Int. J. Engng Ed. Vol. 24, No. 4, pp. 659-670, 2008 0949-149X/91 $3.00+0.00
Printed in Great Britain. © 2008 TEMPUS Publications.

Addressing Diverse Needs through a
Balance of Agile and Plan-driven Software
Development Methodologies in the Core
Software Engineering Course™

LUCAS LAYMAN
Department of Computer Science, North Carolina State University, Campus Box 8206, Raleigh, NC
27695, USA. E-mail: lucas.layman@ncsu.edu

LAURIE WILLIAMS
Department of Computer Science, North Carolina State University, Campus Box 8206, Raleigh, NC
27695, USA

KELLI SLATEN
Department of Mathematics and Statistics, University of North Carolina Wilmington, 601 S. College Rd.,
Wilmington, NC 28403, USA

SARAH BERENSON
Department of Curriculum and Instruction, University of North Carolina Greensboro, Curry Building,
PO Box 26170, Greensboro, NC27402, USA

MLADEN VOUK
Department of Computer Science, North Carolina State University, Campus Box 8206, Raleigh, NC
27695, USA

The software industry uses a mixture of plan-driven and agile techniques, and educators must
prepare students for industry needs while creating an effective educational environment that appeals
to a diverse student population. We describe the undergraduate course in software engineering at
North Carolina State University, which teaches both agile and plan-driven practices while
emphasizing collaborative and active learning. We present demographics, personality types, and
learning styles from 400 students, and provide statistical analyses and student testimonials on the
impact of our course. Students have reacted favorably to the course and are better prepared to meet
the diverse needs of industry.

Keywords: software engineering education; agile methods; personality types; learning styles

INTRODUCTION tions in 2004-14 [3]. Yet 2006 statistics show only a
slight increase in computer science enrollment
EDUCATORS HAVE RESPONSIBILITIES to following a 50% decline over three years [4], with

both prepare students for their future careers and only 15% of undergraduate computer science
to provide inclusive instruction for all students. majors being women and ethnic minorities (Afri-
The current landscape of the software industry and can—American, Hispanic, Native American) [4].
student enrollment in the computer science discip- Today’s educators must strive to prepare their
line particularly exaggerates these responsibilities. students for the increasingly diverse needs of
The skills desired of workers in the software industry while continuing to make computer
development industry have changed as organ- science education inclusive and appealing to a
izations diversify their practices and processes new generation of diverse students.

from traditional plan-driven [1] software develop- In this paper, we describe the undergraduate
ment to include newer agile [2] software methodol- software engineering course at North Carolina
ogies. Additionally, software engineering is State University (NCSU)t. The course prepares
projected to be one of the fastest growing occupa- students for the current demands of industry with

* Accepted 25 April 2008. T http://www.csc.ncsu.edu/courses/undergrad/index.php

659

660 L. Layman et al.

a universal design for software engineering educa-
tion meant to address the diverse pedagogical
needs of students, regardless of gender, ethnicity,
age, learning style, or personality type. The course,
part of our core curriculum, educates students in
both agile and plan-driven practices and in
composing an appropriate development methodol-
ogy tailored to the current project and team.
Elements of our course, including an emphasis
on collaboration, active learning, and practical
software projects, allow us to more effectively
attract, reach, and retain students, in particular
Millennials [28, 30, 42], women, and minorities.
We have collected the personality type and learn-
ing style information of 400 students in our course
over several years. Statistical analysis of student
grades in our course have shown no difference in
the performance of different personality types and
learning styles, whereas previous studies of engin-
eering and computer science courses have shown
disparities in the performance of particular groups
[5-9].

In this paper, we discuss the changing needs and
expectations that industry has of today’s students.
We then describe the layout, progression, and
facilities of the undergraduate software engineer-
ing course at NCSU with specific examples of
assignments and course projects. We discuss how
our course appeals to the specific learning needs of
the Millennial generation, women, ethnic minori-
ties, and a variety of personality types and learning
styles encountered in today’s students. Finally, we
provide analysis of student performance in our
course and an overview of student testimonials
about the course. From the example of our
course, we hope to inspire other educators to
evolve and/or apply our method for preparing
students for their careers in software development.

DIVERSE NEEDS OF INDUSTRY

Software development, when described by
process models, can be characterized as plan-
driven [1] or agile [10]. The plan-driven models,
such as the Waterfall process model [11] and the
Spiral model [12], have an implicit assumption that
much information about the product being devel-
oped can be obtained up front. The overriding
philosophy is that the cost of product development
can be minimized by creating detailed plans and by
constructing and inspecting architecture and
design documents to minimize risk prior to initiat-
ing code development. Teams often spend consid-
erable effort in the planning stages before code
implementation begins.

Alternately, agile models are considered to be
best suited for projects in which a significant
amount of change is anticipated due to unknown
and evolving requirements [2, 10, 13]. Agile models
have existed for some time in the form of iterative
and prototyping process models [14]. Some more
recent examples are Extreme Programming (XP)

[15], Scrum [16], Crystal [2], and Feature Driven
Development [17]. The philosophy with agile
methods is that spending considerable effort to
create a detailed plan may not be worthwhile due
to the inevitability of change. Spending significant
amounts of time creating and inspecting an archi-
tecture and detailed design for the whole project is
similarly not advisable. Instead, agile software
developers spend time planning and gathering
requirements for small iterations throughout the
entire lifecycle of the project.

Plan-driven methodologies have been used for
many years in industry. Plan-driven methodologies
are most often taught in universities as the formal
process for creating software systems in industry
due to this long history and in part because the
stepwise nature of the Waterfall model provides a
natural sequence of instruction in the software
engineering course. Agile methods became more
popular in the late 1990s. In the early years, many
practitioners, researchers, and academics were
skeptical of the ability of agile methodologies to
guide the development of high quality, maintain-
able products. However, the use of agile practices
and methodologies has rapidly grown over the last
decade. A recent survey of 780 practitioners indi-
cates that 69% of organizations have adopted agile
techniques in some capacity [18], and recent
conferences on agile methodologies have been
filled to capacity by attendees from a wide range
of commercial and government software organ-
izations.

In light of increasingly balanced adoption of
agile and plan-driven methods, the current genera-
tion of students needs hands-on practice with agile
practices and methodologies prior to joining the
workforce but not at the neglect of their know-
ledge of plan-driven methodologies. Furthermore,
companies have long stressed the importance that
students graduate with communication and team-
work skills. A strong set of skills in both the plan-
driven and agile traditions and the training to
judiciously apply the appropriate techniques for
the given software project and team are essential
for development of high-quality, large-scale soft-
ware.

COURSE DETAILS

The overall goal of the software engineering
course at NCSU is to teach students practical
techniques, tools, and processes that they will
encounter in professional software development.
In this section, we describe the general layout of
the course as well as the specific phases and
learning objectives emphasized during the course.

Course layout

At NCSU, the software engineering course is a
required course in the core curriculum and is taken
by students in their third or fourth year of under-
graduate study. As is the case with many computer

Addressing Needs through Agile and Plan-driven Software Development Methodologies 661

Fig. 1. Software engineering lab.

science curricula, our core curriculum has only one
required software engineering course. Each seme-
ster, the course has an average of 50-70 students.
Two, 50-minute lectures and one, two-hour closed
lab session take place each week. The lab sessions
are conducted in a room with computers (shown in
Fig. 1), taught by graduate teaching assistants
(TAs), and have 20-24 students per session.

The lecture sessions typically cover concepts and
theories, such as discussions of software processes
and testing strategies. Lecture sessions are punc-
tuated by frequent brainstorming sessions where
students discuss a question or complete a small
task with their neighbors. Aside from encouraging
the students to become active (rather than sit and
listen for 50 minutes), these quick collaborations
gives the students the opportunity to ask each
other questions on the lecture material. If a student
has trouble understanding a concept, then maybe
his or her peers can help. If other students do not
understand, then the knowledge that others are
confused as well gives them the courage to ask the
instructor for clarification or examples.

In the weekly two-hour lab sessions, the students
receive hands-on experience with the concepts
taught in lecture. In the lab sessions, students
participate in project planning, learn to use
components of the Eclipse development environ-
ment*, become familiar with testing tools such as
JUnit{, write requirements documents, create soft-
ware designs, and participate in other hands-on
exercises. The physical arrangement of the lab
space is non-traditional. The tables are arranged
in rectangles so that students are facing each other
(see Fig. 1), facilitating team communication. Each
computer in the lab is equipped for pair program-
ming [19] whereby two students work jointly on
one computer, collaborating on the same design,

code, or test. All computers in the lab have two
monitors, two mice, and two keyboards.

Resources for the students are posted on the
OpenSeminar in Software Engineering [20] (http://
openseminar.org/se/) and are freely available to the
public. These resources include lab activities,
tutorials, and three Java testbeds to aid in active
learning:

® CoffeeMaker is a small command-line applica-
tion;

® RealEstate is a medium size GUI application;
and

® iTrustf is a relatively large web-based, health-
care application that utilizes a database.

A variety of software engineering artifacts are
available for each of these three testbeds, including
requirements documents, automated JUnit and
FIT§ test cases, and UML class and sequence
diagrams. The details of the course, including the
introductory readings, lecture slides (some
narrated via the Camtasia tool), syllabus, lectures,
and assignments, can be found on OpenSeminar.

Attributes of the semester project

Throughout the semester, the students enhance
the functionality of a software application. This
application carries through all homework assign-
ments and the team project. To help create an
environment reflective of industry, we create
projects that have several attributes: social rele-
vancelpracticality, security implications, privacy
concerns and maintenancelenhancement experience.

We focus on making our assignments mean-
ingful, practical and socially relevant [21]. For
example, the course projects in recent years have
included a system for managing the assignments of
social work students to community organizations,

* http://lwww.eclipse.org
t http://www junit.org. JUnit is an open source, white-box
unit testing framework.

1 http://agile.csc.ncsu.edu/iTrust/
§ http://fit.c2.com. FIT is an open source framework for
automating functional and/or acceptance tests.

662 L. Layman et al.

a web portal for managing and disseminating data
collected from a state forest, and a role-based
healthcare application.

The students are taught to build security into
their software [22, 23] via software engineering
practices. Typically, the semester project is a
web-based application. Web-based applications
are common in today’s industry and provide the
ideal development environment to demonstrate
security vulnerabilities and attacks such as SQL
injection. Students also learn how to prevent such
security vulnerabilities through input validation,
information hiding, and the use of prepared state-
ments.

Privacy concerns are some of the most pervasive
issues in software development today. Students
must learn the importance of developing software
that is compliant with privacy legislation and
business privacy policy. The iTrust health-care
project used in our course has significant privacy
concerns. The students analyze the iTrust require-
ments for compliance with Health Insurance Port-
ability and Accountability Act of 1996 (HIPAA¥*)
and then implement or enhance functionality with
role-based access consistent with the associated
privacy requirements.

Finally, the projects used in our course focus on
maintenance and enhancement, rather than imple-
menting a new project from scratch. Most students
who enter industry will take on a testing or
maintenance role, rather than be put on a ‘Green-
field” project (indeed, very few developers
anywhere work on exclusively new code). The
projects we provide to the students contain ad-
equate JUnit and FIT automated tests to maintain
the integrity of the existing system as it is modified.
The provided tests also demonstrate to the
students the necessity of regression testing as the
students will inevitably break an existing test while
enhancing or refactoring existing functionality.

The first nine weeks.: Software engineering
practices

The course exposes students to a range of soft-
ware development practices that span both agile
and plan-driven software development processes.
During the first nine weeks of the class, students
learn software development practices in a process-
neutral way. For example, students learn three
different ways to document requirements: the
traditional ‘the system shall’ approach, use cases/
features, and user stories. The class discusses the
pros and cons of each of the three forms by
considering the time investment, thoroughness,
and specificity of each, and the characteristics of
the project/team for which each of the three types
might be appropriate. Students learn about
requirements, design, and testing principles,
including specific practices such as pair program-
ming, inspections, white box testing, configuration
management, and more. By teaching the students a

variety of tools and discussing the pros and cons of
each in a process-neutral way, we give the students
the basis for deciding which tools and practices to
apply in a given scenario.

Testing is the first subject taught in the class,
and the students learn a variety of black-box and
white-box strategies and tools. By teaching testing
first, the students are provided with a gentle
introduction to the application they will be enhan-
cing throughout the semester. The students learn
about the operational behavior of the system
through black-box tests of the system where they
are challenged to act as a normal user and find
bugs in the behavior of the system. The students
are then introduced to the architecture, design, and
control flow of the system through white box
testing exercises. After testing is introduced, the
other software development practices are intro-
duced in an order commensurate with the Water-
fall model.

During the first nine weeks of the class, the
students are given four homework assignments
lasting one to three weeks each. Each of these
assignments builds upon the previous assignment
and leads into the team project.

Assignment 1—Personal Web Page. The first
assignment is to create a personal webpage that
is linked from a password-protected class webpage.
Students can learn about their partners and team-
mates and view their schedules by looking at these
web pages.

Assignment 2—Testing Focus. This assignment is
completed in pairs. The TAs assign pairs within the
lab sections, respecting students’ input on who
they do not wish to work with, but not specifically
allowing students to choose their partners. In the
laboratory, the students are shown for the first
time the application they will be enhancing
throughout the semester. The students are given
the application to test, the requirements for the
application, a black box test plan, and extensive
JUnit and FIT tests for the application. Prior to
this assignment, students learned about black box
exploratory testing [24] in lecture. All pairs per-
form testing on the application and report failures
via the Bugzillat bug tracking tool. The failures are
not intentionally injected but are inevitably found
by the students. The assignment requires the
students to write a white-box JUnit and black-
box FIT test to reveal each of the ten defects.
The students must then fix the implementation,
thereby passing the new JUnit and FIT tests.

Assignment 3—Design Focus. In Assignment 3, the
students enhance the application by implementing
new functionality using one of the design patterns
[25] that has been discussed in lecture. The third
assignment is also done in assigned pairs. As such,
the students need to decide whose Assignment 2

* http://www.hhs.gov/ocr/hipaa/

t http://www.bugzilla.org/

Addressing Needs through Agile and Plan-driven Software Development Methodologies 663

project to enhance based upon each student’s
confidence in his or her previous project. Having
two projects to choose from also aids in the case
where a student may have had problems complet-
ing the prior assignment. The need to continue to
enhance a product is a painful lesson for some
students but also a lesson in the realities of
industrial software development. The two-week
assignment progresses in a mini-waterfall metho-
dology as follows:

® Week 1: Students are given requirements state-
ments and must turn in a black box test plan,
FIT tables which outline the automation of at
least three test cases/requirements, and a class
diagram of their design, which demonstrates the
use of the specified design pattern.

® Week 1 laboratory: Students exchange designs
with another pair and peer critique each other’s
design. The lab TA chooses a particularly good
design and reviews its positive attributes with
the lab group.

® Week 2: Students turn in complete implementa-
tion of the new requirement, including 80%
JUnit statement coverage and a minimum of
three automated FIT tests per requirement.

Assignment 4—More Design Focus. The final
homework assignment is completed individually
by the students and follows the same weekly
layout as Assignment 3. The students further
enhance the same application but, for this assign-
ment, the requirements are in the form of use cases
[26] and students are required to turn in a UML
sequence diagram for each use case. The scope of
the requirements is scaled back since students are
working individually instead of in pairs. This
assignment gives the teaching staff the ability to
review the students’ performance on a program-
ming assignment when working alone.

The transition week: Composing practices into
methodologies

After learning software development practices in
the first nine weeks, several lectures focus on how
these practices are grouped in different ways to
form software processes. Utilizing one set of
practices in a particular way results in a traditional
Waterfall model; using a different set of practices
composes Extreme Programming (XP) [15]; yet
another different set of practices comprises the
Team Software Process (TSP) [28], and so forth.
The students learn that the practices are the
building blocks for the processes, and the best
process for a particular project and team should
be chosen based upon the specifics of the project
and the context and demographics of the team.
Specifically, the students learn to choose between
an agile methodology, a plan-driven methodology,
or the creation of a hybrid methodology using a
risk-based approach purported by Boehm and
Turner [29].

The last six weeks: Team project

During the last six weeks of the semester, the
students work in teams to further enhance the
semester project in more significant ways. The
students are placed in groups of four or five and
are given a requirements specification, access to a
version control system, and any other technologies
they may need. As with Assignment 3, the students
must choose which team member’s project to
enhance for the team project.

The teams follow an agile software development
methodology resembling XP (including pair
programming, unit testing, informal requirements,
short iterations, and some other practices) due to
the match between the project/team and the
context in which XP works best (small, co-located,
object-oriented programmers [27, 30]). Addition-
ally, each student is assigned a team role, as is laid
out in the TSP [28]:

® Team leader: leads the team and ensures that
engineers report their progress data and com-
plete their work as planned.

® Development manager: leads and guides the team
in product design, development, and testing.

® Planning manager: supports and guides the team
in planning and tracking its work.

® Qualitylprocess manager: supports the team in
defining the process needs and establishing and
managing the quality plan.

® Support manager: supports the team in deter-
mining, obtaining, and managing the tools
needed to meet its technology and administra-
tive support needs.

Students are required to build a system accord-
ing to the requirements (stated as user stories),
thoroughly test the system, and create user docu-
mentation. Students must use at least one design
pattern in their final project. The project covers the
entire scope of the course thus far and also requires
the students to assimilate some external technical
knowledge on their own, manage time schedules,
assign tasks, debug and troubleshoot. The teaching
staff’s role during the project is to answer require-
ments-related questions, to resolve technical issues,
and to handle the problem of non-participatory
students.

An important aspect of the project is the
required weekly progress reports. At the end of
the first week, the teams submit a Software Project
Management Plan (SPMP). The SPMP lays out
how their team will be organized, their configura-
tion management/change tracking procedures,
their choice of design pattern, and their prelimin-
ary schedule for completion. In the first week, the
team also creates a team website upon which they
are required to post a weekly Risk Analysis Form
(RAF). Each week, on the RAF the students
delineate each person’s contribution for the prior
week and the actual time spent for each contribu-
tion. They also lay out each person’s responsibil-
ities for the next week. Finally, they list the team’s
top ten risks for completing the project.

664 L. Layman et al.

In lab each of the following weeks the students
start out by having a Scrum/stand up meeting in
which they all stand in a circle and say what they
had accomplished in the past week, any problems
they had, and what they will work on next. The
teams also meet with their lab section’s TA,
demonstrate the requirements completed the
prior week (and running the associated JUnit and
FIT test cases), and discuss a set of requirements
that they will implement in the coming week and
that week’s posted RAF. At the end of each weekly
iteration, the teams are graded on how much they
have accomplished on their chosen user stories.
This encourages the students to begin work on the
project early and to work consistently, rather than
procrastinate.

While some students complain about the
amount of work required on the project, many
also say that it is the most enjoyable part of the
course. The students’ motivation is increased due
to a project demonstration and competition at the
end of the semester. In the final lab session, each
team demonstrates their completed project to the
class. Students get to see a myriad of solutions and
user interfaces for the same requirements. The lab
section votes on the best project. The teaching staff
considers this popular vote in the choice of the best
project for the laboratory. The teaching staff also
reflects on how well the team worked together, the
quality of the team documentation, and how well
the team kept on schedule throughout the six
weeks. The team who had the best project in the
laboratory gets 5 points added to their final exam
grade and continues to the finalist competition in
lecture on the final day of class. The overall class
winner is awarded 10 points added to their final
exam grade as well as a small gift.

Ensuring collaborative participation

At the end of each paired homework assignment
and twice during the project, students are required
to evaluate their partners using the PairEval*
system. Based upon the peer rating system by
Kaufman et al. [31], the students are asked to
choose one of the 13 key words in the bullets
below (short descriptions are provided to the
students as well) to describe the contribution of
his or her partner:

1. Excellent. Consistently went above and
beyond—tutored teammates, carried more
than his/her fair share of the load

2. Very good. Consistently did what he/she was
supposed to do, very well prepared and coop-
erative

3. Satisfactory. Usually did what he/she was sup-
posed to do, acceptably prepared and coopera-
tive

4. Ordinary. Often did what he/she was supposed
to do, minimally prepared and cooperative

* http://agile.csc.ncsu.edu/pairlearning/paireval.php

5. Marginal. Sometimes failed to show up or
complete assignments, rarely prepared

6. Deficient. Often failed to show up or complete
assignments, rarely prepared

7. Unsatisfactory. Consistently failed to show up

or complete assignments, unprepared

Superficial. Practically no participation

No show. No participation at all

o

Students can also provide a textual explanation
of the rating. If a student gives their partner a low
overall rating (e.g. ‘Marginal’ or below), the part-
ner is flagged and the teaching staff can review the
evaluation more carefully. If the comments in the
PairEval system suggest that one partner did not
sufficiently participate in the homework assign-
ment or project, then the professor will speak
with the students involved to determine if any
action needs to be taken. If, after investigation,
the professor determines that a student made little
or no effort on a partnered assignment, he or she
will have his or her grade reduced accordingly and
the partner’s grade will be correspondingly
increased. In our extensive experience with pairing
students for homework assignments, prompt
attention and severe consequence are essential for
bringing potential ‘freeloaders’ back into contri-
buting fairly to the success of the project. After the
instructor handles a few of such instances, an
environment of participation is created in the
classroom and instances of freeloading become
rare (though not nonexistent).

ENGAGING A DIVERSITY OF STUDENTS

Our approach to teaching software engineering
is meant to give our students a diverse skill set to
prepare them for their careers. As educators, we
are concerned that our methods not only teach
diverse skills, but also reach the diversity of
students in our classroom. If you ask the average
person in the United States what a computer
science student looks like, that person will prob-
ably describe a nerdy, introspective, white male. A
glance into the computer science classroom will
undoubtedly produce such a specimen (or two or
three), but the class will also have women, an
assortment of ethnic minorities, and trendy, well-
adjusted white males. Beyond the obvious surface
differences, there are personality traits, learning
styles, and career goals that are as varied among
these students as the song lists on their MP3
players. What both the casual observer and the
course instructor may not understand is that this
plethora of students has vastly different learning
needs and expectations.

We collected a variety of data to help paint a
picture of the diversity of students in our class-
room. The data collection process preserved indi-
vidual student privacy rights and is FERPA
compliant. Students’ demographic information
was obtained voluntarily, and participation in the

Addressing Needs through Agile and Plan-driven Software Development Methodologies 665

study had no bearing on the students’ grades in the
software engineering course. The students who
opted to participate in the study signed Institu-
tional Review Board consent forms and could
specify which data could be used in the study
among gender, ethnicity, GPA, computer science
GPA, and SAT scores. Participation was solicited
by an investigator who was not a member of the
teaching staff.

Demographics from the students in the under-
graduate software engineering course at NCSU
collected from the Fall 2004, Fall 2005, Fall
2006, and Spring 2007 semesters are shown in
Table 1. There were a total of 253 students in
these four semesters. Approximately half of the
students at NCSU volunteered the gender and
ethnicity information. Less than 8% of these
students were non-Asian minorities, and only
about 10% were women.

Collaboration and conscience—meeting the needs
of the Millennial generation, women, and ethnic
minorities

The emphasis on a socially relevant and prac-
tical project throughout the software engineering
course is intentional. Sociologists have found that
women feel compelled to find a means of serving
others and work at this all their lives; doing so
makes them comfortable and satisfied [32]. Other
studies have found that ethnic minorities place
similar importance on ‘giving back’ to their
communities through socially-conscious work
[33]. Furthermore, the U.S. Millennial generation
as a whole tends to place special importance on
social networks and interpersonal relationships
and want to do ‘something that matters’ with
their lives [34].

Collaboration on homework assignments and
the class project, and active learning in the lab
sessions are of paramount importance in our soft-
ware engineering course. This emphasis is also
grounded in students natural learning needs.
Millennials’ learning preferences tend toward
teamwork and experiential learning, and their
strengths include a collaborative style of working
[34, 35]. They often learn better through discovery
rather than by being told, and they prefer learning

through participation rather than by learning by
being told what to do [35]. Other studies have
indicated that female students are concerned
about the insularity of working alone for long
periods of time, as they perceive to be the case
with computer science and IT careers [36-38].
Furthermore, research has also shown that the
success rate of under-represented minorities in
science courses can be improved dramatically by
shifting the learning paradigm from individual
study to one that capitalizes on group processes,
such as student work groups and student—student
tutoring [39, 40].

Beneath the surface—diverse personality types and
learning styles

The Myers—Briggs personality types [41] have
served as a popular means of characterizing per-
sonality traits in both the classroom and the work-
place. A considerable amount of work has been
published on Myers—Briggs personality types in
engineering education (e.g. [8, 9, 42]). Despite
criticism for the unreliability of some personality
tests, their misapplication, and lax experimental
methods [43], the concepts behind personality
types remain a valuable way of understanding
the many dimensions upon which students can
differ. The Myers—Briggs scale has four dimen-
sions: Introvert-Extravert, Sensing—Intuition,
Thinking-Feeling, and Judging—Perceiving (see
the Appendix for a summary of each). Each
dimension has different implications for teaching
and learning. Similarly, the Felder—Silverman
learning styles have been used to help students
understand their own learning needs and to help
professors better tailor their courses to different
types of students [44]. The purpose of these learn-
ing styles is to help characterize the way in which
students absorb and retain information. The
Felder-Silverman scale has four dimensions:
Active—Reflective, Sensing-Intuitive, Visual-
Verbal, and Sequential-Global (see the Appendix
for a summary of each).

Appealing to the many different types of per-
sonality types and learning styles can seem daunt-
ing. Traditional classrooms inherently seem to
favor certain types over others, such as favoring

Table 1. Demographics of NCSU software engineering students

Millennial* Gender Ethnicity

Yes 74.7% Female 9.9% African 2.2%
American

No 25.3% Male 90.1% American 2.2%
Indian/Alaskan
Asian/Pacific 6.5%
Islander
Hispanic 2.9%
White 86.2%

Total 253 Total 142 Total 139

Response ratef 100.0% Response rate 56.1% Response rate 54.9%

* Millennial students are those born in 1982 or later.

T Age is not protected information.

666 L. Layman et al.

Intuitors, who prefer concepts, by speaking of
general theories while neglecting the concrete
data that helps Sensors. The structure of our soft-
ware engineering course favors a more balanced
approach in a number of ways. A balance of
individual and collaborative work appeals to
Introverts and Extraverts, and the hands-on lab
sessions appeal to Active learners while periodic
questions in lecture can be helpful to Reflective
learners. Concepts are presented in lectures for
Intuitors, and the implementation of these
concepts is explored in labs for Sensors. For the
Thinkers, who make decisions based on rationale
and logic, we present course materials objectively
and provide systematic comparisons of techniques,
while for the subjectively-minded Feelers, we place
special emphasis on the importance of collabora-
tion and community. The orderly Judgers have
structured syllabi and delinecated expectations,
while the flexible Perceivers are afforded the
opportunity to adapt in a less rigid agile software
development process. We provide written notes
and lecture slides for the Verbal learners, supple-
mented by charts and diagrams for the Visual
learners. In the classroom and labs, topics flow
from one to the other (and are often revisited) for
the benefit of the Sequential learners while, for the
Global learners, we draw on outside disciplines for
project inspiration and for problems analogous to
those in the software domain.

All students in the undergraduate software en-
gineering course at NCSU from 2004 to 2006
academic years took an online Myers—Briggs
test* and the Index of Learning Styles Ques-
tionnairet as part of their first homework assign-
ment. The same is true of students in software
engineering courses that followed our structure at
North Carolina A&Ti (NCAT) and Meredith
College§ during Spring 2005 and Spring 2006.
The results were recorded by the students in the
PairEval system. The data were screened for pos-
sible falsified entries prior to analysis by examining
for students’ Myers—Briggs scores for entries that
did not match the discrete numerical values pos-
sible for this test. After the screening, we had 396
and 405 Myers—Briggs and Learning Styles
responses respectively. Some students who
completed the Index of Learning Styles Question-
naire did not complete the Myers—Briggs test. The
Myers—Briggs and Learning Styles responses are
shown in Table 2. The varied approach to the
software engineering course helps us to respond
to the varied needs of our diverse set of students.

Student reaction and course impact
The student response to the course has been

* http://www.humanmetrics.com/cgi-win/JTypes2.asp. This
test has not been evaluated for reliability.

1 http://www.engr.ncsu.edu/learningstyles/ilsweb.html. A
thorough reliability evaluation may be found in [45].

1 http://www.ncat.edu

§ http://www.meredith.edu

favorable. We conducted interviews with students
taking the course and reviewed course retrospec-
tives to gain insight on the student-perceived
benefits of the course and to understand how we
can further improve the course. For more student
responses to the course, particularly those of
women and ethnic minorities, please see [46-48].
The importance of real-world, practical projects
was appreciated by the students.

A lot of projects done in school seem to miss on
usefulness. However, right from the go it was clear the
usefulness and importance of our project. [48]

I liked how it was something that would actually be
used by people and not some moronic assignment that
calculates deer population that has no relevance to the
real world.

Collaboration with peers and a lab environment
that enabled the students to work as teams on a
common project was also appreciated.

You can share each other’s knowledge like sometimes
it’s better to learn from your peers than from the
instructor because they might know how to relay it
better. So when you’re working in groups you're also
learning. [46]

I went for an interview with this company . . . he
showed me the [Extreme Programming] area, where
they do pair programming and it looked just like
where we had the lab. That amazed me . . .I saw
people programming together and right there I just
wanted to work for the company, I wanted to quit
school and start working with them.

While we were not enthusiastic of the ‘quitting
school’ part, this student quote captures the impor-
tance of collaboration and what a strong motiva-
tor and enabler it can be to student interest and
learning.

Statistical analysis of class performance

The emphasis on a balanced of agile and plan-
driven techniques, individual and group work,
hands-on and hands-off learning also brought a
balance to the student’s performance in the course.
Previous studies have suggested that students with
particular personality types and learning styles,
typically Sensors, Perceivers, Active learners, and
Verbal learners, do not perform as well as their
peers in engineering courses [5-9].

We compared the means of the students’ total
class grades in all MBTI and LS dimensions (e.g.,
Extravert vs. Introvert, Visual vs. Verbal). To
assure that we could legitimately collate the data
from all semesters, we first performed chi-square
tests, which yielded no statistically-significant
differences at the p < 0.05 level in the distributions
of the dimensions across all semesters. To ensure
that we used the appropriate statistical test for
comparing means, all MBTI and LS dimensions
were assessed for non-normality using the
Shapiro-Wilk test, and only the Sensing—Intuitive
dimension on the LS scale had a non-normal class
score distribution. We then used t-tests for all
normally-distributed populations, and the non-

Addressing Needs through Agile and Plan-driven Software Development Methodologies 667

Table 2. Personality type and learning style categorical breakdown

Myers—Briggs type indicators®

Felder-Silverman learning styles

Category Type Category Type
E—Extraversion 45.5% ENFJ 9.9% A—Active 44.4% ANBG 0.5%
I—Introversion 54.5% ENFP 1.3% R—Reflective 55.6% ANBQ 1.7%
ENTJ 16.9% ANVG 8.1%
S—Sensingt 34.9% ENTP 1.8% S—Sensingt 57.8% ANVQ 6.4%
N—Intuition" 65.1% ESFJ 4.0% N—Intuition" 42.2% ASBG 0.5%
ESFP 1.0% ASBQ 1.5%
T—Thinking 72.7% ESTJ 9.3% V—Visual 80.5% ASVG 7.7%
F—Feeling 27.3% ESTP 1.3% B—Verbal 19.5% ASVQ 18.0%
INFJ 4.3% RNBG 3.0%
J—Judging 81.8% INFP 1.0% G—Global 39.0% RNBQ 2.5%
P—Perceiving 18.2% INTJ 21.7% Q—Sequential 61.0% RNVG 10.4%
INTP 8.3% RNVQ 9.6%
Sample size 396 ISFJ 4.5% Sample size 405 RSBG 3.0%
ISFP 1.3% RSBQ 6.9%
ISTJ 11.1% RSVG 5.9%
ISTP 2.3% RSVQ 14.3%

* Accuracy of the estimates of this test is not available. The Felder-Silverman ILS questionnaire was formally assessed for

reliability [43].

T Differences in the distribution of the Sensing—Intuition dimension are the likely result of construct differences between the

typology and ILS questionnaires.

parametric Wilcoxon—-Mann—Whitney test for the
non-normal population to test for differences in
means. No statistically significant differences in the
mean total score were found along any dimension at
the p < 0.05 level.

We also looked for any difference in the perfor-
mance of Millennials vs. non-Millennials. Interest-
ingly, there was a statistically significant difference
in the performance of Millennials and non-Millen-
nials—the Millennials as a whole performed better
by an average of 3.5%. This finding bears further
investigation as we desire for all students groups to
perform equally well. We again conducted tests to
ensure the reliability of the analysis. We found that
the Fall 2004 semester had statistically signifi-
cantly more non-Millennials than the other seme-
sters (chi-square). We also found that the Fall 2005
semester generally received a lower overall grade
(ANOVA). The net effect of these differences is to
increase the mean non-Millennial score in our
data. Since a statistically significant difference in
the mean scores of Millennials and non-Millen-
nials exists despite this increase, we assume our
tests are valid. Unfortunately, the small sample
size of women and ethnic minorities was too small
and varied for an analysis of the distribution to be
informative.

CONCLUSIONS

For the last seven years, we have evolved a core
undergraduate software engineering class that
prepares students for the demands of industry by
inculcating them with sound software engineering
practices that bridge both traditional plan-driven
and newer agile practices. We have presented the
content layout of the course, the progression of
topics, and the facilities used in our course. We

have also discussed the diverse learning needs of
today’s Millennial students, women, ethnic mino-
rities and a variety of personality types and learning
styles. Whereas previous studies had shown
systematic differences in the performance of differ-
ent personality types and learning styles [5-9], our
analysis suggests that all types perform equally well
in this course. Women, minorities, and under-repre-
sented personality types and learning styles have
commented on the success of this course at ad-
dressing their specific needs [41-43]. The spectrum
of students in our course reinforces the need for a
new pedagogy conscious of this diversity. We recog-
nize that there are some groups that we have not
specifically addressed in this paper, such as foreign-
language students, students with disabilities, and
continuing education students.

Through collaboration, hands-on learning, and
a focus on practicality, we have striven to create an
environment that is effective at engaging students
and fostering further interest in the computer
science discipline. We have also created a course
whose content provides the students with a wide
variety of tools and techniques to prepare them
better for the diverse needs of an evolving software
industry. We hope that educators will expand and
improve upon the techniques and ideas used in our
software engineering class for other computer
science courses.

SUMMARY

The software industry uses a mixture of plan-
driven and agile techniques, and educators must
prepare students for industry needs while creating
an effective educational environment that appeals
to a diverse student population. We describe the
undergraduate course in software engineering at

668

North Carolina State University, which teaches
both agile and plan-driven practices while emphas-
izing collaborative and active learning. We present
demographics, personality types, and learning
styles from 400 students, and provide statistical
analyses and student testimonials on the impact of
our course. Students have reacted favorably to the
course and are better prepared to meet the diverse

L. Layman et al.

Acknowledgements—We would like to thank Barry Koster of
Meredith College and the late Sung Yoon of North Carolina
A&T for their invaluable contributions to this study, as well as
Jason Osborne for his helpful advice. This material is based
upon the work supported by the National Science Foundation
under Grants ITWF 00305917 and BPC 0540523. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

needs of industry.

1

REFERENCES

. B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for the Perplexed, Addison
Wesley, Boston, MA, (2003).

2. A. Cockburn, Agile Software Development, Addison Wesley Longman, Reading, MA, (2001).
3. J. Sargent, An overview of past and projected employment changes in the professional it
occupations, Computing Research News, 16(3), 2004, pp. 1-21.
4. Computing Research Association, 2005-2006 Taulbee survey, Computing Research News, 19(3),
2007, pp. 7-22.
5. L. Thomas, M. Ratcliffe, J. Woodbury and E. Jarman, Learning Styles and Performance in the
Introductory Programming Sequence, SIGCSE °02, (2002) pp. 33-37.
6. J. Allert, Learning Style and Factors Contributing to Success in an Introductory Computer Science
Course, IEEE International Conference on Advanced Learning Technologies (ICALT ’04), (2004)
pp. 385-389.
7. R. M. Felder, G. N. Felder and E. J. Dietz, The effects of personality type on engineering student
performance and attitudes, Journal of Engineering Education, 91(1), 2002, pp. 3-17.
8. E. S. Godleski, Learning Style Compatibility of Engineering Students and Faculty, Frontiers in
Education (FIE '84), (1984) pp. 362-364.
9. M. H. McCaulley, The MBTI and individual pathways in engineering design, Journal of
Engineering Education, 80, 1990, pp. 537-542.
10. B. Boehm, Get ready for agile methods, with care, IJEEE Computer, 35(1), 2002, 64-69.
11. W. W. Royce, Managing the Development of Large Software Systems: Concepts and Techniques,
IEEE WESTCON, Ch. 3 (1970).
12. B. Boehm, A spiral model for software development and enhancement, Computer, 21(5), 1988,
pp. 61-72.
13. J. Highsmith, Agile Software Development Ecosystems, Addison-Wesley, Boston, MA (2002).
14. V. R. Basili and A. J. Turner, Iterative Enhancement: A practical technique for software
development, /EEE Transactions on Software Engineering, 1(4), 1975, pp. 266-270.
15. K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading, MA,
(2000).
16. K. Schwaber and M. Beedle, Agile Software Development with SCRUM, Prentice-Hall, Upper
Saddle River, NJ, (2002).
17. S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven Development, Prentice Hall
PTR, Upper Saddle River, NJ, (2002).
18. S. Ambler, Survey says . . . agile has crossed the chasm, Dr. Dobb’s Journal, 32(7), 2007.
19. L. Williams and R. Kessler, Pair Programming Illuminated, Addison Wesley, Reading, MA, (2003).
20. M. Rappa, S. E. Smith, A. Yacoub and L. Williams, OpenSeminar: Web-based collaboration tool
of open educational resources, International Conference on Collaborative Computing (Collabor-
ateCom 05), (2005).
21. L. Layman, L. Williams and K. Slaten, Note to self: make assignments meaningful, 4ACM
Technical Symposium on Computer Science Education (SIGCSE '07), (2007) pp. 459-463.
22. M. Howard and S. Lipner, The Security Development Lifecycle, Microsoft Press, Redmond, WA,
(20006).
23. G. McGraw, Software Security: Building Security In, Addison-Wesley, Upper Saddle River, NJ,
(2006).
24. C. Kaner, J. Bach and B. Pettichord, Testing Computer Software, Wiley, New York, (1999).
25. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, MA, (1995).
26. 1. Jacobson, M. Christerson, P. Jonsson and G. Overgaard, Object-Oriented Software Engineering:
A Use Case Driven Approach, Addison-Wesley, Wokingham, UK, (1992).
27. K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading, MA,
(2005).
28. W. S. Humphrey, Introduction to the Team Software Process, Addison Wesley, Reading, MA,
(2000).
29. B. Boehm and R. Turner, Using risk to balance agile and plan-driven methods, /EEE Computer,
36(6), 2003, pp. 57-66.
30. R. Jeffries, A. Anderson and C. Hendrickson, Extreme Programming Installed, Addison Wesley,
Upper Saddle River, NJ, (2001).
31. D. B. Kaufman, R. M. Felder and H. Fuller, Peer Ratings in Cooperative Learning Teams,
American Society for Engineering Education, (1999).
32. J. Margolis and A. Fisher, Unlocking the Clubhouse: Women in Computing, The MIT Press,

Cambridge, MA, (2002).

Addressing Needs through Agile and Plan-driven Software Development Methodologies

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

The Myers—Br

. S. Shue, J. L. Vest and J. Villarreal, Philanthropy in Communities of Color, Indiana University
Press, Bloomington, IN, (1999).

D. Oblinger, Boomers, Gen-Xers, and Millennials: Understanding the New Students, Educause
Review, 38(4), 2003, pp. 37-47.

D. Oblinger and J. Oblinger, Is It age or IT: First steps toward understanding the net generation, in
Educating the Net Generation (D. G. Oblinger and J. L. Oblinger, Eds.), Educause, (2005).

J. Margolis and A. Fisher, Geek mythology and attracting undergraduate women to computer
science, Joint National Conference in Engineering Program Advocates Network and the National
Association of Minority Engineering Program Administrators, (1997).

American Association of University Women Education Foundation, Educating Girls in the
New Computer Age, http://www.aauw.org/member_center/publications/TechSavvy/TechSavvy.pdf,
(2000).

P. Freeman and W. Aspray, The Supply of Information Technology Workers in the United States,
http://www.cra.org/reports/wits/cra.wits.html, May 31, (1999) (viewed 2007).

C. E. Nelson, Student diversity requires different approaches to college teaching, even in math and
science, American Behavioral Scientist, 40(2), 1996, pp. 165-175.

U. Treisman, Studying students studying calculus: A look at the lives of minority mathematics
students in college., The College Mathematics Journal, 23(5), 1992, pp. 362-372.

G. Lawrence, People Types and Tiger Stripes, Center for Applications of Psychological Types,
Gainesville, FL, (1994).

A. Thomas, M. R. Benne, M. J. Marr, E. W. Thomas and R. M. Hume, The Evidence remains
stable: The MBTI predicts attraction and attrition in an engineering program, Journal of
Psychological Type, 55, 2000, pp. 35-42.

S. McDonald and H. M. Edwards, Who should test whom?, Communications of the ACM, 50(1),
2007, pp. 66-71.

R. M. Felder and L. K. Silverman, Learning and teaching styles in engineering education, Journal
of Engineering Education, 78(7), 1988, pp. 674-681.

R. M. Felder and J. Spurlin, Applications, reliability and validity of the index of learning styles,
International Journal of Engineering Education, 21(1), 2005, pp. 103-112.

L. Williams, L. Layman, K. M. Slaten, C. Seaman and S. B. Berenson, On the impact of a
collaborative pedagogy on african-american millennial students in software engineering, Interna-
tional Conference on Software Engineering (ICSE '07), electronic proceedings (2007).

K. Slaten, M. Droujkova, S. Berenson, L. Williams and L. Layman, Understanding student
perceptions of pair programming and agile software development methodologies: Verifying a
model of social interaction, Agile 2005, 2005, pp. 323-330.

L. Layman, T. Cornwell and L. Williams, Personality types, learning styles, and an agile approach
to software engineering education, ACM Technical Symposium on Computer Science Education
(SIGCSE '06), (2006) pp. 428-432.

APPENDIX

iggs scale has four dimensions:

669

® [ntrovert—Extravert. Introverts are generally introspective and are energized by spending time alone,
whereas extraverts thrive in a group setting.
® Sensing—Intuition. Sensors prefer information gathered through experience and are attentive to details,
while intuitors prefer abstract concepts and are bored by details, preferring innovative thoughts instead.
® Thinking—Feeling. Thinkers rely on objective rationalization to make decisions and are considered to be
impartial, whereas feelers are more likely to make subjective decisions based on social considerations
rather than strict logic.
® Judging—Perceiving. Judgers are typically orderly people who prefer rigid structure and planning but may
ignore facts that do not fit their plan or structure, whereas perceivers do little planning and work
spontaneously but are more open to facts that do not conform to their views.

The Felder-Silverman scale has four dimensions:

Active—Reflective. Active learners learn best by experimentation and working with others, while reflective
learners learn more by thinking things out on their own.

Sensing—Intuitive. The sensing—intuitive dimension is intended to be the same as in the Myers—Briggs scale.

Visual-Verbal. Visual learners absorb information best through pictures, graphs, and charts, whereas verbal

learners prefer

written or spoken explanations.

Sequential-Global. Sequential students learn in orderly, incremental steps with one point or fact connecting
to the next, whereas global learners have trouble learning fact-by-fact and learn in cognitive leaps after
accumulating all the facts.

Lucas Layman is a Ph.D. candidate in the Department of Computer Science at North
Carolina State University. He earned his B.S. in computer Science from Loyola College and
his M.S. from N.C. State University. His research has focused on empirical software

670

L. Layman et al.

engineering and agile software development techniques, the psychology of computer
programming, and computer science education issues specifically relating to women and
ethnic minorities. He recently interned at Microsoft Research studying collaboration in
software development, software reliability, and software process management.

Laurie Williams is an Associate Professor at North Carolina State University. She received
her undergraduate degree in Industrial Engineering from Lehigh University. She also
received her MBA from Duke University and her Ph.D. in Computer Science from the
University of Utah. Prior to returning to academia to obtain her Ph.D., she worked in
industry, for IBM, for nine years. Dr. Williams is the lead author of Pair Programming
Illuminated and a co-editor of Extreme Programming Perspectives. Dr. Williams has done
several empirical studies on Extreme Programming and its development practices, pair
programming and test-driven development.

Sally Berenson is the Yopp Distinguished Professor of Mathematics Education in the
Department of Curriculum and Instruction at the University of North Carolina Green-
sboro and directs the Center for Research in Mathematics and Science Education. Dr.
Berenson’s current research has focused on examining young women’s persistence and
career interest in mathematics and information technology. In addition to these gender
studies, Dr. Berenson pursues studies in mathematics teacher preparation working to
integrate content and pedagogy. She has published numerous articles on Lesson Plan Study
and the application of this research tool to undergraduate instruction in order to build a
model of how prospective math teachers learn what and how to teach.

Kelli M. Slaten is an Assistant Professor of Mathematics Education in the Mathematics and
Statistics Department of the University of North Carolina Wilmington. She is also the
Director of Secondary Mathematics Education. Her research interests include the teaching
and learning of mathematics through the use of multiple representations and the use of
technology, gender and cultural issues in education, and qualitative research methods. She
received her Ph.D. in Mathematics Education from North Carolina State University in
2006.

Miaden A. Vouk received his Ph.D. from King’s College, University of London, UK. He is
Department Head and Professor of Computer Science, and Associate Vice Provost for
Information Technology at N.C. State University, Raleigh, NC, U.S.A. He has extensive
experience in both commercial software production and academic computing. He is the
author/co-author of over 200 publications. His research and development interests include
software reliability engineering, scientific workflows and computing, information technol-
ogy assisted education, and high-performance virtualized computing systems and networks.
He is an IEEE Fellow, and recipient of the IFIP Silver Core award.

