme
Programming [31] and, in general, agile methodol-
ogies [32].

Instead of careful up-front design that intends to
foresee and facilitate future changes in a system,
agile methodologies propose incremental design
where sophisticated design patterns emerge in the
process of continuous refactoring as new function-
ality is implemented in the system.

When we give the students the ‘design pattern’-
hammer, we run the risk that every software
application looks like a nail. Instead of using
patterns in a design from scratch, we use a
pattern-directed refactoring strategy, which
provides the opportunity to apply design patterns
in order to enhance existing designs. This strategy,
when controlled by the instructor, alleviates the
students’ impulse to overuse design patterns and
lets the students realize that including unnecessary
sophistications in a design is a waste of time.

Role-play sessions

In order to notice the changes and improve-
ments better as a result of refactorings, as well as
the internals of the initial naive designs employed
in our classes, our students work collaboratively in
role-play sessions.

Role play [33] is a kind of active learning where
participants learn complex concepts—hard to
understand by means of abstract explanations—
while they simulate a scenario. In this scenario
each participant plays a predefined role. When
applied to object-oriented design, each actor in
the role-play session plays the role of an object.
The participants act out (part of) the software
application in a predefined list of execution scenar-
i0s. During the role-play, participants interact with
each other, learning from themselves, the other
participants and the roles played [34].

In our case, the instructor properly selects the set

of scenarios and CRC cards gather the informa-
tion about the classes involved.

CRC cards [35] are a technique widely used in
responsibility-driven design. A CRC card repre-
sents a Class and it contains information about
class Responsibilities and Collaborators. A
responsibility is what a class knows and what it
can do, i.e. the class’ properties and methods. A
collaborator is a class that helps carry out a
responsibility.

CRC cards provide valuable support for discuss-
ing and evaluating an object-oriented design in a
collaborative way. After creating the responsibil-
ities of each class solely, designers can make use of
the corresponding CRC cards when simulating
how classes interact to achieve a certain functional
requirement. This simulation forces participants to
evaluate a design solution and to discover alter-
natives to enhance it.

To conclude the presentation of the tools
supporting our role-play sessions, we refer to
role-play diagrams (RPDs), which the instructor
uses to track the role-play sessions. An RPD is a
semi-formal representation of a scenario execution
in an object-oriented application that captures
objects’ states [34]. The ability to track each
object state is essential in our approach because
we need to represent the initial values of the
attributes and how the values change throughout
the role-play simulation.

Instead of using CRC cards and RPDs, we could
employ the piece of source code that represents
the scenario execution performed in a role-play
session. We believe that students get distracted by
implementation details when employing source
code, while CRC cards and RPDs gather the essen-
tial information to follow a role-play simulation.

A HIGH-LEVEL DESCRIPTION OF THE
TEACHING APPROACH

In recent years we have taught courses on
object-oriented design patterns for undergraduate
Computer Science students. The high-level learn-
ing objectives in these courses are:

® understanding the notion of design pattern and
learning a subset of GoF design patterns [6];

® learning to apply patterns to solve real pro-
blems;

e understanding the consequences of applying a
certain design pattern.

The high-level course schema runs as follows:

® We first introduce the notion of object-oriented
design patterns, and background concepts such
as software reuse, coupling and cohesion.
® One or more iterations of the following process
is made:
® Providing the students with some background
into some GoF design patterns following a
lecture-based approach.

720 Guillermo Jiménez-Diaz et al.

e Making the students actively participate in
the task of iteratively improving the naive
design of a case study by means of applying
appropriate design patterns. This way stu-
dents:
® Jearn to identify evidences of bad designs.
These evidences are called code smells (a
hint that something has gone wrong some-
where in your code) [27];

® face a real design problem and appreciate
the potential of design patterns in real
contexts;

® become familiarized with the application
of design patterns, facilitating future
instantiations of them in different con-
texts; and

® discover the benefits and consequences of
applying a specific design pattern.

If few hours are available for the course, say up to
20 hours, just one iteration should be done where a
selection of patterns is first described and then put
into practice. In this case, the course should cover
the most representative patterns of each category
(creational, behavioural, and structural). As the
number of hours available increases, more itera-
tions can be done by grouping related patterns and
covering their theoretical implications in more
detail and putting them into play through role-
play sessions where different patterns are tried in
order to solve the same problem.

Regarding the methodology for the practical
collaborative design sessions, once the initial
naive design of the case study is presented at a
high level in the course, the instructor leads each
iteration in this pattern-directed refactoring strat-
egy, following the next steps:

1. Select a functional requirement. The instructor
selects a functional requirement to add to the
case study or an existing requirement to
improve.

2. Analyse the attempted solution (‘Before’
design). The instructor specifies several use
cases (also known as execution scenarios) and
students simulate them using the CRC cards
corresponding to the classes initially provided.
These role-play sessions help the students to
become familiarized with the design. The
instructor depicts each role-play simulation
using RPDs. These diagrams keep the students
from getting lost while they are performing a
role or watching the simulation. After the
simulations, although the classes seemed to be
appropriate to the proposed case study so far,
students realize that the new requirements force
them to revise the design in order to improve it.

3. Propose a new solution (‘After’ design). The
students are responsible for identifying and
applying a design pattern that can improve
the previous design. This refactoring consists
of selecting a design pattern and instantiating it
in the case study. In this context, instantiating a
design pattern means relating the classes and

methods within the ‘Before’ design to the roles
defined by the design pattern. Students can also
add new interfaces and classes or modify the
existing ones, if needed.

4. Analyse the ‘After’ design. Starting from the
new set of classes that result from applying the
design pattern, students again simulate the
execution scenarios. During these role-play ses-
sions, students can also detect additional mod-
ifications to the general pattern derived from
the case study. These simulations are employed
to confirm that the application of the design
pattern preserves the behaviour of the case
study and resolves the pitfalls encountered in
the ‘Before’ design. Once more RPDs serve to
track the simulations.

5. Reflect on the pattern. Finally, the students
compare the ‘After’ design and the ‘Before’
design in order to realize the benefits of apply-
ing the design pattern selected. The instructor
also stresses the consequences, benefits and
drawbacks of the pattern applied. If students
choose several patterns during the proposals
stage, the instructor and the students discuss
their application in the case study instead of the
one selected.

A sample session: introducing the Prototype
pattern

In this section we describe a session that follows
the teaching approach described above and lets
students learn to use the Prototype pattern, a
creational pattern that promotes the use of a
prototypical instance to create a kind of product
objects [6]. This pattern hides the different kinds of
products that the client who uses this object
knows. Furthermore, the type of products can be
changed at run-time simply by changing the proto-
typical instance employed to create the products.

To perform the refactoring and role-play
sessions, we have selected a simple drawing
editor as the discussion case study. The resulting
drawing editor will contain a set of creation tools
to generate predefined figures (rectangles, ellipses,
polygons . . .) and a selection tool to select, move
and resize them. We supply the students with an
initial version of the drawing editor classes. The
editor consists of the following sketchy classes

(Fig. 1(a)):

e Editor Window. It coordinates the application.

® ShapeButton. It serves to decide the type of
figure that the user creates.

® Drawing. It contains the figures created.

® Figure and its subclasses, FEIlipse and FRectan-
gle. They represent the type of figures that the
user can create in the editor.

The scenario description is the following:

The user wants to create a new figure in the drawing
editor. Figure creation is made in two steps. First the
user selects the type of figure by clicking one of the
buttons available in the toolbar (Rectangle button
and Ellipse button). In this scenario the user clicked

Teaching GoF Design Patterns through Refactoring and Role-Play

721

JButton has ActionListener drawingArea JPanel
ShapeButton (< — — — - EditorWindow MouseListener
MouseMotionListener
Figure cantains Drawing
| EllipseFigure | | RectangleFigure I
(a) Initial classes for the drawing editor.
: -
- = . .
- ShapeButton : EditorWindow
- ~
E LR TYPE E Drawing drawingArea Drawing
= ot getShapeaType() E sctonPerformed{ictonEvent) ?'h':”::ff"m ‘.
3)
Figure : >
~ Drawing
Rectangle displayBox z
draw(Graphics o) S Do tais Fgire
changeDisplayBex(Point 3, oint p2) = I G it MoscaEvere
Rectangle g 0 = InsartFigure(Figure f)
paintComponent{Graphics g}

Collaboratars
Responsibilities

AR R RN NN RN RN

lumMiMﬂJ
Java.awt. Foint

(b) CRC cards of the initial classes.

Fig. 1. ‘Before’ design: The documentation provided to perform the initial role-play session.

on the Ellipse Figure button. Then, the user clicks on
the canvas and the application creates an ellipse,
whose display box has the upper left corner of the
mouse cursor’s position. The first mouse click is
received by the EditorWindow class through the
message ActionPerformed while the second click is
sent to the MousePressed responsibility of the Draw-
ing class.

Figure 2 shows a simple sample of the scenario.

The content of the classes is reflected onto CRC
cards, as we can see in Fig. 1(b). Using these
classes, the students should simulate the following
scenarios:

® What happens when the user pushes the button
to select the type of figure.

KO

[7] untitied

4| 1

Ellipse Tool

Fig. 2. Intended behaviour for the scenario.

e How to create the figure after the user has
selected the Rectangle figure button.

® How to create the figure after the user has
selected the Ellipse figure button.

The main goal of the first scenario is to understand
that each tool button contains the type of figure
that will be created later and to see how the type is
propagated from the ShapeButton class to the
Drawing class. The second and the third scenario
are more important because the students will
understand how to use the type stored in the
Drawing class to create the suitable figure.

For example, we start the second scenario with
the RECTANGLE_TYPE value stored in the
instance of the Drawing class. When instructor
invokes the MousePressed method with a para-
meter called oEvent (which contains coordinates
where the user has clicked on the canvas), the
participant responsible for performing the role of
a Drawing object explores its responsibilities in
order to create the figure. First, he or she looks
up its activeShape responsibility. If it contains
the RECTANGLE_TYPE, they will create an
instance of the RectangleFigure class. Then they
will request the oEvent parameter for the point
where the user has clicked. Once the Drawing
object has this information, they delegate on the
RectangleFigure participant to change its display
box using the responsibility changeDisplayBox.
Once the Figure has updated the display box and

722 Guillermo Jiménez-Diaz et al.

4: insertFigure(aFigure

oEditorWindow

3: changeDisplayBox(aPoint, w, h)¥

oShapeButton

0: mousePressed(oEvent2)
2: getPoint —»

oEvent2
P R—

2: aPoint
v 1: (new FEllipse)

oFigure

Fig. 3. RPD created during the role-play session after the last use case.

Client Prototype
prototype

+operationvoid +Clone:Protatype

| I \
A 0

| -

ConcretePrototype2 | | ConcretePrototype1
p = prototype->Clone() E.I

Fig. 4. Structure and roles of the Prototype pattern.

+Clone:Prototype +Clone Profotype

the control flow returns to Drawing, they add the
new figure to itself using the responsibility insert-
Figure. After that, the scenario concludes. During
the simulation, the instructor completes an RPD
(Fig. 3) that records the student interactions.

The same scenario is repeated with the ELLIP-
SE_TYPE stored in the Drawing object. In this
scenario, students realize that it is necessary to
employ a conditional expression to decide whether
to create a RectangleFigure or an EllipseFigure
object.

The simulation of the last two scenarios reveals
that the initial version of the drawing editor classes
forces the inclusion of conditional expressions in
the MousePressed responsibility in the Drawing
class in order to decide the type of an object.
These conditional statements are wrongly repla-
cing the use of polymorphism. Moreover, these
conditional structures usually spread over the
whole source code, complicating software scalabil-
ity and maintenance. Now it is time to refactor the
‘Before’ design by using a design pattern.

At this moment, students enter a discussion
about which design pattern should be applied.
According to the light background into design
patterns provided in a previous lecture-based
session, the main candidates are the Prototype
and the Factory Method patterns. The instructor
decides to apply the first one and leave the discus-
sion of the second one until after completing the
current session. Now, the students should identify
the roles of the selected pattern (see Fig. 4) in the
editor design. Drawing performs the Client-role,
while Figure will perform the Prototype-role.
Finally, the subclasses of Figure will perform the
ConcretePrototype-roles. Next, the instructor
provides the new set of CRC cards to continue
with the learning session. The new classes provided
and their CRC cards are presented in Fig. 5.

The students again perform the scenarios
described above. During the simulation, the
instructor will point out that the use of the Proto-
type pattern allows the removal of the conditional
statements from the Drawing’s MousePressed
responsibility because, both the ShapeButton and
the Drawing class will store the prototypical
instance that will be copied to create new figures.
Furthermore, adding a new type of figure is quite
simple: create a new subclass of Figure. So, the
previously mentioned code smell has disappeared.

After completing the scenarios, the instructor
explains the decision to apply the Prototype
pattern instead of the Factory Method. Although
both patterns will resolve the problem, the first one
is easier to apply for this case study because of the
need to create a hierarchy of Creator and Concre-
teCreator classes to instantiate the Factory Method
pattern. The instructor concludes the session by
stressing some drawbacks of this pattern, such as
the fact that its application needs to implement the
Clone operation correctly. This operation becomes
tricky with classes that contain complex structures.

EXPERIENCE REPORTS

We have applied the teaching approach
described in two academic years: 2005-2006 and
2006-2007. To date, 61 undergraduate Computer
Science students have participated in two editions
of a 25-hour seminar on Design Patterns. Owing to
the large number of students in each edition and
the low number of objects that intervene in the
scenarios only a few students actively participated
in each scenario execution while the others
observed the performance. However, throughout
the seminars, all students were engaged in at least
one scenario execution. Each role-play session lasts
around one hour, except the first one. Students do
not feel confident with these active techniques so
the first session usually takes approximately one
hour and a half. During the role-play sessions,
every student has a set with all the CRC cards
employed in the role-play, except the actors, who
only have the CRC card of the object that
they perform. All the material employed in the
sessions is available at http://gaia.fdi.ucm.es/
projects/virplay/ (in Spanish). These experiences
have given us invaluable insights as to how to

Teaching GoF Design Patterns through Refactoring and Role-Play

723

JButton shapeType Cloneable
ShapeButton ==Prototype==
cantains) fgre
| has r

| |
|

JPanel

ActionListener drawingArea Mousel istener
EditorWindow MouseMotionListener
==Client==
Drawing

activeFigure

==ConcretePrototypes= ==CaoncretePrototypes==
EllipseFigure RectangleFigure

(a) New classes for the drawing editor.

s ShapeButton
E ink shapsType
= Fiqure proioype Flaure
= -intgetShapeTypel)
- Foure gathigure()
= Figure
- <<Prototype>=>
z R iy Java avt.Rectangle
= draw{Graphics g) Java awit. Foint
= changelisplayBox({Point pl, Foint p2)
= Rectangle getdisplayBiox()
= clona()
-

o P
{b) CRC cards of the new classes.

RN R NN RN NN

Drawing drawingArea

Shapelutton
acton Performed{ActonEvent &) java awtevent.ActionEvent

EditorWindow

Drawing

(AR AR NN

(IR XN RN RRRERNN])

Drawing

<<Client>>

Vectoe<Figure> figures
Figure activeFigure

InsertFiqure{FRgure f)
paintCompanent{Graphics g)
cathetivebhapal

void mousePressedMoussEvent &)
setictivefiqure{fqure)

Figure
java awt.MouseEvent

Fig. 5. ‘After’ design. The editor design after instantiating the Prototype pattern on the ‘Before’ design classes.

best organize the contents and involve the students
in the teaching process.

All the students who participated in our design
pattern courses have completed 50% of their
studies in Computer Science. Students should
complete a Pretest on object-oriented program-
ming in Java and design patterns in order to
evaluate their previous knowledge. The results
indicate that they all have an upper-intermediate
level of knowledge of object-oriented program-
ming using the Java programming language —a
mean score of 6.4 out of 10— and little or no
knowledge of design patterns —a mean score of
3.4 out of 10.

Experiences are grouped in the following two
experiments.

First experiment: setting the approach in motion
This experiment was exploratory and occurred
during summer 2006 in a Design Patterns seminar.
24 students attended the seminar.
The course was organized as follows:

® During the first 20% of the course, we provided
the students with some background regarding
design patterns (following the explanations and
small isolated examples included in [6]), their

benefits and drawbacks, isolated from a soft-
ware application.

The following 70% of the course time involved
the students in a pattern-directed refactoring
approach combined with role-play. Before the
refactorings, we introduced students to the ped-
agogical techniques and tools used —-CRC cards,
role-play activities and RPDs— and we sketched
the requirements and the initial design of the
drawing editor that the students are going to
redesign.

In the remaining 10% of the course we presented
the students with a real-world software applica-
tion whose design relies heavily on design pat-
terns. This application is JHotDraw [22], a
framework to create graphics editors, which
can be considered an extended and more profes-
sional version of the drawing editor developed
by the students.

Goals

The main goal of this experiment was to gain an
insight into how well or poorly received the learn-
ing approach is by the students. We aimed to
evaluate the students’ reaction to the role-play
sessions and to measure the students’ opinions
about using CRC cards and RPDs instead of

724 Guillermo Jiménez-Diaz et al.

source code to understand how an application
works internally. The results of this experiment
allowed us to consider more complex experiments
where role-play sessions could be used in parallel
with traditional approaches, knowing that the
role-play approach would be acceptable to the
students.

Experimental results

Students completed several questionnaires eval-
uating the learning approach. We can stress that
the students found the experience very motivating.
They highlighted the relevance of understanding
design patterns as part of object-oriented design
learning. They especially appreciated the experi-
ence of putting them into practice in the design of a
drawing editor. The overall answers about the
quality and usefulness of the Design Patterns
seminar were positive and the average score was
4 points out of 5. Students considered the use of
the drawing editor as a more useful discussion
context than the isolated examples presented in
the first part of the seminar (4.6/5 in contrast with
a 3.3/5). Students positively assessed the techni-
ques used: CRC Cards, 4.4/5; Role-play, 4/5;
RPDs 4.2/5. Finally, students felt confident using
CRC Cards and RPDs to understand design
patterns and they did not consider it necessary to
replace them with the source code of the applica-
tion.

Second experiment: settling the approach and
analysing its potential

The second experiment occurred during autumn
2006. Thirty-seven students attended the second
edition of the Design Pattern seminar. We changed
the course organization slightly in order to evalu-
ate the pedagogical efficiency of our approach.
After the lecture-based background about design
patterns, students were divided into two groups.
The control group (CG) completed two design
iterations through an approach where the instruc-
tor did not promote the collaboration of the
students: the instructor presented the pattern-
directed refactorings in a lecture-based manner.
The experimental group (EG) completed these
two design iterations by combining pattern-direc-
ted refactoring and role-playing. Later, we
regrouped the students and they completed the
remaining iterations through refactoring and
role-playing.

Goals

We developed this experiment with the aim of
estimating the pedagogical efficiency of our
approach. In order to measure it, students
completed two different tests: Test 1 was completed
after the first two design iterations; Test 2 was
completed at the end of the experiment. We have
employed the grades of these tests:

® to compare the knowledge acquired by the
students in CG with the students in EG;

® to measure if the students in CG enhanced their
knowledge when they participated in role-play
sessions;

® to cvaluate if students in EG understood the
application of design patterns better than the
students in CG.

Moreover, the students completed several ques-
tionnaires to evaluate the learning approach.
These questionnaires let us:

® corroborate the student’s acceptance of the
learning approach obtained in the first experi-
ment;

® know if the students preferred participating in
the role-play sessions rather than observing the
role-play;

® know the CG students’ preferences between a
lecture-based refactoring class and a role-play-
based one;

e know if the students considered the refactoring
task useful in learning design patterns.

Experimental results

As in the first experiment, students evaluated
our learning approach by means of several ques-
tionnaires. Once more we can stress that the
experience was very motivating for the students.
As in the previous experiment, students appre-
ciated the experience of putting the design patterns
in practice. They considered that the seminar is
suitable for obtaining overall knowledge about
patterns (4.7 over 5 score), their intention (4.4/5),
structure (3.6/5) and consequences (3.8/5). They
confirmed the usefulness of the case study instead
of isolated examples (4.5/5 in contrast with 3.9/5).
Most students who participated in the lecture-
based refactoring preferred the role-play-based
approach (66%), and the students who participated
in the role-play sessions considered participation
more useful than the simple observation of a role-
play (3.7/5, where 5 is ‘Participating in role-play
sessions is significantly more useful than observing
it’). Finally, students positively evaluate the use of
CRC cards (3.9/5), Role-play (3.7/5) and RPDs
(4.2/5) and most students did not miss the applica-
tion source code instead of CRC cards (70%) or
RPDs (81%).

To test different aspects of our approach, we
have used the SPSS statistical software package
[36] to run standard procedures to determine
whether the differences between two samples are
significant enough to conclude that the samples
belong to different populations. We apply the t-
test when both samples are normally distributed
and the Wilcoxon signed-rank test when they are
not. To determine whether a sample is normally
distributed we use the Shapiro—Wilk test.

We divided the students into two groups by
means of a random process. The analysis of the
Pretest results revealed that there were no signifi-
cant differences between them and, according to
those results both groups, EG and CG, could be
considered as samples of the same population.

Teaching GoF Design Patterns through Refactoring and Role-Play 725

Table 1. Average grades obtained by the students after completing Testl and Test2

Experimental Group (EG) Control Group (CG) Total
Tests Mean N Std. deviation Mean N Std. deviation Mean N Std. deviation
Testl Total 7.6316 19 1.46099 7.3889 18 1.19503 7.5135 37 1.32543
Practical questions 7.0526 19 1.80966 6.8889 18 1.84355 6.9730 37 1.80257
Test2 Total 7.7895 19 1.08418 8.0000 18 0.90749 7.8919 37 0.99398
Practical questions 7.3026 19 1.19774 7.7083 18 1.07187 7.5000 37 1.14109

Table 2. Average differences between grades obtained in Test]l and Test2

Group N Mean Std. deviation Std. error
Total difference EG 19 0.1579 1.21395 0.27850
CG 18 0.6111 1.53925 0.36280
Practical question difference EG 19 0.2500 1.33073 0.30529
CG 18 0.8194 1.93992 0.45724

Testl contained ten questions, five about theo-
retical issues of design patterns and five about
putting into practice and recognizing design
patterns. We compared the results of Testl
obtained for each group as well as the results
obtained considering only the practical questions.
As we can see in Table 1, the EG obtained better
results in both Testl, as a whole, and the practical
questions. However, according to the Wilcoxon
signed-rank test, the differences are not significant.

After regrouping the students and concluding
the drawing editor redesign, they completed Test2.
This test included eight questions about applying
and identifying design patterns. Again, we
compared the results between groups and, to our
surprise, the CG sharply improved their grades
above those in EG, as shown in Table 1. Never-
theless, the Wilcoxon signed-rank test determined
that, according to the results of Test2, EG and CG
still belong to the same population. We also
analysed the differences between the increase
from Testl to Test2 in EG and CG (see Table 2)
to conclude that, according to the t-test, the
difference is not statistically significant.

Finally, we measured the consequences of parti-
cipating in a role-play session instead of acting as a
mere observer of the simulation. To do that, we
again analysed the results by splitting the questions
into two different groups for every student: (1)
questions about the patterns that the student has
actively participated in, and (2) questions about
the patterns where the student has only observed
the simulation. 100% of the students correctly
completed all the questions about patterns where
they played a role (a 10.00 average grade), while
only 50% of the students correctly completed all
the questions about patterns where they did not
play any role, resulting in an average grade of 8.85.
A t-test lets us finally conclude that there is a
remarkable difference between observing a role-
play session and participating in it.

Lessons learned

We are pleased with the high success that our
teaching approach has had in the participants in
our courses. Students’ evaluations show that they
feel motivated by a learning experience that
involves them in their learning process. Students’
motivation increases when they are involved in the
design of an application and they collaboratively
reflect on how to improve an acceptable but naive
design.

Regarding pedagogical results, grades in Testl
show that our motivating teaching approach is
more effective than the lecture-based approach,
although the results in Testl do not seem to have
statistical significance. We have also confirmed
that participating actively in role-play sessions is
more effective than observing them. Furthermore,
according to the results obtained when analysing
the differences between grades in Testl and Test2
in students from the CG, we can conclude that
these students better assimilate concepts in design
patterns after attending and participating in role-
play sessions. First passive iterations help the
student to understand better the design problem
and its context in such a way that next interactive
iterations become more valuable. Anyway, we
should corroborate this hypothesis with future
experiments.

FUTURE EXTENSIONS

The experiences described have prompted us to
reflect on the organization of courses whose main
goal is to teach design patterns in depth. Lecture-
based sessions should be kept to provide the
students with some background on design patterns
and include some refactoring episodes developed
by the instructor. These sessions should be comple-
mented with pattern-directed refactoring com-
bined with role-play sessions, as described in this

726

paper. This approach strengthens student know-
ledge in design patterns. Moreover, it gives
students the opportunity to put them into practice
as a method of achieving more flexible designs,
instead of forcing them to generate isolated
instances of patterns in the development of an
application.

The approach presented in this article gives the
students deep design-level knowledge about design
patterns. However, as well as feeling confident in
using patterns during design, it is worth it for
students to know the implementation details of
the patterns. Just like the ‘Implementation’ section
described for each design pattern in [6], the imple-
mentation of the application redesigned during the
rest of the course would complete student know-
ledge about design patterns. This task would force
the student to implement design patterns in a
concrete programming language. Owing to semi-
nar time limitations, our students do not imple-
ment the application resulting from applying the
patterns in a concrete programming language. In
compensation for this, we provide them with the
resulting Java code as a final documentation
element of the seminar. However, as the number
of hours available increases, we consider it suitable
that students devote part of the time to implement-
ing design pattern uses in a concrete programming
language. We are already planning longer seminars
in this sense. Currently, we are working on the
development of a software tool for supporting the
creation of the CRC cards. The instructor will also
employ this tool during the refactoring sessions for
RPD creation and the modification of CRC cards.

Guillermo Jiménez-Diaz et al.

Finally, we should be aware that in recent years
much effort has been focused on complementing
conventional structured courses (based on lectures
and practical laboratory work) with tools and
environments that students can use alone or in a
collaborative way. In this sense, we are developing
tools to support the teaching approach described
herein [37]. The main drawback of collaborative
role-play design sessions is that of resources: it is
better to participate in the play than to watch it,
so, ideally, in the class there should just be the
number of students needed for the role-play. The
technological alternative would be to let the
students play in a network-enabled collaborative
environment where the human tutor could be
helped or even substituted by a virtual one. This
work builds upon ViRPlay-3D [38], a tool that
gathers our previous work in the understanding of
object-oriented application behaviour where the
student visualizes and interacts with other virtual
actors in a role-play simulation that performs the
execution of a piece of code. The tool for the
creation of CRC cards and role-play mentioned
above will also serve as an authoring tool for the
generation of the simulation scenarios performed
in the virtual environment.

Acknowledgements—This work is supported by the Spanish
Committee of Education & Science project TIN2006-15202-
C03-03 and it is partially supported by the Comunidad de
Madrid Education Council and Complutense University of
Madrid (consolidated research group 910494). We would also
like to thank all of the participants in the experience for their
time and feedback, especially Marco Antonio Gomez for his
help in carrying out the experiments and Javier Arroyo for his
support with the statistics.

10.

11.

REFERENCES

. D. Schmidt, A family of design patterns for flexibly configuring network services in distributed
systems, in Proc. International Conference on Configurable Distributed Systems, Annapolis, Mary-
land, (1996), pp. 124-135.

. D. Schmidt, Using design patterns to develop reusable object-oriented communication software,
Communications of the ACM, 38(10), 1995, pp. 65-74.

. M. Vokac, Defect frequency and design patterns: an empirical study of industrial code, /IEEE
Transactions on Software Engineering, 30(12), 2004, pp. 904-917.

. M. Hahsler, A quantitative study of the adoption of design patterns by open source software
developers, in Free/Open Source Software Development, S. Koch, Ed. IGI Publishing, Wien,
Austria, (2005), pp. 103-123.

. K. Beck, R. Crocker et al., Industrial experience with design patterns, in Proc. 18th International
Conference on Software Engineering, Berlin, (1996), pp. 103-114.

. E. Gamma, R. Helm et al, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley Professional, Massachusetts, (1995).

. Computing Curricula 2001, Computer Science, The Joint Task Force on Computing Curricula,
ACM / IEEE Computer Society, 15 December 2001.

. Software Engineering 2004, Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering, The Joint Task Force on Computing Curricula. ACM / IEEE Computer Society, 23
August 2004.

. E. Wallingford, Toward a first course based on object-oriented patterns, in Proc. 27th SIGCSE

Technical Symposium on Computer Science Education, Philadelphia, Pennsylvania, (1996), pp. 27—

31.

O. Astrachan, G. Mitchener e? al., Design patterns: an essential component of CS curricula, in

Proc. 29th SIGCSE Technical Symposium on Computer Science Education, Atlanta, Georgia,

(1998), pp. 153-160.

V. K. Proulx, Programming patterns and design patterns in the introductory computer science

course, in Proc. 31st SIGCSE Technical symposium on Computer Science Education, Austin, Texas,

(2000), pp. 80-84.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.
29.

30.

31.

32.
33.

34.

Teaching GoF Design Patterns through Refactoring and Role-Play

. C. Alphonce and P. Ventura, Object orientation in CS1-CS2 by design, in Proc. 7th Annual
Conference on Innovation and Technology in Computer Science Education, Aarhus, Denmark,
(2002), pp. 70-74.

R. Pecinovsky, J. Pavlickova et al., Let’s modify the objects-first approach into design-patterns-

first, in Proc. 11th Annual Conference on Innovation and Technology in Computer Science Education,

Bologna, Italy, (2006), pp. 188-192.

C. Alphonce, M. Caspersen, et al., Killer ‘killer examples’ for design patterns, in Proc. 38th

SIGCSE Technical Symposium on Computer Science Education, Covington, Kentucky, (2007),

pp. 228-232.

C. Chambers, B. Harrison, ef al., A debate on language and tool support for design patterns, in

Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Boston, Massachusetts, (2000), pp. 277-289.

M. J. Clancy and M. C. Linn, Patterns and pedagogy, in Proc. 30th SIGCSE Technical Symposium

on Computer Science Education, New Orleans, Louisiana, (1999), pp. 37-42.

C. Nevison and B. Wells, Teaching objects early and design patterns in Java using case studies, in

Proc. 8th Annual Conference on Innovation and Technology in Computer Science Education,

Thessaloniki, Greece, (2003), pp. 94-98.

C. Nevison and B. Wells, Using a maze case study to teach object-oriented programming design

patterns, in Proc. 6th Australasian Computing Education Conference, Dunedin, New Zealand,

(2004), pp. 207-215.

J. Hamer, An approach to teaching design patterns using musical composition, in Proc. 9th Annual

Conference on Innovation and Technology in Computer Science Education, Leeds, (2004), pp. 156

160.

P. V. Gestwicki, Computer games as motivation for design patterns, in Proc. Proceedings of the

38th SIGCSE Technical Symposium on Computer Science Education, Covington, Kentucky, (2007),

pp. 233-237.

H. Berbak-Christensen, Frameworks: Putting design patterns into perspective, in Proc. 9th Annual

Conference on Innovation and Technology in Computer Science Education, Leeds, (2004), pp. 142—

145.

JHotDraw, JHotDraw Website, WWW: http://www.jhotdraw.org/.

B. Venners, How to use design patterns. A conversation with Erich Gamma, Part I, in Leading-Edge

Java, (2005).

A. Schmolitzky, A laboratory for teaching object-oriented language and design concepts with

teachlets, in Proc. 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, San Diego, CA, (2005), pp. 332-337.

P. A. Kirschner, J. Sweller et al., Why minimal guidance during instruction does not work: An

analysis of the failure of constructivist, discovery, problem-based experiential and inquiry-based

teaching, Educational Psychologist, 41(2), 2006, pp. 75-86.

Active Learning in Engineering Education, http://www.ale.tudelft.nl/.

M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley Professional,

(1999).

J. Kerievsky, Refactoring to Patterns, Addison-Wesley Professional, (2004).

S. Smith, S. Stoecklin et al., An innovative approach to teaching refactoring, in Proc. 37th SIGCSE

Technical Symposium on Computer Science Education, Houston, Texas, (2006), pp. 349-353.

S. Stoecklin, S. Smith, et al., Teaching students to build well formed object-oriented methods

through refactoring, in Proc. 38th SIGCSE Technical Symposium on Computer science education,

Covington, Kentucky, (2007), pp. 145-149.

K. Beck and C. Andres, Extreme Programming Explained: Embrace Change, 2nd edn, Addison

Wesley, (2004).

J. Shore and S. Warden, The Art of Agile Development, 1st edn, O’Reilly Media, Inc., (2007).

J. Bergin, J. Eckstein et al., Patterns for gaining different perspectives, in Proc. 8th Conference on

Pattern Languages of Programs, Monticello, Illinois, (2001).

J. Borstler, Improving CRC-card role-play with role-play diagrams, in Proc. 20th Annual ACM

SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications, San

Diego, CA, (2005), pp. 356-364.

. D. Bellin and S. Suchman-Simone, The CRC Card Book, Addison-Wesley, Massachusetts, (1997).

. SPSS: Statistical Package for the Social Sciences, SPSS Inc., www.spss.com.

. G. Jiménez-Diaz, M. Gomez-Albarran et al., Pass the ball: game-based learning of software design,
in Entertainment Computing—ICEC 2007, vol. 4740, LNCS, L. Ma, M. Rauterberg and R.
Nakatsu, Eds. Springer, Berlin, (2007), pp. 49-54.

. G. Jiménez-Diaz, M. Gomez-Albarran et al., Software Behaviour understanding supported by
dynamic visualization and role-play, SIGCSE Bulletin, 37(3), 2005, pp. 54-58.

Guillermo Jiménez-Diaz is a teaching assistant in the Department of Software Engineering
and Artificial Intelligence (DISIA) at the Complutense University of Madrid, Spain. He is a
member of GAIA, the Group of Artificial Intelligence Applications at the UCM. His

Ie

search interests include programming education and virtual learning environments. He

has a Master’s in learning methods to teach how to use frameworks and his Ph.D. relates to
learning object-oriented programming in virtual environments.

Mercedes Gomez-Albarran is an associate professor in DISIA at the Complutense
University of Madrid, Spain. She holds the post of Academic Secretary at the Computer
Science School of this University. She is a member of GAIA. Her main research interests

727

728

Guillermo Jiménez-Diaz et al.

are virtual learning environments, innovative techniques and tools for programming
teaching, and case-based teaching systems. She received her Ph.D. in Computer Science
from the UCM.

Pedro A. Gonzalez-Calero is an associate professor in DISIA at the Complutense University
of Madrid, Spain. He leads GAIA. His main research interests are virtual learning
environments, case-based reasoning, and serious applications of video games. He received
his Ph.D. in Computer Science from the UCM.

