
Developing and Evaluating a Game-Based
Software Engineering Educational System*

WEN-HSIUNG WU
Department of Information Management, National Kaohsiung University of Applied Sciences, 415 Chien-
kung Road, Kaohsiung 807, Taiwan, R.O.C.

WEI-FAN CHEN
College of Information Sciences and Technology, The Pennsylvania State University, P.O. Box PSU,
Lehman, PA 18627-0217, USA. E-mail: weifan@psu.edu

TSUNG-LI WANG
Institute of Manufacturing Engineering, National Cheng Kung University, 1, University Road, Tainan 701,
Taiwan, R.O.C.

CHUNG-HO SU
Department of Software Engineering, D&S Digital Technology Co., Ltd, 16F-2, 110, San-Duo 4th Road,
Kaohsiung 802, Taiwan, R.O.C.

Research in software engineering education has, in recent years, attempted to achieve the
equilibrium between academia and practice. The software engineering education research commu-
nity has obtained a number of valuable outcomes in the areas of content curriculum, pedagogy, and
technology, respectively. However, very few studies have successfully integrated these three
dimensions into a single learning environment. This study developed and evaluated a Game-
Based Software Engineering Educational System (GBSEES) for software engineering education.
GBSEES adopted a role-playing strategy using a digital game-based learning model. This game-
based system was based on the educational theory of Technological Pedagogical Content
Knowledge, which integrates pedagogical knowledge, content knowledge, and technological know-
ledge. In the game-based learning system, students learned about the process of software
development in a team-based environment by using a role-playing gaming strategy. The study
also investigated the effect of the GBSEES on the students' attitude to learning.

Keywords: software engineering education; technological pedagogical content knowledge;
digital game-based learning; system development and evaluation

INTRODUCTION

SOFTWARE ENGINEERING EDUCATION is
facing challenges in the development of curriculum
and instruction as the advancement of technologi-
cal innovations accelerates. Blake [1] observed that
traditional software engineering education over-
emphasized teacher-centered instruction and
failed to involve students in real-world applica-
tions. He proposed a model of `̀ student-enacted
simulation'' to improve student learning in soft-
ware engineering education. By the same token,
Hadjerrouit [2] argued that software engineering
educators should not only teach practical applica-
tions of engineering concepts, but also design a
student-centered environment. Saiedian [3]
suggested that software engineering curricula
should adopt a more realistic approach to produce
future skillful software engineers.

Previous studies in software engineering educa-
tion focused on discussing its curricular content,
pedagogy, and technology. For the curricular
content, Ohlsson and Johanson [4] proposed a
new software engineering curriculum based on
practical perspectives for teaching content. For
the pedagogy, Blake [1] used a pedagogical strat-
egy of simulation for implementing a large soft-
ware engineering project. For the technology,
Rodriguez et al. [5] applied an e-learning technol-
ogy platform to the software engineering curricu-
lum; Baker et al. [6] developed an educational card
game to assist in teaching a project management
unit. However, those studies did not integrate the
three dimensions of content, pedagogy, and tech-
nology into a single learning environment. Addi-
tionally, very few studies provided a theoretical
foundation of using advanced technology in soft-
ware engineering education.

Therefore, the purpose of this study is to
develop and evaluate a Game-Based Software
Engineering Educational System (GBSEES) for* Accepted 25 April 2008.

681

Int. J. Engng Ed. Vol. 24, No. 4, pp. 681±688, 2008 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2008 TEMPUS Publications.

software engineering undergraduate students.
GBSEES adopts a role-playing strategy in a digital
gaming environment proposed by a digital game-
based learning model [7]. It is designed according
to the educational theory of Technological Peda-
gogical Content Knowledge [8±9] that integrates
pedagogical knowledge, content knowledge, and
technological knowledge. In the game-based learn-
ing system, students are able to understand the
process of software development in a team-based
environment by using a role-playing gaming strat-
egy. The study also investigates the effect of the
GBSEES on student learning achievement and
attitude.

LITERATURE REVIEW

Software engineering education
The terminology `software engineering' was first

introduced in the late 1960s. Software engineering
is currently a core course in several computing
disciplines: computer science, computer engineer-
ing, software engineering, and information systems
[10]. Moore [11] argued that the most important
issue was to define an acceptable body of know-
ledge for software engineering. Hence, researchers
in the software engineering community focused on
organizing existing knowledge and attempted to
find ways to transform this knowledge into a
curriculum. These efforts resulted in the Software
Engineering Body of Knowledge (SWEBOK) and
SE2004 projects [12±14]. Notably, SWEBOK
reflected an agreement of what a software engineer
with a bachelor degree or four years of practical
experience should know. The SE2004 offered
curriculum guidelines, such as the knowledge
required to develop software in both technical
aspects (i.e., analysis and design) and managerial
aspects (i.e., quality management), for teaching an
undergraduate software engineering degree
program. Additionally, the SE2004 project
provided sample courses and curriculum patterns.

Dieste et al. [15] indicated that software engin-
eering education faced a series of challenges in
recent years. For example, real-world applications
of software engineering concepts did not match
with current software engineering curriculum in
some cases as also mentioned by Blake [1]. Hence,
researchers provided different approaches, such as
practice-driven simulation of a large project with
group work, developing Web-based instruction, or
applying an e-learning platform, to bridge the gap
between academia and practice. Ohlsson and
Johanson [4] advocated applying a practice-
driven approach rather than a theoretical
approach to software engineering education.
They observed that students were enthusiastic
about the role-playing method used in project
courses. Brereton et al. [16] indicated that group
work had a crucial function in the software engin-
eering curriculum. Computer science students at
three U.K. universities conducted group-work

using low-cost communication tools (i.e., desktop
video conferencing) to facilitate collaboration
among universities. Blake [1] indicated that most
software engineering courses focused on a `theory-
push,' that is, teachers lecture on the basic
concepts and methodology; yet students did not
have an opportunity to work on practical team
projects. Hence, he further proposed a `student-
enacted simulation' approach to simulate a real-
world project team in improving software engin-
eering instruction. In addition, Hadjerrout [2]
proposed simulating real-world applications by
integrating real-world applications into academic
teaching, and by using Web technology to imple-
ment this innovation. Rodriguez et al. [5] applied
an e-learning system (i.e., project simulator) to
assist students in learning project management.
Experimental results indicated that the group
using the e-learning system had a significantly
better understanding of the topic of project
management than the group that did not use it.

Technological Pedagogical Content Knowledge
Based on the theoretical foundation of Pedago-

gical Content Knowledge created by Schulman
[17±18], Koehler et al. [19] proposed a new educa-
tional theoryÐTechnological Pedagogical Content
Knowledge (TPCK). This framework consisted of
three areas of knowledge: content, pedagogy, and
technology that stressed the connections, interac-
tions, affordances, and constraints among these
three areas of knowledge. Content is the subject
matter taught and learned; technology encom-
passes standard technologies, such as a black-
board, and advanced technology such as the
Internet or games; pedagogy comprises the process
and practice or methods of teaching and learning
such as methods used to teach and strategies for
evaluating student learning.

Regarding the connections and interactions
among those three areas, Koehler et al. [20]
depicted three types of knowledge: Pedagogical
Content Knowledge (PCK), Technological
Content Knowledge (TCK), and Technological
Pedagogical Knowledge (TPK). Notably, PCK,
proposed by Schulman, encompassed representa-
tion and formulation of concepts, pedagogical
approaches, knowledge of what makes concepts
difficult or easy to learn, knowledge of student
prior knowledge, and epistemological theories.
TCK involved understanding the manner in
which technology and content were reciprocally
related, to each other. TPK stressed the existence,
components, and capabilities of various technolo-
gies teachers used in the teaching and learning
context.

By considering all three areas, Koehler et al. [21]
proposed the Technological Pedagogical Content
Knowledge (TPCK). TPCK requires understand-
ing the representation and formulation of concepts
using technologies, pedagogical methods that
utilize technologies to teach content, knowledge
of what makes concepts difficult or easy to learn,

W.-H. Wu et al.682

how technology can help address these issues, and
knowledge of student prior knowledge and episte-
mological theories.

A variety of instructional techniques, such as
workshops, tutorials and technical support groups,
has been developed and implemented by higher
education institutions to assist teachers in devel-
oping content and pedagogy. However, Koehler et
al. [19] indicated that these approaches had weak-
ness: they were simplistic and ignored the complex-
ities inherent in technology based on pedagogy of
specific content areas. Hence, they proposed a
design team approach, called `learning by design,'
to overcome this weakness. This approach
depended on the process used to design and
develop the necessary skills and relationships for
understanding the nuances inherent in integrating
technology, pedagogy, and content. Additionally,
this approach attempted to make faculty adept at
negotiating the interactions among pedagogy,
content, and technology by enhancing their
competencies in using technology, and by sharing
their experiences in these three areas.

According to Koehler et al. [19], the learning-by-
design approach had three stages: (1) getting
started, (2) solidifying roles and grappling with
issues, and (3) bringing it all together. The first
stage defined roles in a design team and deter-
mined what an online course should be. The
second stage established the roles and responsibil-
ities of group members. The third stage was
concerned with time management issues for
group members.

To evaluate the development of the approach,
both quantitative and qualitative methods, such as
surveys or case studies, can be utilized. For
instance, Koehler and Mishra [21] used a survey
to assess students' and teachers' perceptions about
their learning context, theoretical and practical
knowledge of technology, online course content,
and the growth of TPCK. Koehler et al. [20]
conducted a quantitative discourse analysis to
investigate fifteen-week field notes for two design
teams whose participants moved from considering
technology, pedagogy, and content as independent
constructs to a richer conception that stressed the
interconnections among these three knowledge
bases. Furthermore, Niess [22] used five case
studies in science and mathematics education to
identify the difficulties and success using technol-
ogy in molding into the TPCK.

Digital Game-Based Learning
Applying a game-based design or game-based

tool to the teaching and learning context has
recently become a trend. Prensky [7] indicated
that higher education institutes were where Digital
Game-Based Learning (DGBL) was making great
headway as an increasing number of teachers had
realized the power of games for engaging and
instructing students. However, colleges and univer-
sities may currently be facing an increasing chal-
lenge. For instance, instructors have traditionally

been conservative bastions of knowledge that
changes slowly; however, knowledge now moves
very rapidly. Furthermore, they have to teach
`game generation' students. Hence instructors
need to make the effort to use complex DGBL
tools or developing systems.

Commercial off-the-shelf games, such as
SimCity, are integrated into classrooms. Likewise,
classroom teachers have performed resource-inten-
sive work and attempted to integrate a DGBL
system into their classrooms. For example, in
medical education, Mann et al. [23] implemented
an interactive game system to teach surgical
management algorithms. This system was devel-
oped using Microsoft Visual Basic; interactive 3-D
physical examination simulations were created
using NewTek lightware version 6. In addition,
Roubidoux et al. [24] developed an interactive
Web-based breast imaging game using JavaScript.
In computer science education, Baker et al. [6]
developed a `Problems and Programmers' system,
an educational card game that practically simu-
lated the software engineering development cycle
based on the waterfall model, which was not
sufficiently highlighted via traditional lectures
and projects. In sum, researchers found that
instruction incorporating game features led to
improved teaching and learning. However, devel-
oping an effective DGBL system in higher educa-
tion still needs further work.

CONCEPTUAL MODEL

Based on the theoretical foundations listed
above, this study proposes a conceptual model
for developing a Game-Based Software Engineer-
ing Educational System (GBSEES) (Fig. 1). The
model includes three modules: (1) input resources;
(2) developmental process in the GBSEES, and (3)
evaluation of the GBSEES from the perspective of
input±process±output (IPO).

The input module of the model concerns
content, pedagogy, and technology. This module
encompasses instructional content of software en-
gineering, pedagogy of software engineering, and
gaming technology. The instructional content of
software engineering consists of subject matters
such as process modeling. For the pedagogy of
software engineering, this work adopts DGBL
strategies, such as role playing, for teaching and
evaluating student learning performance. For the
gaming technology, this work selects a game-based
development tool to simulate real-world software
development tasks. Based on the interactions
among the three inputs, TPCK can be created as
a foundation for developing processes in the
GBSEES.

The process module of the model is concerned
with developmental processes in the GBSEES. The
developmental processes are modified from the
learning-by-design approach proposed by Koehler
et al. [20]. The processes mainly depict the system

A Game-Based Software Engineering Educational System 683

architecture of the GBSEES based on a Service-
Oriented Architecture (SOA), operations of the
GBSEES, and GBSEES prototype with single-
player and multiple-player modes as well as an
exam mode.

The output module of the model evaluates the
GBSEES. This work collects qualitative data
based on seven categories from TPCK such as
content-only (C), and three categoriesÐsuccess,
difficulties, and solutionsÐafter the prototyping
of the GBSEES was completed. Additionally, this
work gathers quantitative results about student
attitudes when they use the GBSEES prototype.
Data are collected via a questionnaire developed
by the Flow Theory [25] and the Technology
Acceptance Model (TAM) [26].

DEVELOPMENT AND EVALUATION

Phase IÐInput resources
The content of software engineering curriculum

includes the introduction to software engineering,
software process, object-oriented analysis, design,
and testing, and project management issues. This
study focuses on the content knowledge type of
Project Management to illustrate the design of
DGBL content. The Project Management content
focuses on effective skills in software project
management by describing the four P's: People,
Product, Process, and Project. The topic of People
is concerned with the stakeholders (i.e., project
managers) who participate in the software process
and the manner (i.e., coordination and commun-
ication) in which they are organized to perform
effective software engineering skills. The topic of
Product depicts the software scope and problem
decomposition at the beginning phase of the
project. The topic of Process mainly describes the
selection of an appropriate process model, the
definition of a preliminary plan, and the process
decomposition. The topic of Project is concerned

with conducting planned and controlled software
projects.

The system adopts a role-playing approach for
developing game-based learning services. By using
this approach, learners play a character that has a
`type' and a set of individual characteristics for a
learner [7]. In this learning environment, learners
can play different characters, such as a project
leader, a system analyst, a system designer, or a
programmer. The learners are also able to conduct
collaborative activities with other team members
during the software development process.

In addition, the system adopts Windows XP and
Windows Server 2003 as the developmental plat-
forms. Three software development tools are used
to design the game-based system. Shusaku Super
4TM is employed to create shapes and poses, such
as sitting or walking, of a virtual role. PhotoIm-
pact 8TM is employed to integrate stage sets,
including backgrounds, dialog boxes, frames, and
all stage properties. The C# language is applied for
interactive activities among characters, such as
sending and receiving messages between two char-
acters.

Phase IIÐDevelopmental process
The developmental process of the GBSEES

modifies the learning-by-design approach
proposed by Keohler et al. [20]. The development
team includes classroom teachers, a doctoral
student teacher, and an expert from a software
vendor, thereby reflecting the importance of inte-
grating academic and practical experiences asso-
ciated with software engineering education.

The operation of the GBSEES first addresses the
game-entry procedure and then describes the two
major play modes: game operational mode and
exam mode. The game operational mode is further
divided into single-player mode and multi-player
mode. The single-player mode allows learners to
play a role, such as project manager, in the
GBSEES. The multiple-player mode enables lear-
ners with different roles to interact among them-

Fig. 1. Conceptual model for developing a Game-Based Software Engineering Educational System (GBSEES).

W.-H. Wu et al.684

selves (e.g., exchanging task assignments and
experiences) in the GBSEES. After the learning
process is completed, the exam mode evaluates
students' learning performance. The game-entry
procedure and the two major play modes are
explained as follows (Fig. 2).

Figure 2(a) shows the snapshot of the game-
entry procedure of the GBSEES. First, (1) the
game scene is presented and a user selects a
single-player mode or a multi-player mode. Next,
learners enter (2) the character selection screen,
which allows learners to choose one of four char-
acters with different roles, namely, a project
manager, a system analyst, a system designer, or
a programmer. The next screen (3), the main topic-
selection screen, allows learners to choose from
various software engineering topics, such as mana-
ging software projects. After choosing one of the
main topics, learners enter (4) the subtopic selec-
tion screen, where content knowledge for the main
topic chosen is listed, such as project management.
When the subtopic is chosen, (5) the game opera-
tion mode starts. By clicking on the chat icon,
learners are able to browse game stages and fulfill
the assignments based on the role they are playing,
such as manpower allocation for the project
manager. Finally, after completing an assignment,
learners enter exam mode to evaluate their learning
performance.

Figure 2(b) presents a sample game screen shot in
which a system analyst, Amy, played by a learner,
asks for an interview with a virtual customer, John,
in a new system development process. First, (1) John
describes new system requirements to Amy. Mean-
while, (2) Amy records customer's requirements
using her notebook located in the upper portion of

the screen; the interaction via dialog box between
John and Amy is shown in the bottom portion of the
screen. Finally, when the interview is finished, (3)
Amy arranges the requirements as functional items
and generate a work list. In short, via this single-
player mode usage, a learner can study the content
knowledge of project management as described in a
textbook, and then learn the professional skills
associated with a given role in the real world by
interacting with a virtual role.

Figure 2(c) presents a snapshot of the inter-
action between two learners, the system analystÐ
Amy and the project managerÐBruce. This inter-
action starts with Amy presenting her work list to
Bruce. First, (1) Amy discusses her work list with
Bruce and waits for his response by clicking the
chat icon. (2) Bruce receives Amy's request and is
willing to start this conversation. In the next steps,
(3) Amy asks Bruce to review her work list. (4)
Bruce asks Amy to send the work list to him. (5)
Amy sends her work list to Bruce. (6) Bruce then
receives and reviews her work list. (7) Bruce sends
his comments to Amy. (8) Amy receives Bruce's
feedback. To summarize, the learners can study the
content knowledge of project management as ad-
dressed in a textbook, and learn professional skills
associated with different roles in a project team
through the interaction between (or even among)
players in multi-player mode.

Figure 2(d) shows a snapshot of the exam mode
after Amy, played by a learner, completes an
interview regarding the system requirements.
First, (1) learner Amy is requested to complete
an exam in which she needs to answer questions
related to the assignments. During the exam, (2)
learner Amy can refer to information recorded in

Fig. 2. GBSEES prototype.

Snapshot (b) single-player mode

Snapshot (a) Enter the GBSEES Snapshot (d) Exam mode

Snapshot (c) Multiple-player mode

A Game-Based Software Engineering Educational System 685

her notebook. After the exam, (3) the GBSEES
presents the completed degree of learning perfor-
mance (i.e., 96%) and the degree of requiring
improvement (i.e., 4%), along with verbal
comments and suggestions to the learner.

Phase IIIÐEvaluation
To evaluate the GBSEES prototype from a

teaching and development perspective, Appendix
A presents qualitative outcomes. The top row in
the table of Appendix A has seven categories:
Content-only (C); Pedagogical-only (P); Technol-
ogy-only (T); Joint consideration of Content and
Pedagogy (CP); Content and Technology (CT);
Pedagogy and Technology (PT); and, Content,
Pedagogy, and Technology taken together (CPT).
The left-hand column in the table lists three cat-
egories: Successes, Difficulties, and Solutions.
Those outcomes demonstrate that the concept of
TPCK can be applied to a software engineering
curriculum for software engineering educators.

From the learners' perspectives, thirty-four
undergraduate students in a software engineering
program at a university of technology in Taiwan
were recruited to evaluate the GBSEES. Of the 34
participants who completed a questionnaire, 19
(55%) were male and 15 (45%) were female. Their
age level ranged from 21 to 23.

To evaluate the GBSEES, all the participants
first gathered in a computer room. The computer
room was equipped with 50 Windows XP desktops
with an Internet connection that allowed partici-
pants to access the GBSEES. After the participants
were randomly assigned to their seats, the
researchers spent 20 minutes explaining the
purpose of the research study and showing them
how to operate the GBSEES. The participants
then self-learned the content delivered by the
GBSEES for 45 minutes. After the self-learning
session ended, the participants completed a 16-
item questionnaire within 20 minutes.

The questionnaire was developed based on the
Flow Theory and the Technology Acceptance
Model (TAM) [25±28]. The 16-item questionnaire
was used to assess four major constructs: (1) Flow
experience, (2) Interaction and Overall Use, (3)
Usefulness, and (4) Intention to Use. The answers
of the items were graded using a 5-point Likert
scale (1 for `strongly disagree' and 5 for `strongly
agree'). Appendix B presents the means and stand-
ard deviations for all items. Overall, the survey
results indicated that students had a positive learn-
ing attitude toward the GBSEES usage.

CONCLUSION

This study developed and evaluated the game-
based software engineering educational system for
software engineering education. This game-based
system adopted a role-playing strategy according
to a digital game-based learning model. In addi-
tion, it was designed based on the educational
theory of technological pedagogical content know-
ledge that integrated pedagogical knowledge,
content knowledge, and technological knowledge.
In the game-based learning system, students
learned about the process of software development
in a team-based environment by using a role-
playing gaming strategy. The performance of the
system prototype was assessed based on different
perspectives from the development team, class-
room teachers, and students. This result indicated
that the system had a positive impact on students'
learning process.

The study intends to contribute to the field of
software engineering education in two ways. First,
the study implements the educational theory,
TPCK, into software engineering curricula by
developing a game-based educational system,
GBSEES. TPCK lays the foundations of under-
standing effective teaching with technology in a
software engineering curriculum.

Second, the study adopts a collaborative model
for developing a game-based learning system. This
collaborative model involves a development team
of classroom teachers, a doctoral student, and an
expert from a software vendor. The team-based
design approach bridges the gap between academia
and practice and therefore improves the learning-
by-design approach proposed by Keohler et al.
[20]. Additionally, it provides a systematic analy-
tical framework and design procedures for devel-
oping such a game-based learning system.

Future research should focus on evaluating
students' authentic learning outcomes that would
include facts, concepts, comprehensions, problem
solving skills and other higher critical thinking
skills while they use such a game-based learning
system. In designing future research agenda in
software engineering education, a quantitative
methodology should be used to assess the effec-
tiveness and efficiency of the game-based learning
system by comparing with other learning system
platforms. In addition, future studies should
consider learners' prerequisites and learning
styles to further investigate how they interact
with a game-based learning system.

REFERENCES

1. M. B. Blake, A student-enacted simulation approach to software engineering, IEEE Transactions
on Education, 46(1), 2003, pp. 124±132.

2. S. Hadjerrouit, Learner-centered Web-based instruction in software engineering, IEEE Transac-
tions on Education, 48(1), 2005, pp. 99±104.

3. H. Saiedian, Bridging academics software engineering education and industrial needs, Computer
Sciences Education, 12(1±2), 2002, pp. 5±9.

W.-H. Wu et al.686

4. L. Ohlsson, and C. Johansson, A practice driven approach to software engineering education,
IEEE Transactions on Education, 38(3), 1995, pp. 291±295.

5. D. Rodriguez, M. A. Sicilia, J. J. Guadrado-Gallego, and D. Pfahl, e-Learning in project
management using simulation models: A case study based on the replication of an experiment,
IEEE Transactions on Education, 49(4), 2006, pp. 451±463.

6. A. Baker, E. O. Navarro, and A. van der Hoek, An experimental card game for teaching software
engineering processes, Journal of Systems and Software, 75, 2005, pp. 3±16.

7. M. Prensky, Digital Game-based Learning, McGraw Hill: New York, 2001.
8. L. S. Schulman, Knowledge and teaching: Foundations for a new reform, Harvard Educational

Review, 57(1), 1987, pp. 1±22.
9. M. J. Koehler, and P. Mishra, What happens when teachers design educational technology? The

development of Technological Pedagogical Content Knowledge, Journal of Educational Computing
Research, 32(2), 2005, pp. 131±152.

10. M. J. Lutz, and D. Bagert, Software engineering curriculum development, IEEE Software,
November/December 2006, pp. 16±18.

11. M. M. Moore, Software engineering education, IEEE Software, September/ October 2002, p. 103.
12. J. B. Thompson, and K. Reed, Undergraduate software engineering education: The mark of a

discipline, IEEE Software, November/December 2005, pp. 96±97.
13. T. C. Lethbridge, R. J. LeBlanc Jr., A. E. K. Sobel, T. B. Hilburn, and J. L. Diaz-Herrera, SE2004:

Recommendations for undergraduate software engineering curricula, IEEE Software, November/
December 2006, pp. 19±25.

14. H. van Vliet, Reflections on software engineering education, IEEE Software, May/June 2006,
pp. 55±61.

15. O. Dieste, N. Juristo, and A. M. Moreno, How higher-education systems influence software
engineering degree programs, IEEE Software, July/August 2004, pp. 78±85.

16. O. P. Brereton, S. Lees, R. Bedson, C. Boldyreff, S. Drummond, P. J. Layzell, and M. B. Blake, A
student-enacted simulation approach to software engineering education, IEEE Transactions on
Education, 46(1), 2003, pp. 124±132.

17. L. S. Schulman, Those who understand: knowledge growth in teaching, Educational Researchers,
15(2), 1986, p. 414.

18. L. S. Schulman, Knowledge and teaching: Foundations for a new reform, Harvard Educational
Reviews, 57(1), 1987, pp. 1±22.

19. M. J. Koehler, P. Mishra, K. Hershey, and L. Peruski, With a little from your students: A new
model for faculty development and online course design, Journal of Technology and Teacher
Education, 12(1), 2004, pp. 25±55.

20. M. J. Koehler, P. Mishra, and K. Yahya, Tracing the development of teacher knowledge in a
design seminar: Integrating content, pedagogy and technology, Computers & Education, 2005,
pp. 1±23.

21. M. J. Koehler, and P. Mishra, What happens when teachers design educational technology? The
development of technological pedagogical content knowledge, Journal of Educational Computing
Research, 32(2), 2005, pp. 131±152.

22. M. L. Niess, Preparing teachers to teach mathematics with technology: Developing a technology
pedagogical content knowledge, Teaching and Teacher Education, 21, 2005, pp. 509±523.

23. B. D. Mann, B. M. Eidelson, S. G. Fukuchi, S. A. Nissman, S. Robertson, and L. Jardines, The
development of an interactive game-based tool for learning surgical management algorithms via
computer, The American Journal of Surgery, 183, pp. 305±308.

24. M. A. Roubidoux, C. M. Chapman, and M. E. Piontek, Development and evaluation of an
interactive Web-based breast imaging game for medical students, Academic Radiology, 9(10), 2002,
pp. 1169±1178.

25. M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience, Harper Perennial, New York,
(1991).

26. V. Venkatesh, and F. D. Davis, A model of the antecedents of perceived ease of use: Development
and test, Decision Sciences, 27(3), 1996, pp. 451±481.

27. C. Evans, N. Gibbons, J. K. Shah, and D. K. Griffin, Virtual learning in the biological sciences:
Pitfalls of simply `putting notes on the Web', Computers & Education, 43, 2004, pp. 49±61.

28. S. C. Kong, and L. F. Kwok, An interactive teaching and learning environment for graph
sketching, Computers & Education, 32, 1999, pp. 1±17.

Wen-Hsiung Wu is a Professor of Information Management at National Kaohsiung
University of Applied Sciences. He holds a BS in Electronic Engineering from the National
Taiwan University of Science and Technology, an MS in Computer Engineering from
University of Massachusetts-Lowell, and a Ph.D. in Information Management from
National Sun Yat-Sen University. His primary research interests focus on instructional
learning system development and assessment, behavior of information system learning,
knowledge management, and e-business.

Wei-Fan Chen received his BS in Information and Computer Engineering in 1993, from
Chung Yuan Christian University, Taiwan. He received his M.Ed. and Ph.D. in Instruc-
tional Systems in 1999 and 2002, respectively, both from The Pennsylvania State
University, USA. He is currently an Assistant Professor of Information Sciences and
Technology at The Pennsylvania State University. Dr. Chen's research and teaching
interests include cognitive and information sciences and technology as related to learning.

A Game-Based Software Engineering Educational System 687

APPENDIX A: QUALITATIVE OUTCOMES FROM A TEACHING AND
DEVELOPMENT PERSPECTIVE

C P T CP CT PT CPT

Successes Illustrate an
important
content
knowledge of
project
management for
demo.

Apply role-play
pedagogy for
software
engineering
course.

Use game-based
tools to develop
the GBSEES
system.

Show the
content
knowledge of
project
management via
role-play
pedagogy.

Present the
content
knowledge of
project
management via
game-based
design.

Design two
major modes:
single-player and
multiple-player
modes based on
role-play
approach.

Construct the
system
framework of
GBSEES.
Develop a
prototype based
on content
knowledge of
project
management,
role-play
approach, and
game-based
design.

Difficulties The content
knowledge of
software
engineering
curriculum is
very
comprehensive.
The content
knowledge has
to consider an
equilibrium
between
academia and
practice.

Need to clearly
describe the
professional skill
for every
character in
software project.

The integration
of different
factors via using
game-based
tools, such as
aesthetic, script
design,
interactive
technique, and
effect.
Need to spend a
lot of time to
learn the game-
based tools for
teachers.

The scenario
description of
role play in
project
management
content is
difficult.

Number of
developmental
team members,
budget, and time
for developing
GBSEES are
limited if we
want to
complete all
content via
game-based
design.

The design of
multiple-player's
interaction is
complex.

Number of
developmental
team members,
budget, and time
for developing
GBSEES if we
want to
complete all
modules.

Solutions Discuss with an
expert and then
select a suitable
content for both
academia and
practice.

Advice from an
expert to
understand
every role of
software project
in the real
world.

Match between
selection of
game types and
game-based
tools.
Enhance the
experience of
using game-
based tool via
assistance of an
expert.

Collaborate
planning with an
expert and
capture real
experience of
every role's
features in the
software project

Select an
important topic
to design first,
and then, add
another topic.

Adopt an
incremental
design approach
via adding one
player each time.

Develop a
prototype first
and add another
module further.

APPENDIX B: QUANTITATIVE OUTCOMES FROM A
LEARNING PERSPECTIVE

Dimensions Question
no.

Questions Mean Standard
deviation

Flow experience 1 Using GBSEES added to the fun for my learning. 4.09 0.32
2 Using GBSEES kept me pleasure for my learning. 4.15 0.55
3 Using GBSEES stimulated my curiosity. 4.24 0.49
4 Using GBSEES aroused my imagination. 4.12 0.52

Interaction and overall use 5 I find that GBSEES allowed flexible interactions. 3.94 0.34
6 I interacted with GBSEES in a clear and comprehensible manner. 3.94 0.39
7 My interactions with GBSEES did not require much effort on my part. 3.91 0.49
8 I find GBSEES easy to use. 3.71 0.67
9 I find it easy to access the content knowledge I needed from GBSEES. 3.85 0.57

Usefulness 10 Using GBSEES gave me more incentive to learn. 4.12 0.57
11 Using GBSEES improved my learning experience. 4.00 0.53
12 Using GBSEES enhanced my knowledge and skills. 4.00 0.53
13 Using GBSEES enhanced the effectiveness in learning. 3.91 0.72
14 I find the GBSEES useful for learning the course. 4.06 0.55

Intention to Use 15 If I have access to GBSEES, I have the intention to use it. 4.32 0.48
16 When I have access to GBSEES, I expect myself to make use of it. 4.29 0.50

W.-H. Wu et al.688

