
The Software Enterprise: Practicing
Best Practices in Software Engineering
Education*

KEVIN A. GARY
Division of Computing Studies, Arizona State University at the Polytechnic Campus, Mesa, AZ 85212,
USA. E-mail: kgary@asu.edu

Software engineering educators emphasize teaching concepts in software engineering principles and
then applying them in the context of a capstone project. Capstone experiences often focus on
leveraging a popular process model. The emphasis on process provides a structure for coordinating
team activity, with an objective of demonstrating to the student the value of following a process
model. We contend that more emphasis is required on detailed process execution than is given
proper due. Specifically, best practices are now emphasized in the software engineering profession
over rigid process structures, and as educators we must respond to this cultural shift by teaching the
role of best practices in a broader applied process context. Our approach in the Software
Enterprise, our multi-year capstone sequence at Arizona State University Polytechnic, is to provide
a process structure, teach best practices, and then give teams `just enough rope' to resolve issues by
leveraging the process, best practices, and soft skills. The Software Enterprise presents a unique,
iterative accelerator for presenting software engineering from concepts through to applied practice.
This pedagogical model allows us to present, practice, and apply best practices in the context of real
scalable projects, resulting in better contextual learning for our students. In this paper we describe
the machinery for teaching software engineering in this manner and present some preliminary
survey results evaluating how well Enterprise students apply these skills in practice.

Keywords: engineering education; software process; software engineering capstone; software
enterprise

INTRODUCTION

SOFTWARE ENGINEERING has a high impact
on the national economy. A report from the ITAA
maintains that computer programming remains the
largest segment of the information technology (IT)
workforce, representing 20 percent, or over 2
million jobsy. ITAA Projections for future employ-
ment growth are strong as well, with programming
ranked third out of nine IT categoriesz. The
Bureau of Labor and Statistics forecasts 45 percent
growth in Software Engineering opportunities
from 2002 to 2012, representing over 310 thousand
jobs. Software Engineering for applications ranks
8th and Software Engineering for Systems Soft-
ware ranks 9th out of all career categoriesx. Salar-
y.com/Money magazine's recent survey{ ranked

Software Engineering the #1 career field. These
numbers are important, as they indicate that
despite perceptions regarding outsourcing and the
decline of computing enrollees, economic demand
for competent software developers and software
engineers is in fact increasing.

To respond to this need, the Division of
Computing Studies (DCST) on the Arizona State
University Polytechnic campus is tasked with
producing `industry-ready' graduates. In the
model of a polytechnic, DCST places an emphasis
on hands-on practice over pure scientific study.
Through this emphasis, input from industrial advi-
sors, and lessons learned from DCST's previous
one semester capstone project course, the capstone
experience underwent a significant evolution. The
scale and scope of the capstone experience was
extended to a multi-semester, multi-project, and
multi-year sequence starting the fall of 2004.

Graduates should exhibit a higher degree of
applied competencies in industry-relevant areas,
and as an indirect measure should have more
success in career placement and advancement. To
achieve applied competency in industry-relevant
areas, we focus on process in the capstone project.
We use the Rational Unified Process (`RUP' [19])
as the encompassing process model, but borrow
heavily from Agile methods for best practices in
use in industry. Example best practices include an
emphasis on unit testing and test-driven develop-

* Accepted 25 April 2008.
y Information Technology Association of America. Adding

Value . . . Growing Careers: The Employment Outlook in Today's
Increasingly Competitive IT Job Market. Annual Workforce
Development Survey, September 2004. Fig. 3, p. 8.
z Ibid. Table 20, p. 22.
x US Dept. of Labor, Bureau of Labor Statistics. `Tomor-

row's Jobs', reprint section from the Occupational Outlook
Handbook, 2004±2005.
{ Money magazine/Salary.com Best Jobs in America, April

24, 2006. http://money.cnn.com. This survey was also based on
BLS data, but weighted in areas related to compensation and
job growth (see http://money.cnn.com/2006/04/10/pf/bestjob-
s_howwepicked/index.htm

705

Int. J. Engng Ed. Vol. 24, No. 4, pp. 705±716, 2008 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2008 TEMPUS Publications.

ment, evaluation of third-party (COTS and OSS)
dependencies, configuration management patterns,
refactoring, and continuous builds and integration
testing. These practices are presented in a unique
pedagogical model geared toward accelerating a
novice from initial concept to applied competency.
Students are presented with the motivational
concepts for the best practice, apply the concept
via state-of-practice tools in a lab setting, and then
apply the concept in a scalable project context. The
result, we intend, is a student better prepared to be
immediately productive in the workforce.

This paper presents the Software Enterprise
pedagogical model, and describes the best practices
emphasized within the process context. To gain a
better understanding as to whether this model is
accelerating the industry-preparedness of our
students, we conducted a survey of current
students and recent graduates. We share the results
of this survey and our interpretation. We compare
our experience with similar approaches in acade-
mia, and conclude with some thoughts about the
potential impact of this model on software engin-
eering education.

PEDAGOGICAL MODEL

A common challenge in creating software engin-
eering curricula is that most programs start as an
outgrowth of an existing computer science
program. Therefore, coursework must be integrated
in some fashion with a breadth of computing
requirements. The ACM/IEEE recommendations
[17] suggest several curricular patterns, outlining
different ways to introduce software engineering
courses and topics into an existing program. This
is certainly practical; faculty in this area must find a
way to work within existing program structures
with a slant toward efficiency in doing so. However,
one must wonder if the resulting structures resemble
anything like a software engineering program if
considered with a clean slate.

Another issue is the recommended curricular
structure assumed for teaching software engineer-
ing. Table 1 shows the general pattern from the
2004 ACM/IEEE Joint Task Force recommenda-
tions.

Table 1 is the recommended pattern in [17] for
schools adopting a `Computer Science first' curri-
cular pattern. A `Software Engineering first'

pattern is also presented, but the main issue is
not which is first, but the software engineering
pattern within the pattern. In all the recommended
curricular structures, Software Engineering is
presented first through a breadth-oriented course
(or two-course sequence, SE200/201 in Table 1),
followed by an unordered collection of courses in
individual process phases or skill domains. Typical
courses might include `Requirements Analysis',
`Quality Assurance and Testing', `Formal
Methods', `Project Management'; the `SE' blocks
in semesters 2B±4A of Table 1. At the conclusion
of these courses, a one or two semester capstone
course awaits (SE400 of Table 1).

We have several issues with this approach. First,
we find that most students do not have any back-
ground to grasp the concepts and issues of soft-
ware engineering presented in the survey-oriented
course. The result is students who can recite the
classic pros and cons of various process models
and techniques, but really have no foundation as
to why these axioms are accepted in practice today.
They lack the ability to think critically about their
emerging profession. Second, the capstone project
is seen as a rite-of-passage as opposed to a true
learning experience. The lifecycle is compressed
and addressed in the wrong order. Specifically,
students typically work on requirements, then
design, then develop, then test on a clean project.
We contend this does not reflect the experience
when students graduate. Instead, students should
participate on a team in the order their profes-
sional careers are likely to evolveÐtest, develop,
elicit, analyze, design, then manage. The Enter-
prise course sequence defined for the two-year
experience follows this pattern, and is presented
in the section `Curricular and process model`.

Third, software engineering education tends to
emphasize the macro level. By this we mean the
process phases of the software lifecycle; require-
ments, maintenance, quality assurance, etc. Our
experience, particularly with small enterprises and
open source software, tells us that software engin-
eering is becoming increasingly agile, re-focusing
on micro-level activities that impact on how soft-
ware is developed on a daily basis. To this end, the
Enterprise incorporates industry-oriented best
practices taken from Agile methodologies, even
without adopting Agile methods at the macro
level. This focus is discussed further in the section
`Best practices`.

Table 1. Recommended software engineering curricular pattern (`Pattern SE' from [17], p. 60)

K. A. Gary706

Finally, the individual subject areas teach skills
in a particular technique, language, or methodol-
ogy, without the context of the entire lifecycle. The
emphasis should not be on the individual areas,
but on their connections; on how they work as a
whole and in context. The pedagogical delivery
mode of the Software Enterprise addresses this
concern, and is discussed in the section `Delivery
model'.

Curricular and process model
The Software Enterprise curriculum plan calls

for four upper-division courses to be taken as a
sequence during the last two years of study.
During this time, students participate on teams
that complete two one-year projects. This sequence
is shown in Table 2.

A significant decision for capstone project facil-
itators is the software process model to follow.
Choices include some that are prescriptive and
more easily supported in the classroom, such as
the PSP/TSP [14±16] or Waterfall models, while
others are iterative and more flexible such as Agile/
XP [1], RUP [19], and Spiral/Theory±W models
[2, 3].

A student entering the Enterprise sequence (Fall
term for Year 1 in Table 2) begins by taking a
Software Tools course. In this course a student
gains exposure to a set of tools that support the
software process. The tools are exposed through
the Eclipse IDE*. The student joins a project team,
assisting with prototyping for requirements valida-
tion. A student's second semester (Spring term for
Year 1 in Table 2) is spent in Construction and
Transition. Students spend significant time devel-
oping the software according to specific project
requirements. Students are also responsible for
transitioning activities such as packaging, deploy-
ment scripts, performance and scalability testing,
and product documentation. The completion of
this semester also marks the completion of the
student's first project.

In the third semester (Fall term for Year 2 in
Table 2), a student begins a new project by starting
with product Inception and Elaboration phases.
Under constraints provided by the course facil-
itator, students elicit requirements from external

project sponsors, and perform requirements analy-
sis resulting in a logical model of the system. The
logical model is validated through user interface
(UI) and architectural prototypes. The UI proto-
type is created with a storyboarding tooly (when-
ever possible) with the purpose of validating flow
and usability with customers. The architectural
prototype requires teams to experiment with exist-
ing software (from previous projects, project spon-
sor code repositories, or open source) to
understand how to integrate these technologies
into an architecture to support the full implemen-
tation in the Spring. Teams produce a Vision, SRS,
Software Development Plan (SDP), and Architec-
ture documents. These documents and the logical
model serve as the input product for the next
semester's implementation phase.

In the fourth and final semester of the Enterprise
sequence, a student serves as a process manager,
test planner, and mentor. As process manager,
fourth semester students are responsible for
process planning, process monitoring, and process
changes. Process planning is the selection and
instantiation of specific process practices within
the iterative RUP framework. For example, teams
may choose to do test-driven development (TDD)
early in Construction to ensure requirements are
understood, but then abandon this practice in a
later iteration. These decisions are documented in
the team journal. Process monitoring is performed
through weekly status reports, in-class `PMO'
meetings, and earned-value analysis. The instruc-
tor may introduce random process changes to
requirements, schedules, and resources. Teams
must handle these events according to the instan-
tiated process model. Fourth semester students are
also responsible for writing the test, deployment,
and release plans for their software products.

The fourth semester students plan the Construc-
tion and Transition activities of the second seme-
ster students. This arrangement allows upper-
classmen to mentor lower-division students in a
highly interactive manner. Co-located weekly lab
meetings facilitate this collaborative and mentor-
ing relationship. We also allow first-year graduate
students to enroll in the second year (Year 2),
which has brought to light cultural norms differ-

Table 2. Student participation trajectory

Term Fall Spring

Course Title Focus Title Focus

Year 1 Software Tools PSP, productive use of software tools,
work w/ existing software

Construction
and Transition

Software development best practices,
deployment

Year 2 Inception and
Elaboration

Project vision, requirements elicitation,
analysis, prototyping

Project and
Process
Management

Project planning, monitoring, and
tracking

* The Fall 2007 semester was the first time that we used
IBM's Jazz environment (http://jazz.net), which is built on top
of Eclipse.

y Storyboarding tools include iRise (http://www.iRise.com),
rapid prototyping languages, and index cards.

Practicing Best Practices in Software Engineering Education 707

ences between American and international
students. Mentoring and cultural issues are further
discussed in [11].

Best practices
For each course in Table 2, a set of course topics

has been identified as part of industry best prac-
tices. This list is an amalgamation of traditional
software engineering topics and current best prac-
tices. Feedback on the topics, listed in Table 3, is
provided through DCST industry partners.

The specific course topics are of interest because
they represent a cross section of best practices from
software development processes. These practices
are becoming industry norms, as the community
moves toward lightweight methods and away from
document-centric models.

In some cases the practice may be mentioned
more than once, particularly when considering
topics in Course 1. Several of the topics in
Course 1 are used to `set up' later activities in the
context of projects. For example, the PSP is
covered in about one month, certainly not suffi-
cient time to cover it in the manner prescribed by
Humphrey []. The purpose is to create better
personal estimation skills so these students can
provide better estimates to their Course 4 counter-
parts that must do project-level estimation activ-
ities in the Spring. Likewise, several tools are
exposed to students in areas such as unit testing
and metrics, while in Course 2 these practices are
revisited for conceptual grounding alongside tool
knowledge.

One may conjecture that some of these best
practices are mere fads that will no longer be
relevant in a few years time. This may be the
case, and the solution is to simply change the
practices. Best practices are constantly evolving
in the professional community, and it is academia's
task to keep up, not the other way around. More
durable are the process models in which the
practices are exposed. Iterative and incremental

process families for some time have been consid-
ered the best process models, with no foreseeable
change on the horizon.

Delivery model
We emphasize capstone projects as learning

vehicles rather than rites of passage. We recognize
the need to expose students to proper foundations
and to show them how they apply the concepts.
We therefore designed an iterative feedback peda-
gogical model that incorporates traditional disse-
mination activities with practice and application.
This model is shown in Fig. 1.

Figure 1 depicts the pedagogical delivery model
for software engineering best practices in the Soft-
ware Enterprise. Students are first exposed to
concepts via traditional dissemination activities;
lectures, readings, and discussion. They then put
the skill into practice using an industry-accepted
tool in a proctored lab exercise. The practice is
then adapted and incorporated into the process
model in a scalable capstone project. Students
complete the cycle by reflecting on the lessons

Table 3. Software Enterprise course topics by course sequence

Course 1 Course 2 Course 3 Course 4

Intro to PSP GUI development Software lifecycle process
Review

Software development Planning

Eclipse Software construction Requirements engineering Task Identification/WBS

Ant Unit testing Requirements Documentation PERT and critical path
Analysis

Use case diagrams Test-driven development Requirements elicitation Task scheduling/Gantt charts

White/Black box testing Defensive programming Use cases Estimation

System testing Refactoring User stories Risk management

Metric tools Code reviews Requirements quality Inspections

Metrics Requirements analysis
Overview

Test Planning

Configuration Management RUP analysis Release management

Professionalism and ethics Structured analysis Postmortem

Usability

Requirements management

Fig. 1. Software Enterprise Pedagogical Delivery Model

K. A. Gary708

learned while applying the technique on their
project. The key is these activities take place
closely in time as opposed to over a several
semester period.

As an example, consider a concept such as
configuration management (CM). CM concepts
such as quality thresholds for codelines, good
and bad branching patterns, and change manage-
ment are presented in regular lecture meetings. At
the end of the same week, CM is grounded via a
half-day laboratory exercise in a tool (formerly
CVS, we now use IBM's new Jazz environment).
The following week, CM is incorporated into the
capstone project. At the end of the current three-
week project iteration, teams are required to write
in their team journal (a blog or Wiki), a rationale
for how they applied the technique into the project
and an evaluation of how well the approach
worked.

We believe the coupling of disseminated know-
ledge to skills practice to incorporated process
tasks leads to quicker comprehension and deeper
applied knowledge than the traditional model. We
refer to this model as an `Iterative Instructor-
facilitated, Learner-centered' model. Supporting
such a highly iterative teaching and learning meth-
odology places a great burden on instructors-as-
facilitators to lead students down the right path.
Knowledge from disparate sources must be
filtered, aggregated, and packaged for digestion
in a practice-oriented, collaborative learning en-
vironment. Structured, hands-on exercises for
problem-centered learning must be constructed.
Facilitators must determine the correct amount
of guidance and support to provide team projects
that enable learning without causing projects to
degenerate into a `thrashing' state, alienating
students from finding the right path. Finally, and
most importantly, instructors must rethink how
learning is assessed, and how to assess the relative
success of the Enterprise sequence.

ASSESSMENT

The Software Enterprise's vision is to produce
`industry-ready' software engineers. In our view,
greater applied knowledge means a more `ready-
to-perform' graduate, and as such we should see a
greater adaptation to industry. In the model of the
Lethbridge study [20], we designed and implemen-
ted an assessment methodology for tracking needs
and competencies of students versus recent gradu-
ates. This objective was accomplished by design-
ing, implementing, and delivering an online survey
targeting recent graduates, and comparing the
results with data gathered from students while in
school. We summarize our data and findings in
this section. Please note that we do not have a
population size that allows for rigorous statistical
analysis; however we believe these early data do
provide some useful trends for us to be aware of as
we move forward. Furthermore, these surveys
results should be interpreted alongside additional
assessment data on the perceptions of students in
the Enterprise. These data are presented elsewhere
in the literature [8, 11] so we do not repeat them in
full here, but we do include in Table 4 student
perceptions of topics to which they have been
exposed, and expectations of professional benefit
from [11].

As we are focused on `industry-readiness', we
show only data for prior academic exposure and
professional benefit. What we find interesting in
this data is that students perceive professional
value in software engineering topics yet are not
exposed to them until they enter the Enterprise
sequence. In fact, the most telling concern in this
table is the recognition by our students of the need
for these practices to be learned to benefit them
professionally, but the disproportionate emphasis
in their academic time. We share these results as we
believe they are a source for a bias we discover in
our survey below.

Table 4. Results of student survey regarding topics to which they were exposed and that have professional benefit

Survey results Academic exposure Professional benefit

Topic area None Some Lot Lot Some None

Code reviews 57% 36% 8% 57% 43%
Configuration management 91% 9% 91% 9%
Defensive programming 36% 54% 9% 80% 20%
IDEs (Eclipse) 15% 54% 31% 82% 9% 9%
Metrics 82% 9% 9% 40% 20% 40%
Refactoring 73% 27% 9% 82% 18%
Deployment/Release mgmt 92% 9% 67% 33%
Unit Testing 36% 45% 18% 90% 10%
Estimation 77% 23% 83% 17%
Project management 69% 23% 8% 77% 23%
Quality planning 57% 22% 22% 92% 8%
Release management 83% 17% 62% 23% 15%
Defect tracking 67% 11% 22% 71% 29%
Risk management 53% 33% 13% 92% 8%
Task planning and sequencing 53% 20% 27% 92% 8%
Test types (alpha, beta) 75% 8% 17% 50% 42% 8%
Analysis modeling 75% 25% 57% 42%

Practicing Best Practices in Software Engineering Education 709

Study methodology
We wanted to conduct surveys in the model of

the Lethbridge study [20] to assess where there
might be gaps between student expectations and
reality once students graduate and begin working
their first job. Table 4 shows student expectations.
In this section we describe the results of an online
survey effort conducted in December 2006 to
assess how our recent graduates fared.

We compiled an email list of all Enterprise
students and graduates from Spring 2004 onwards.
From this list of 84 names we were able to
successfully email 82 people (we cannot confirm
they actually received the e-mail, only that they did
not bounce). Of these 82, 29 took part in the
anonymous survey. The survey asked demographic
questions so we could categorize indicators such as
the major when in school, how long ago the
student graduated, job field, GPA in school, and
size of current company. The survey asked respon-
dents to assign need and ability in general and
technical competencies on a scale of 1 to 10. The
survey questions were as follows:

Question 6: For each of the following general skill
areas, indicate the level of expertise needed in the
area to perform your job successfully. Use the
following interpretations for levels 1, 5, and 10:

(1) `I need to be familiar only with the very basics
of the area so that I can understand conversations
that mention the topic'
(5) `I need to have wide knowledge of the area and
its related issues, but I do not need to employ the
skill myself.'
(10) `I must have in depth knowledge of the topic
and its related issues and must apply it to real
world problems on a regular basis.'

Question 7: For each of the specific `Software
Engineering' topics below, indicate the level of

expertise needed in the area to perform well in
your job requirements. Use the same interpretations
as in Question 6.

Question 8: For each of the specific Software
Engineering topics given in the previous question
indicate your level of expertise in the area upon
graduation from college. Use the following inter-
pretations for levels 1, 5, and 10:

(1) `I was vaguely familiar with the definition of
the topic, but I did not study or apply the topic in
any of my college classes.'
(5) `I studied the topic and had wide knowledge of
the topic and its related issues, but I never applied
the topic to a real problem in any of my classes.'
(10) `I had in depth knowledge of the topic and its
related issues and had applied it to real world
problems during my college education.'

The general skill areas and software engineering
topics are listed in Table 5.

Study results and analysis

Question 6: General skill categories

Question 6 asks respondents about `soft skills',
which are important in software engineering [17]
for any capstone project incorporating team-
oriented and customer-facing activities. The data
in Fig. 2 show a breakdown of Question 6
responses by graduation date.

The responses in Fig. 2 should be read left-to-
right across general skill category, with each
grouping showing responses for current students,
students graduated within the past year, and
students who graduated more than one year ago.
The interesting pattern here is that current
students are quite confident in their soft skills
(purple bars), while students fresh out (magenta
bars) are notÐbut then rebound (green bars) after
gaining some experience.

Table 5. General skill areas (Question 6) and software engineering topics (Questions 7 and 8) on the survey

General skill areas Software engineering topic areas

Problem solving skills Risk management Integrated development
environments (IDE)

Test-driven development
(TDD)

Project management

Programming ability Estimation Defensive programming Defect tracking Task planning and
sequencing

Current technologies Teaming Code reviews Quality planning Estimation

SE knowledge Communication Software builds Postmortem reviews Software metrics

Software processes Technical writing Use case analysis Test types (Pilot, alpha,
beta, etc.)

Software cost estimation

Produce quality
deliverables

Giving presentations Software packaging and
deployment

Requirements elicitation Configuration
management

Business considerations Leadership Human computer
interaction/User
interfaces

Writing requirements Release management

Impact of open source Conflict resolution Refactoring Data modeling Deployment planning

Organization Negotiation Software maintenance Behavioral modeling Risk management

Time management Professionalism and
ethics

Unit testing Flow modeling Capability Maturity
Model (CMM)

K. A. Gary710

We do not have conclusive evidence as to why
this pattern emerges. One hypothesis is that
recently graduated students may be overwhelmed
by the structure of software development organ-
izations, and feel ill-equipped to handle the inter-
actions. However, this could be the case in many
disciplines, and not specific to software engineer-
ing. Additional study, such as interviewing or
comparison against non-Enterprise student base-
lines is needed to confirm this hypothesis or gain
insight to propose and alternative.

One interesting data point to point out is the

decline in `Professionalism and Ethics' (right side
of Fig. 2). This could suggest disillusionment with
the practice as one gains experience, and suggests
that professional communities still have work to
do to mature the profession.

Questions 7 and 8: Software engineering topics

Questions 7 and 8 are of particular interest to
this paper as they ask about best practices. We
show the responses along two lines of interest.
First by question and graduation year, as in Fig.

Fig. 2. Average responses for Question 6 broken down by graduation year.

Fig. 3. Average responses for Question 7 for Software Enterprise Year 1 topics.

Practicing Best Practices in Software Engineering Education 711

2 for Question 6. Then we look at the responses to
each question transposed against each other.

Question 7 asks participants what practices are
needed in their jobs. Figures 3 and 4 show Ques-
tion 7 responses for topics related to the first and
second years of the Software Enterprise, respec-
tively.

In our view, the most noticeable trend in Fig. 3 is
along the right side of the chart, in categories (unit
test, TDD, defect tracking, CM) that represent
low-level developer practices, typically not em-
phasized in computing curricula. Student percep-
tions (blue bars) of the need for these practices are
low, but once they graduate, the perception dras-
tically changes in the first year (red bars). After the

first year of employment, the perception retreats,
and is probably closer to actual need (though this
study does not attempt to verify this).

Figure 4 shows Question 7 responses for second
year Enterprise topics. Many of these categories
follow the pattern of the right side of Fig. 3;
current students lack an appreciation of the need
for the skill, but change perspective after gradua-
tion. This can be seen by the deltas between the
blue and red bars in almost every category. Also
interesting is that unlike other topics, some of the
topics continued to increase in perceived need after
the first year of employment. These skills, in the
center Fig. 4, are geared toward analysis modeling
skills instead of the quality, requirements, and

Fig. 4. Average responses for Question 7 for Software Enterprise Year 2 topics.

Fig. 5. Average responses for Question 8 for Software Enterprise Year 1 topics.

K. A. Gary712

project management skills represented in the rest
of the figure.

The same breakdown is shown for Question 8 in
Figs 5 and 6.

Question 8 asks participants about their level
of expertise upon graduating from college.
Perhaps most noticeable in the data is that
graduates who have just completing their degrees
feel good about how well prepared they are; but
after the first year they change perception quite a
bit. The news is not all bad however; greater than
1 year levels (yellow bars) are better than current
student perceptions in many second year topics.
First year and related development-oriented
topics do not fare as well.

Taken together, Figs 2±6 on the survey ques-
tions suggest that new graduates feel overwhelmed
by the soft skill requirements in their new employ-
ment experience, but feel confident in their soft-
ware engineering skills. Anecdotally, conversations
with former students back up these findings. These
alums express amazement at `how the world
works', while also expressing a gratitude for
being prepared with applied knowledge in the full
range of software engineering skills. To verify these
findings, a longitudinal study is needed over time
coupled with baseline data from non-Enterprise
graduates.

The principal issue encountered was the lack of
existing baseline data with which to compare our
results. It would be useful to know how Division of
Computing Studies students performed in their
first industry positions after graduation, for grad-
uates prior to the Enterprise sequence introduction
or who did not enroll in the Enterprise for some
reason. This would tell us how much better we are
doing. We were also unable to get industry mentor
respondents to participate in the survey, which
would have given us a comparative basis for
evaluating how Enterprise students do versus
traditional Computer Science and Software Engin-
eering graduates.

RELATED WORK

Most academic computing programs now offer
a significant software design and construction
project course. It is not within the scope of this
paper to present a comprehensive overview to
software project course offerings. We call out
some specific programs with exemplary project
offerings that include a significant process compo-
nent into the teaching and learning lifecycle.

The Software Development Studio component of the
Professional Master's program at Carnegie Mellon
University (CMU) [22]: The Software Develop-
ment Studio at CMU is a seminal program in
project-oriented software coursework. The Studio
puts graduate students in a terminal degree pro-
gram through a multi-semester project experience
covering the full range of software process activ-
ities. The Software Enterprise shares the multi-
semester approach with an emphasis on soft-skill
development with the Studio. The Enterprise,
however, introduces the software phases in reverse
order, and emphasizes soft-skills development
through multi-year structured student collabora-
tions.

The Software Development Laboratory at the Mil-
waukee School of Engineering (MSOE) [22] also
reverses the process phase sequence. The author
acknowledges the difficulty that newer students
have grasping process and soft-skills concepts,
and therefore students are led from `grave to
cradle' through process phases. Unfortunately a
further description of the utility of this approach is
not provided. The author also discusses the issue of
student turnover, or project continuity, and
describes a pre-course for seniors that prepares
them for the project sequence. This course includes
mentoring activities from project enrollees, shared
advice on the project, and basic skills preparation.

Fig. 6. Average responses for Question 8 for Software Enterprise Year 2 topics.

Practicing Best Practices in Software Engineering Education 713

This is a model we are looking to replicate in our
Year 1, first semester Tools offering.

Auburn University emphasizes the capstone experi-
ence as a teaching and learning vehicle [24]. The
authors provide a strong argument that student
teams cannot be thrown together into teams at the
end of their undergraduate experience, and then be
expected to know how to assimilate all of the
software engineering concepts from the previous
semesters and apply them on a real-world project.
We enthusiastically agree with the authors on this
point, and this is why the Enterprise uses the
`Instructor-facilitated, Learner-centered' delivery
model discussed in the section `Pedagogical
model.' Furthermore we share some of the detailed
logistical concerns expressed by the authors
regarding how to form teams and distribute tasks.

Wilde et al. [25] suggests that traditional classroom
instruction in software evolution and process
requires a significant hands-on component for
students to gain true understanding. The authors
implemented a model called GUMP at the Uni-
versity of West Florida where student teams evolve
an existing software product for the capstone
experience. The authors briefly discuss some
experiences of exposing students to Agile methods
(specifically XP) to `. . .try to provide speed while
still preserving reasonable quality standards', but
this exposure is not described at the best practice
level. The emphasis on existing software products
and learning process through evolution is an
excellent approach, though the Enterprise com-
bines this with a more distinctive real-world em-
phasis than the relatively controlled environment
used here.

Hazzan and Dubinsky go beyond reporting on
capstone experiences [12] to a methodology
(SDM) based on fourteen principles [13]. Several
of these principles are shared in the Enterprise,
such as `reflection' (principle 4). The general
approach is inspired by active learning, which is
philosophically aligned with the hands-on, `learn-
by-doing' approach of the Enterprise. It may be no
coincidence that the authors' approach evolved
out of capstone experiences based on extreme
programming (XP). There is suitable anecdotal
evidence in the community that capstone experi-
ences leveraging Agile methods must use an active
learning approach, and this should be followed up
with sustainable assessment (more sustainable than
we have been able to present in this paper). The
SDM method is a good start philosophically, but
needs to be operationalized into an alternative
curricular model repeatable in the academia

The viewpoints on industry-preparedness in the
academic community still vary widely. This is
reflected in the range of parameterizations and
emphases on capstone projects. Some capstone
projects are more structured than others; some
encourage more industry connectivity than

others; and most vary on the way teams are
formed. So although there is some common under-
standing of the motivations and underlying
features of the capstone, there is little agreement
on the machinery to better prepare students for
industry. Only a few papers take on this question
directly. Cowling [6] summarizes a benchmark
framework for software engineers at both the
undergraduate and graduate level in the UK. The
author suggests that recent efforts on defining the
knowledge base of the profession, such as the
SWEBOK [5], are worthwhile but must be comple-
mented by a similar definition of what graduating
students are able to practice. A generic framework
derived from more mature engineering fields is
adapted to software engineering, with the product
model levels identified: Conceptual, Determinable,
and Physical. However, the author goes on to
admit that, in contrast to other engineering
fields, software engineers treat construction `. . .
as an activity that is conducted by engineers rather
than technicians' and concludes that `. . . SE
programmes at either level will still need to achieve
a reasonable level of competence at actually under-
taking construction.' We agree with this statement
and it is the reason that we emphasize best
practices at a detail level. Denning, in a recent
essay [7], bemoans that software engineering and
the computer science academic community as a
whole has not learned its lessons well. He advo-
cates a more blended approach combining
programming, algorithms and design, and defect
correction, with an assessment model based on
increasing levels of competence. We agree in prin-
ciple with the blending idea, though we believe the
devil is in the details. An enormous amount of
work and study is required to pull this off effec-
tively, and it represents a significant shift from how
computing is currently taught. He also states that
programming is not the main problem, and here
we disagree. Quality is an attribute of a system that
is injected during construction. `Soft skills' are
fine, we teach a significant number of them in
the Enterprise (see Table 3), and even those apply-
ing lightweight process models apply key best
practices for project management. But, the em-
phasis should always be on the code. We believe
the best way to ingrain both soft skills and
programming (`hard') skills is not just to see how
they work, but how to apply them. An earned-
value (or `burn') chart that shows the students how
their project is falling behind together with a risk
analysis model that tells them how and why is far
more effective than simply giving them a home-
work exercise that has them calculate earned-value
on a problem they do not own.

SUMMARY AND FUTURE DIRECTIONS

The Software Enterprise has rapidly matured into
a differentiator for the Division of Computing
Studies at Arizona State University's Polytechnic

K. A. Gary714

campus. It is a required component of the Applied
Computer Science program and embodies the
hands-on learning style of the Polytechnic
campus. As our program heads toward an initial
accreditation review, we hope to collect better
baseline data about our students and other
programs around the country to see if this is an
effective and sustainable model. Problem-centered
learning is a natural teaching and learning style for
the Polytechnic as it ensures that students not only
acquire the skills required to be successful in local
and national industry; more importantly, it teaches
them how to acquire or update such skills in a
technologically changing and challenging world.
Our most significant outcome is that we have
reached an initial plateau where our graduating
students are better prepared for their first positions
as Software Engineers due to the hands-on, itera-
tive pedagogical model we have designed and
implemented for the Enterprise.

The Software Enterprise reflects our belief that
engineering know-how is acquired, applied, and
durable through its contextual and repeated prac-
tice, and not through a traditional teaching and
learning model. Instead of setting a broad founda-
tion and then driving deep into narrow area of

specialty, the Enterprise instead looks at the emer-
gent expertise gained by junior professionals to
create a new pedagogical model for software en-
gineering that mimics exposure and teamwork
found in industry. We advocate that this is the
best model for attaining program objectives in
software engineering.

We agree with Cowling [6] that significant effort
has been spent identifying a mature body of know-
ledge for the profession and work is not yet
complete in moving this body of knowledge into
the classroom. But while this work is underway, we
must look forward to the next steps. This knowledge
is useless without a proper mechanism by which to
raise learner competencies to an applied level. Our
view is in line with the view espoused by Parnas [21]
almost a decade ago. Parnas indicated that a body of
knowledge was just one of several things needed for
future software engineers to learn. Two others
revolved around applied knowledge. Junior profes-
sionals learn principally through mentorship; as
software engineering educators we must scale the
mentorship model to the masses through more
engaging, practice-oriented teaching techniques.
This paper has suggested we can start with the
capstone experience.

REFERENCES

1. K., Beck, Extreme Programming ExplainedÐEmbrace Change, Addison-Wesley, Boston, (2000).
2. B. Boehm, A spiral model of software development and enhancement, IEEE Computer, May 1998,

pp. 61±72.
3. B. Boehm, A. Egyed, D. Port, A. Shah, J. Kwan, and R. Madachy, A stakeholder win±win

approach to software engineering education, Annals of Software Engineering, 6, 1998, pp. 295±321.
4. J. Borstler, D. Carrington, G. Hislop, S. Lisack, K. Olsen, and L. Williams, (2002). Teaching PSP:

Challenges & lessons learned, IEEE Computer, September/October 2002, pp. 42±48.
5. P. Bourque and R. Dupuis (eds.), Guide to the Software Engineering Body of Knowledge, IEEE CS

Press, Los Alamitos, CA, (2001).
6. A. Cowling, What should graduating software engineers be able to do? Proceedings of the 16th

Conference on Software Engineering Education and Training (CSEET '03), Madrid, Spain, (2003).
7. P. J. Denning, The field of programmers myth, Communications of the ACM, 47(7), 2004, pp. 15±

20.
8. K. Gary, H. Koehnemann, and B. Gannod, The software enterprise: Facilitating the industry

preparedness of software engineers, Proceedings of the National Conference of the American Society
of Engineering Education (ASEE '06), Chicago, IL, (2006).

9. K. Gary, G. Gannod, H. Koehnemann, and M. B. Blake, Education future software professionals
on outsourced software development, Proceedings of the National Conference of the American
Society of Engineering Education (ASEE '05), Portland, OR, (2005).

10. K. Gary, G. Gannod, H. Koehnemann, T. Lindquist, and R. Whitehouse, WIP: The software
enterprise, Frontiers in Education (FIE '05), Indianapolis, IN, 2005.

11. K. Gary, The software enterprise: Preparing industry-ready software engineers, Software Engin-
eering: Effective Teaching and Learning Approaches and Practices, Ellis, H. (ed.), IDEA Publishing
Group, (2007).

12. O. Hazzan, and Y. Dubinsky, Teaching a software development methodology: The case of extreme
programming, Proceedings of the 16th Conference on Software Engineering Education and Training
(CSEET '03), Madrid, Spain, (2003).

13. O. Hazzan, and Y. Dubinsky, Teaching framework for software development methods, Proceed-
ings of the International Conference on Software Engineering (ICSE '06), Shanghai, China, (2006).

14. T. Hilburn, and W. Humphrey, Teaching teamwork, IEEE Computer, September/October 2002
pp. 72±77.

15. W. S. Humphrey, PSP: A Self-Improvement Process for Software Engineers, Addison-Wesley,
Boston, (2005).

16. W. S. Humphrey Introduction to the Team Software Process, Addison-Wesley, Boston, (2000).
17. IEEE/ACM Joint Task Force on Computing Curricula, Software Engineering 2004: Curriculum

Guidelines for Undergraduate Degree Programs in Software Engineering, (August 2004).
18. J. Kawakita, The Original KJ Method, Kawakita Research Institute, Tokyo, (1991).
19. P. Kruchten, The Rational Unified ProcessÐAn Introduction, 2nd edn, Addison-Wesley, Boston,

(2000).

Practicing Best Practices in Software Engineering Education 715

20. T. Lethbridge, What knowledge is important to a software professional, IEEE Computer, May,
2000.

21. D. L. Parnas, Software engineering programs are not computer science programs, IEEE Software,
November/December, 1999.

22. M. Sebern, The software development laboratory: Incorporating industrial practice in an academic
environment, Proceedings of the 15th Conference on Software Engineering Education and Training
(CSEET '02), Covington, KY, February, (2002).

23. J. E. Tomayko, Carnegie Mellon0s software development studio: A five year retrospective,
Proceedings of the 9th Conference on Software Engineering Education (CSEET '96), Daytona
Beach, FL, (1996).

24. D. Umphress, T. Hendrix, and J. Cross, Software process in the classroom: The capstone
experience, IEEE Computer, September/October, 2002, pp. 78±81.

25. N. Wilde, L. J. White, L. B. Kerr, D. D. Ewing, and A. Krueger, Some experiences with evolution
and process-focused projects, Proceedings of the 16th Conference on Software Engineering
Education and Training (CSEET '03), Madrid, Spain, (2003).

Kevin Gary is an Assistant Professor in the Division of Computing Studies at Arizona State
University. His areas of scholarship include software engineering, particularly Agile
methods and open source software, and enterprise application development. Kevin is a
co-Director of LEAD (Laboratory for Enterprise Application Development) and DEAC
(Distributed and Enterprise Applications Consortium) at ASU. He is an active participant
in the open source Image-guided Surgical Toolkit (IGSTK) project and is actively engaged
in applied research and industry consulting. His exposure to industry best practices,
particularly in Agile software development enterprises with junior developers, led him to
devise the Software Enterprise.

K. A. Gary716

