
An Environment to Help Develop
Professional Software Engineering Skills
for Undergraduate Students*

RUBBY CASALLAS AND NICOLAÂ S LOÂ PEZ
Departamento de Sistemas y ComputacioÂn Universidad de los Andes, BogotaÂ, Colombia
E-mail: rcasalla@uniandes.edu.co

In this paper, we present a strategy to help students develop the necessary skills to become effective
software engineering professionals. We created a software engineering group, called QualDev,
composed mostly of undergraduate students. QualDev places students on real software projects, but
with some features to ease their control and evaluation. Our educational strategy is to use active
teaching/learning methodologies that enable us to create scenarios with regular self-assessment.
There are many challenges related to setting up and maintaining such a software development
team; we relate our experience in creating and evolving the QualDev group, its organization,
projects, methodologies, and processes.

Keywords: software engineering education; team work; active learning; collaborative learning

INTRODUCTION

EDUCATORS meet many challenges in defining
software engineering courses, practicum or soft-
ware capstones projects. A number of authors [1,
2] have presented some of the issues involved in
helping students to develop the skills expected
from software engineers, such as the effective use
of processes and methodologies to ensure quality.

Beyond obtaining knowledge, the ultimate goal
of software engineering education is to help
students build their own toolbox full of well-under-
stood methodologies, procedures, teamwork prin-
ciples, metrics, computational tools, languages,
etc, as well as giving them the ability to determine
which tools to use in a given context.

The abilities and criteria for making these deci-
sions are much more complicated skills than the
ability to apply a specific method to build an
artifact. These skills are directly correlated with
many of the outcomes depicted by ABET as 3a±3k
[3]. Equipping students with these skills is a
difficult task, and even more so is assessing
whether or not this goal has been accomplished
[4]. Furthermore, these skills evolve continuously
during the professional life of a software engineer.
Therefore, as educators, we feel responsible for
helping students to initiate the development of
these skills.

Conversely, the SE2004 [5] presents a series of
knowledge areas in their curriculum guidelines for
undergraduate degree programs in software engin-
eering. Each area includes an extensive number of
topics that should be covered, each specified using

Bloom's attribute [6] as a topic that requires
knowledge, comprehension or application. Attri-
butes related to application for a topic require
students to develop the ability to use learned
material in new and real situations. Creating
environments that facilitate the development of
these abilities is a challenge for educators.

We have created a software development
group, made up of undergraduate students, called
QualDevy, which produces high quality open
source applications. The team develops tools in
the broad domain of software process support,
some of which have been successfully used in
real-world contexts. The users are members of
small sized software development companies as
well as other development groups within the
university, particularly students on various soft-
ware engineering courses. The QualDev group
receives feedback from these users and has to
deal with issues of change management.

Students in the QualDev team have acquired the
discipline of following processes based on Team
Software Process (TSP) [7] and agile methodolo-
gies. Students continuously evaluate the effective-
ness of the processes and propose adaptations,
aiming for continuous improvement; in addition,
tools developed in the team and other open source
tools support this improvement.

We established the QualDev group four years
ago and over 120 people, mainly students, have
participated as part of their undergraduate curri-
culum either as an elective course, during their
senior project, or both; therefore the students can
work in the group for one or two semesters.

* Accepted 24 April 2008. y http://qualdev.uniandes.edu.co

648

Int. J. Engng Ed. Vol. 24, No. 4, pp. 648±658, 2008 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2008 TEMPUS Publications.

By participating in the QualDev group students
have an opportunity to develop and apply the
skills needed by software engineering profes-
sionals. These skills include the experience of deal-
ing with real clients and, also, the students lead and
organize development teams, define their process
objectives, and are in charge of assessing their
fulfillment. Students can effectively get an under-
standing of how software processes, methodolo-
gies, and tools help to produce high quality
software. In this environment, they learn how to
work as members of a team and they have to deal
with negotiation issues.

The educational strategy for the group is the use
of active teaching/learning methodologies such as
collaborative learning and mentoring, which
makes it possible to create scenarios of regular
self-assessment of team functioning. Furthermore,
we have defined a structure that eases group
administration and control. The role of the instruc-
tor has changed, he or she is no longer in charge of
defining content and lectures, but is more of a
guide who gives advice on the identification of
objectives, supports students to achieve objectives
and gives counsel when issues arise.

The main difference from other software engin-
eering experiences for undergraduate students is
that they deal with not only the correct application
and use of processes, methods and tools, but also,
and more importantly, with the responsibility of
making decisions, and understanding and assessing
their consequences. Their decisions range from
negotiating plans and establishing commitments
to choosing design and technology alternatives.
Through all these decisions, students are aware
of quality issues, client requirements, project
restrictions, and ethical concerns.

There are many challenges related to setting up
and maintaining such a group. We need to balance
pedagogical and experiential aspects, and students
need to understand the usefulness of methodolo-
gies in a real context, albeit with restrictions that
enable control and assessment of these experiences.
Moreover, the team has a high turnover rate, since
many students enter and leave the group each
semester, which makes knowledge management a
critical issue. We have defined an induction
process supported by tutorials and guidelines; the
cornerstone of this process is a mentoring scheme
where seniors help novice students to become
productive quickly.

In this paper, we present our experience in
creating and evolving the QualDev group, our
organization, projects, methodologies, and
processes. We show how our strategy indeed
helps undergraduate students to develop skills
necessary for professional Software Engineering
practice correlated with the outcomes 3a±3k
recommended by ABET [3]. Furthermore, our
approach provides an environment where students
develop abilities in some of the most challenging
areas of the SE2004 guidelines such as software
configuration management and software quality.

Additionally we discuss how we have confronted
the challenges to create this environment and the
lessons learned in this process. Specifically, we
show how the team successfully implemented
some strategies such as the mentoring scheme
and have made it possible to establish a team
that is self-organizing, self-evaluating, self-regu-
lated and continuously learning.

THE CHALLENGES

This section presents the challenges we experi-
enced in building an environment that sustains the
development of the skills needed for students to
become software engineers. By building this en-
vironment, we try to fulfill some of the needs
pointed out in [8].

Real but controlled software projects
Most real world projects are ongoing and last

for more than four monthsÐthe length of a term;
furthermore, a developer entering a software
company usually has to begin working on a project
that has already started and may be a development
or maintenance one. Thus, a professional software
engineer should be able to interact with clients,
other project members, and project documentation
to understand, maintain, and evolve the software
under construction.

A common strategy to reproduce this environ-
ment is to have students interact directly with
clients and during a period work on a complete
development cycle that ends with the delivery of a
finished product. Most co-op schemes are carried
out in this way, and it is a perfectly valid approach
for gaining experience on certain aspects.

However, this situation might not be ideal for
other reasons [9, 10]. First, commitment with client
requirements and deadlines might overshadow the
importance of other aspects of the process.
Secondly, delivering a fully functional program
within a semester might not be realistic: industrial
projects are usually too long and demanding for
undergraduate students. Lastly, during this learn-
ing phase, students should give equal or superior
weight to other aspects of the process than to client
needs.

Our challenge is to provide more control on how
this relationship with clients is carried out. Exter-
nal clients should help define requirements,
provide feedback on prototypes, and provide
change requests for existing applications. Never-
theless, project objectives, milestones, and evalua-
tion should not be exclusively related to client
needs; they should be set considering the achieve-
ment of learning objectives that aim at strengthen-
ing the skills of real software professionals.

With such a scheme, students can make deci-
sions and make mistakes when doing so that would
often be inadmissible to clients. For example, a
bad design or technology choice can result in an
unacceptable tool from a client's perspective;

Professional Software Engineering Skills for Undergraduates 649

however, it is a chance for students to understand
the impact and costs involved in these choices.

Effective teamwork
Students often have reservations towards team-

work because in previous experiences they have
not grasped the need for exploring collaboration
among their teammates beyond a typical `you do
that and I do this and the day before we just merge
our work'. Usually, students in CS/SE programs
dislike and avoid creating dependencies among
teammates because it is easier to place trust in
oneself than in others. Students need an environ-
ment that promotes positive interdependence and
encourages students to plan collaborative work,
dependencies and commit to their realization.

Furthermore, IT careers are usually perceived as
disciplines that do not promote group activities
[11]. However, this is not true for the software
engineering practice, which requires interaction
with clients, interdisciplinary teams and other
developers. Therefore, a challenge for our whole
community is to destroy the perception that soft-
ware development is a solitary activity by provid-
ing an environment where students can develop
teamwork and communication skills.

Inevitably, problems will arise with teamwork;
however, students need to learn how to handle
these situations and resolve them, rather than try
to avoid them. Thus, this environment should have
explicit mechanisms to handle situations that
involve students renegotiating their commitments
and values as much as development results [12].
That is, rather than punishing groups that have
teamwork issues, they should be rewarded for
properly handling these issues.

Responsibility and commitment to quality
A risk that we have when teaching software

process is that students need to place so much
attention on learning the process that not enough
time is left for them to understand the impact that
following a software process has on the software
quality. Learning the details of the process becomes
the main concern, thus hiding its effectiveness to
produce quality software. Because of this, students
have problems understanding the role that
processes have in ensuring high quality software.

This leads to a difficulty for students in integrat-
ing all the elements of the process in a coherent
way. Students need to witness the usefulness and
increase in productivity and quality when using a
process, instead of seeing it as an unnecessary
burden to develop software.

In a typical course, students begin with client
requirements and execute a development cycle
during the semester and, at the end, they turn
out a fully functional program. However, it is
rarely the case that this program is actually used
in a real world context after the semester is
finished.

This is the basic problem with this approach:
students can only rightly appreciate the true cost of

quality (or of low quality) once a tool is in
production and under use. Once change requests
and defect reports start pouring in, developers can
appreciate the real consequences in time and effort
needed to respond to maintenance requests.

The challenge lies in providing students with an
environment that has long-term development
projects. These projects must include defect correc-
tion and change request execution, as well as new
requirement development. With such projects,
students can understand the impact that process
and methodologies have in the long run.

Knowledge management
As stated above, a software developer entering a

company usually has to begin working on a project
that has already started. One of the greatest
challenges of this process is introducing the devel-
oper to the project, and this includes not only the
product itself, but the process, methodologies and
tools. This issue is broadly related to knowledge
management.

Our challenge here is to provide an environment
where students can rapidly learn a new process.
This environment should include explicit support
mechanisms to guide students in this process.
Furthermore, a developer with experience should
be able to support a new developer in the process
of entering a new project. We would like students
to understand the complexity of this process by
confronting the challenge of introducing a new
student who has no experience of using the
process, technology, methodology, or tool. Thus,
our environment should provide situations that
encourage knowledge transfer, and specific
processes, guidelines and mechanisms to evaluate
if this understanding was achieved.

QualDev PROJECTS

Before presenting our structure and the pedago-
gical approach, this section briefly describes the
kind of projects on which students work.

The group has embarked on development
projects of several applications since its creation
four years ago. The projects are long term and are
continuously maintained and modified. The appli-
cations are in the broad domain of process support
for software development, and some of these are
used in real-world contexts. The oldest project is a
software tool called ChangeSet, which supports
software configuration management. A more
recent project is a planning and scheduling tool
called PlanningTool.

The users are members of small and medium
sized software development companies: specifically
six software companies are currently using our
tools to support configuration management and
planning processes. Additionally other develop-
ment groups and courses within the university
use our applications. Both undergraduate students
and masters students in the basic and advanced

R. Casallas and N. LoÂpez650

software engineering courses use our tools for
planning and tracking. Currently, more than 150
students use our tools each semester. From these
users, the team receives feedback and has to deal
with change management issues.

Students receive change requests and rapidly
release new versions for each specific client.
Students must negotiate the scope and reach of
each release, and plan the implementation of
change requests and testing and integration activ-
ities.

ChangeSet and PlanningTool are the largest
projects in development; the group currently has
a few more projects in execution. We give more
detail below of the main characteristics of these
two projects to exemplify the types of projects.

ChangeSet
ChangeSet is a tool that gives support for soft-

ware configuration management, as defined in [13].
Its main purpose is to provide users with a friendly
interface for product management using grouped
versioned baselines, and for development tracking
using managed change requests. We also designed
ChangeSet to fit the requirements in terms of
simplicity, user orientation, and abstraction of
technical tasks.

QualDev members have refined the require-
ments, design, and implementation over more
than 20 development cycles. The tool is currently
in use by external clients who give feedback
regarding usability, functionality, and the overall
performance of the tool. Clients also use the tool to
submit change requests and report errors.

Some of the services offered by the tool include
project creation and management, configuration
item management, version management including
files associated with a version, baseline manage-
ment, and lifecycle management of change requests.

The tool executes on a J2EE [14] platform,
specifically on the JBoss container [15]. Currently,
there is a stable web-based client for the tool and
an Eclipse [16] client under development.

PlanningTool
When QualDev started, the need for a tool to

plan and track the work of each person and of the

whole group arose. We chose an open source tool
called DotProject [17] to support planning and
tracking activities. The reason for this choice,
besides its availability, was its user-friendly web-
based user interface. We could plan all tasks for
every team member and then each member could
register time logs anywhere.

However, as the planning and tracking process
of the team matured, some new requirements
emerged that were difficult to accomplish with
DotProject. In particular, loading dozens of tasks
each week using the web-based interface was time
consuming, likewise for centralizing tracking and
accountability activities. This motivated the defini-
tion of an own Planning Tool, integrated with
DotProject.

PlanningTool is a project that has as objective
reducing time consumed by planning activities by
means of extensions and customizations for
DotProject. PlanningTool is currently a set of
modules that extend the functionality of DotPro-
ject to improve the management and tracking of
software projects. The tool provides a much
simpler interface for the project planner to intro-
duce tasks and to acquire tracking reports.

QualDev STRUCTURE

This section presents the team's organization,
main processes, basic workflows, and mechanisms
to manage and control all the projects.

Participants and roles
Undergraduate students, graduate students, and

instructors participate in the team. Students enter-
ing the team have previously taken a basic soft-
ware engineering course and, in most of the cases,
a software architecture course. Undergraduate
students can participate for one or two semesters.
This means that every term a set of students enters
their second term while another set of students
participate for the first time.

Each semester students are divided into groups
of four to six individuals. Students in each group
assume a specific role similar to those proposed by
TSP [7]; each role has specific tasks and activities

(a) (b)

Fig. 1. (a) Development group; (b) control group.

Professional Software Engineering Skills for Undergraduates 651

assigned to it. Each semester there are on average
25 undergraduate students participating in Qual-
Dev. The team leader is usually a student in his or
her second semester in the team. Figure 1(a) shows
a possible structure for a development group.

The leaders of each team and the instructor
make up the project control group for QualDev.
This group is in charge of overseeing and evaluat-
ing all the projects in order to guarantee that the
processes are being effective and that quality is
assured on each product. Figure 1(b) shows the
structure for the control group.

A graduate student (research assistant) is
assigned to support each development group. He
or she provides support on development issues and
problems and helps with tracking of individual
performance. Each semester there are on average
four graduate students participating in QualDev.

Regularly, we have graduate students in the
group; they use our projects to perform experi-
mentation regarding some particular process or the
implementation of a technique or method. For
example, graduate students have helped with
process assessment, and metrics, indicators and
report definition. One instructor participates as
coordinator; his role is as facilitator and advisor
for the team. Since mainly undergraduate students
organize the team, the instructor is not the only
one in charge of grading; students themselves
evaluate and take part in the grading process.

External software companies and other internal
development projects participate as clients of the
group. They help to define requirements and, more
importantly, provide feedback on the use of the tools
by means of change requests and defect reports.

Processes
Each group is in charge of one of the projects or

at least of a part of it. Groups use a software
process based on the key ideas of TSP [7] and
adapted by QualDev students through the seme-
sters. When students begin their experience in the
team, they have already been trained on the basics
of TSP. The QualDev process specifies particular
improvements and adaptations proposed by
students throughout the execution of development
projects and process experimentation since its
start. The process defines specific roles with activ-
ities and commitments that the student executing
the role must fulfill.

Each project executes short development cycles;
the duration of a cycle is usually 4±6 weeks, with a
launch phase to establish clear and measurable
goals and a post-mortem activity to evaluate
performance. Students propose and define the

goals. This scheme enables a quick reflection on
the execution of a cycle, which aims at continuous
process improvement. Development cycles are
defined independently for each individual develop-
ment group depending on the objectives. The
techniques used to build the software artifacts
(e.g. requirement documents, general and detail
designs) are all based on Object-Oriented Meth-
odologies [18]. Figure 2 shows a general workflow
for a typical development cycle.

The post-mortem process is the main enabler of
project adaptability in agile processes. Recognizing
which activities are effective in the process and
which are not is the main guide to plan process
improvement activities. The identification of
improvement points and their implementation
guarantee continuous improvement and adapta-
tion to constant changes in a competitive environ-
ment.

Figure 3 shows the organization for a semester;
the launch phase includes the definition of
projects, the selection of participants and the
induction process that will be presented in the
section below on `Knowledge management'. The
induction process takes up the first two weeks of
the term and is critical to the success of all projects.
During these two weeks, the team has to train and
prepare new participants to be productive devel-
opers in the group. Afterwards each development
group defines its objectives for the cycle with the
aid of the instructor and executes a development
cycle.

In the middle of the term, the team plans
activities to get a perspective of how all the projects
are progressing and to give the members a chance
to confer with their peers. Subsequently, each
project executes another one or two development
cycles.

At the end of the semester, the group performs a
final post-mortem; this activity is of high relevance

Fig. 2. Development cycle workflow.

Fig. 3. Semester workflow.

R. Casallas and N. LoÂpez652

to fulfilling the goal of continuous process
improvement. All participants meet to present
the results of their projects. This meeting focuses
on the development artifacts produced and the
experiences with clients. The team discusses lessons
learnt during the term and issues and improve-
ments for the methodologies, the team, and the
development process. Students sketch objectives
for the next term as well as conclusions about the
experience. Figure 4 illustrates the main activities
followed during a semester.

During each development cycle, students
participate for nine hours per week. Figure 4
shows a workflow for a typical development
week. Students spend one or two hours in team
meetings, the rest of the time, they plan, develop,
and perform role specific activities. The control
group meets weekly to assess the evolution of the
groups and discusses specific issues that may have
occurred.

Grading scheme
Grading for project-based courses in Software

Engineering is usually one of the most challenging
activities. This is because it is difficult for the
instructor to differentiate the results of a project
from the results of each participant in the project.
Various authors discuss problems associated with
identifying how individual students contribute in
software engineering projects [19, 9]. In order to
cope with this problem, we have defined a grading
scheme that receives input from student work on
various points during the term in order to deter-
mine the individual grade of each student.

Input grades are received from peer evaluations:
at the end of each cycle, each participant completes
a peer evaluation form. The purpose is to assess the
group performance, the contribution and partici-
pation of each member in the project, and the
quality of the deliverables among other aspects.
Additionally, mentors evaluate the induction
process of new participants; likewise, new partici-
pants evaluate the roles of their mentors.

Finally, the instructor and project control group
establish a grade for each team project and an
individual grade for each participant each time a
cycle ends. All students work the same amount of
time weekly and report the time worked; graduate
assistants evaluate students weekly based on indi-
vidual performance considering various aspects
such as conformance to process activities, execu-
tion of planned tasks, and effective communication
with team members. The instructor, during the
post-mortem, with input from graduate assistants,
evaluates team results based on the definition and
fulfillment of group, product and process objec-
tives. We have clearly defined percentages for each
of these aspects allowing us to give clear and timely
feedback on student performance. However, we
still need to improve our assessment strategy by
means of a similar strategy to that presented in [20]
to include information that helps us to evaluate the
knowledge gained as perceived by the students.

APPLYING SOFTWARE ENGINEERING

The SE2004 [5] presents a series of knowledge
areas in their curriculum guidelines for undergrad-
uate degree programs in software engineering.
Each area includes an extensive number of topics
that should be covered; each area is specified using
Bloom's attribute [6] as a topic that requires
knowledge, comprehension, or application. The
taxonomy provides a useful structure to categorize
the type of attitudes and skills a student should
have related to each topic. The attribute applica-
tion for a topic requires students to develop the
ability to use learned material in new and concrete
situations. Students should be able to use informa-
tion, methods, and concepts in different situations
and solve problems using their newly acquired
skills and knowledge.

We have defined a series of learning objectives
that directly address the challenges presented earl-
ier and they are related to the areas of SE2004.
These objectives were established bearing in mind
some of the outcomes pointed out by ABET as 3a±
3k [3].

Moreover, our approach creates an environment
for developing skills related to software engineer-
ing at the level of application. In particular, our
approach introduces undergraduate students to
topics in the areas of professional practice (PRF),
software management (MGT), Software Process
(PRO) and Software Evolution (EVL). These areas
are usually a challenge to introduce to students;
likewise, it is complex to create an environment
where students can apply skills in these areas in a
controlled environment.

Professional practice
Professional practice covers the knowledge and

skills to practise software engineering in a profes-
sional, responsible and ethical manner. This
includes skills related to group dynamics, com-

Fig. 4. Weekly workflow.

Professional Software Engineering Skills for Undergraduates 653

munication and professionalism. The QualDev
team specifically addresses developing skills at
the level of application for the topics writing and
presentation skills. This area also includes team-
work and group dynamics. We present our contri-
bution to the achievement of this topic in the
section on `Effective teamwork', as our approach
to confront the challenges of working in teams.

During the last two months of the semester, each
student is expected to undertake an individual
focus project. Each student sets the objectives of
this project; he or she must creatively identify and
specify a problem that they can solve in the
restricted period. These projects must directly ad-
dress the needs of the group or of a specific project
of the group. Examples and ideas for projects are
drawn from past projects.

Students must propose two or three ideas for
this project before the middle of the semester.
These ideas are discussed with the instructor who
helps dimension the project so that it can be
achieved within the time limit. After this discus-
sion, the student elaborates a formal report of the
objectives and he or she must plan the activities
required to satisfy this project.

The student must achieve the objectives he or
she established and report the results by means of a
document and oral presentation to the group. This
approach is similar to common methods of prob-
lem-based learning and gives students the oppor-
tunity to develop skills at the level of application
for the topics of writing and presentation skills.

Software management
Software management relates to skills for plan-

ning, organizing and monitoring the software
development life cycle. This includes management
concepts, project planning, organization and
control, and software configuration management.
These skills are not commonly included in under-
graduate programs at the level of application.

The achievement of QualDev planning and
tracking process resides mainly in two facts.
First, it rests on the commitment of each student
to fulfilling a plan and, more importantly, on the
registration of time logs. Owing to the discipline of
students, earned values are a useful mechanism to
track the progress of projects. Second, the success
of the process resides on the level of detail in which
the plans are produced; this high level of detail has
enabled us to reduce the percentage error in
estimated development time to less than 15% on
average. Now, students can estimate, for each
artifact, in a precise way, the time needed to
produce, modify, inspect, and test it.

Thanks to the ChangeSet tool, QualDev
members are very aware of software management.
This process consists of identification and stan-
dards schemes for artifacts, baseline creation,
change control, and accountability. The Change-
Set tool gives support for all these activities.

To support source code versioning, we use the
CVS tool [21] but its details are hidden behind

some more abstract concepts managed by Chan-
geSet. Currently, students are developing a series
of Eclipse plug-ins to support developers in creat-
ing a change set (a set of artifacts needed to fulfill a
change request or to correct a defect) without
having to create branches or tags directly on CVS.

Software process
Software process covers the knowledge related

to commonly used software life-cycle processes.
Even though the SE2004 does not require students
to apply skills in this area, we believe that profes-
sional practice requires students to have skills to
use methods and concepts of software process in
new situations.

From the beginning, students have understood
the importance of having detailed definitions of
processes for all activities. They rapidly learnt the
importance of having the process documented
because this helps coach new students entering
the group. They realized that if the process is not
documented the probability of losing or forgetting
good practices is very high.

From the beginning QualDev team has docu-
mented process definitions. First in an informal
way but now, with the help of graduate students,
processes are documented using the Business
Process Modeling Notation (BPMN) [22] graphi-
cal notation and a set of more specific templates to
describe the details. These include templates to
define guideline documentations and checklists
for process execution. Additionally, we have
defined a scheme to organize support documents
related to a process and present them in a web page
that allows for easy navigation. Figure 5 shows an
example of a process definition using BPMN.

Developers enacting the process have guidelines
at their disposal on how to produce every artifact.
The interests and initiatives of participants drive
the definition and improvement of these processes.
Furthermore, students with the same role in differ-
ent groups have paired up on their own initiatives
to discuss the advantages or problems that a
process may have. Tools and process definition
have been improved or modified because of these
reflections.

Software process definition has become a project
in itself. Students decided to put the process on
control configuration management, using,
obviously, the ChangeSet tool. Now, they receive
change requests for processes by means of this
tool. The project control group also plays the
role of a change control board, which makes
decisions regarding requests such as establishing
priorities or planning the execution of a change
request.

Software evolution
Software evolution covers the skills related to

the process of ongoing support to stakeholders and
clients as a result of changing assumptions,
problems, requirements, architectures and technol-
ogies. The concept expands upon the traditional

R. Casallas and N. LoÂpez654

notion of software maintenance. The SE2004 does
not establish topics for the application of skills;
however, we believe that professional practice
requires an initial exposure to these issues in real
but controlled situations.

Software evolution and maintenance makes
sense in the group because real clients request
changes or adaptations to the tools in use. We
have a process that defines how to receive change
requests, plan a release with a set of them, develop,
and test them, and integrate and deliver the release.

Adding new functionalities to the software has
not been a problem for students. Complicated
problems arise when maintenance involves changes
in technology. For example, with the ChangeSet
tool the team has had many problems in trying to
keep the tool up to date vis-aÁ-vis the new versions
of the JBoss container and the J2EE specification
(now JEE5).

The group can evidence the cost of making
decisions on the fly regarding upgrading versions
or using new promising tools. Students found that
if they underestimate the impact of changes, it is
impossible to plan the costs with even the slightest
accuracy. Since then, the students make prototypes
of a solution to test a new technology and to have
elements to estimate the costs of changes. As a
result of these experiences, students have encoun-
tered new situations that require the application of
skills related to maintenance and evolution.

CONFRONTING THE CHALLENGES

Real but controlled software projects
In QualDev, external clients give input to

projects by means of change requests; otherwise

the instructor and graduate assistants mediate
other type of interactions with clients. One gradu-
ate assistant is in charge of communicating with
software companies, and supports them in the
implantation of our processes and tools. From
his or her work, the instructor and assistants
define the projects for each semester and some
guidelines or directions for students to define
objectives that are reachable yet ambitious.

The projects are long term, so students face the
challenges of maintenance activities; additionally,
the instructor guides students to define objectives
for implementing new requirements. Each group
should release one or two versions of the tool with
some new requirements and some maintenance
requirements.

The instructor encourages students to fulfill the
objectives. However, if problems occur, students
commit themselves as much to completing the
objectives as to other aspects of the process.
With this approach, the responsibility of fulfilling
client requests and deadlines is as relevant as
following the process and, most importantly,
committing to process improvement.

When a new project starts, it might be unreason-
able to think that students can develop a fully
functional tool in just one semester. To tackle
this challenge, in QualDev, the instructor guides
the students to define their objectives for new
projects so that they include designing and defining
the architecture for a complete version of the tool,
but only implementing a small number of require-
ments. At the end of the semester, students release
a simple tool with two or three requirements. The
implementation of the rest of the requirements can
continue in the next semester, so eventually, a
complete release of the version is produced.

Fig. 5. Process web page.

Professional Software Engineering Skills for Undergraduates 655

Effective teamwork
QualDev relies on collaborative learning as the

main tool to develop skills related to group
dynamics and teamwork and to tackle the
problems that students have when working in
teams. Cooperative learning [4, 23] is a method
that requires students to work in teams with
specific roles under conditions that include positive
interdependence, individual accountability, face-
to-face interaction, appropriate use of collabora-
tive skills, and regular self-assessment of group
functioning.

Each team establishes collaboratively two or
three development cycles in the semester with
specific objectives negotiated with the project
control group. Members must achieve the objec-
tives as a team relying on each other. Each team
meets once a week to track their advance and plan
activities for next week. Students negotiate their
activities and their dependencies with other
members' activities.

All students work the same amount of time
weekly and our grading scheme guarantees indivi-
dual accountability.

The group has various mechanisms to achieve
regular self-assessment of group functioning. The
grading schemes presented above show some
aspects of the assessment of the teams. Addition-
ally, each group is required to evaluate at the end
of a cycle their performance as individuals and as a
group. During the post-mortem, students must
identify the main problems, challenges, and issues
that their team had and propose strategies and
solutions to these problems.

The means to strengthen teamwork include the
face-to-face interactions that occur during weekly
meetings. Additionally, pair programming and
other group activities are encouraged; other
means of interaction such as e-mail, forums, and
instant messaging are commonly used.

Responsibility and commitment to quality
Students must be aware of the usefulness, and

increase in productivity and quality when using a
process, rather than seeing it as an unnecessary
burden to develop software. In QualDev the
students understand how the process contributes
to overall quality of the product. Each semester
students face the challenges of maintaining and
evolving applications with equal emphasis placed
on the product and the process. We believe that
with this approach students understand the impact
that processes and methodologies have in the long
run. As evidence of this, we present some examples
of experiences that are commonly faced by
students.

As mentioned above, each group produces one
or two releases each semester. We have defined a
process for defining, integrating, and testing new
releases. These releases are put in production as
soon as possible. In the case of tools being used in
other courses, this process is almost immediate.

With this scheme, students immediately receive
feedback on the usage of the tools.

On some occasions, tools with bugs were
released because a faulty release creation process
was in place. Because of this, students redefined
their release process to include a more structured
approach to testing, before releasing the product
and a process to track and classify the type of
errors found by users.

Another example of the quality culture in the
team is the way in which students face design or
architectural mismatch. Students must understand
and continue the work of previous students and, in
this process, they almost always find some form of
mismatch between design and implementation.
Under the guidance of the lecturer, the students
reorganize their plans to include correcting the
defects. In this process, students usually sacrifice
the commitment of some objectives to correct bugs
or mismatches. Thus, students are faced with the
cost of non-quality, experiencing first-hand the
impact that processes can have on quality.

Additionally, QualDev team uses a variety of
methods and tools to perform its activities. They
all have something in common. They are open to
the community as well as the tools developed,
which are open source. Because of some erroneous
decisions made in the past concerning changes in a
tool, we now have an established process for
evaluating a new technology, documenting the
investigation, and developing a prototype. This is
a mitigation plan associated with the risk of
affecting the success of a project due to a wrong
choice of technology.

Knowledge management
Introducing a new developer to the team is an

issue that includes not only introducing the specific
application that the student will work with, but
also our process, methodologies and tools. This
condition is aggravated since the group has a high
turnover rate: many students enter and leave the
team each semester. However, we have defined a
mentoring scheme that leverages the high turnover
rate to create a process to introduce easily and
effortlessly new students to the team.

One of the main advantages of our project is
having participants with different levels of expert-
ise. In particular, we have undergraduate students
who are in their second term as well as new ones.
This means that every term, a set of students enters
their second term while another set of students
participate for the first time.

We have used this fact to our benefit by defining
a mentoring scheme to ease the induction process
of new students to the group. Instead of having an
instructor or the team leader directly solve every
issue that a new participant has, we define a
scheme whereby each new participant has a
mentor: a second semester student in charge of
assisting and helping him or her.

The mentoring scheme helps in various ways:
first, it helps new students to be able to put to rest

R. Casallas and N. LoÂpez656

simple doubts that otherwise might be left; it gives
them a quick and clear source of information, no
matter how trivial it might be. For example, a
student might be embarrassed to bother the
instructor with a simple compilation error; he
would be more likely to contact his mentor who
is not seen as such a distant figure. Secondly, it
reduces the load on an instructor or the team
leaders who have to control and organize all the
students. The instructor can focus only on parti-
cular issues, such as a student who might be having
problems contacting his or her mentor or is having
difficulty working in a team. Finally, it creates self-
confidence in the mentor students who can clearly
see what they have learned with the group and this
helps develop their teamwork and leadership skills.

Each student and his or her mentor must meet at
least once a week for the first weeks of the semester.
In the beginning, the focus is on installing the
development environment, and understanding
and using support tools in the way that the process
defines. After that, the focus moves to understand-
ing role specific activities and support tools.

CONCLUSIONS AND FUTURE WORK

QualDev team is a professional real world
experience where students face diverse challenges
regarding teamwork issues, processes, rapid tech-
nology changes, and tools that real software

companies deal with on a day-to-day basis. The
group provides a competitive advantage for
students starting their professional careers.

Using long-term projects, which are being used
by real clients and require constant maintenance,
enables us to create an environment where students
can achieve the established learning objectives.

The group is a good example of a course that
uses active learning methodologies and is designed
to provide students with the skills they will need in
their profession. The department and university
can learn from experiences and update course
material, methodologies, and curriculum based
on a better understanding of these aspects.

We are currently starting discussions with indus-
try groups of software companies. We hope that in
the future this will enable us to refine our meth-
odologies to fit better the needs of the industry. We
envisage, in the short term, establishing relation-
ships with industry to assist in the creation of high-
tech companies lead by the students. Students are
interested in these skills and our mission will be to
facilitate the creation of a bridge between the
students and the external sector.

There is still a lot to learn and current issues to
solve in our process, organization and methodol-
ogies. However, we strongly believe that we have
established the base for continuous improvement
and this will enable us to offer students a rich
environment in software engineering to carry out
research and experimentation.

REFERENCES

1. A. T. Chamillard and K. Braun, The software engineering capstone: structure and tradeoffs,
Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science Education
(SIGCSE'02), (2002) pp. 227±231.

2. M. Gehrke, H. Giese, U. Nickel, T. Niere, J. Wadsack and A. Zfindorf, Reporting about industrial
strength software engineering courses for undergraduates, Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002), (2002). pp. 395±405.

3. ABET (Accreditation Board for Engineering and Technology), Criteria for accrediting engineering
programs. Effective for Evaluations during the 2005±2006 Accreditation Cycle, http://www.abet.org,
last visited on October 3, (2006).

4. R. Felder and R. Brent, Designing and teaching courses to satisfy the ABET engineering criteria,
Journal of Engineering Education, 92(1), 2003, pp. 7±25.

5. IEEE/ACM Joint Task Force on Computing Curricula. Software Engineering 2004, Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering, IEEE Computer Society
Press and ACM Press, (2004).

6. B. Bloom, M. Englehart, E. Furst, W. Hill, and D. Krathwohl. Taxonomy of Educational
Objectives: The Classification of Educational Goals. Handbook I: Cognitive Domain, Longmans,
USA, (1956).

7. W. Humphrey, Introduction to the Team Software Process, Addison Wesley Longman, USA,
(2000).

8. K. Surendran, H. Hays and A. Macfarlane. Simulating a software engineering apprenticeship,
IEEE Software, 19(5), 2002, pp. 49±56.

9. L. van der Duim, J. Andersson and M. Sinnema, Good practices for educational software
engineering projects, Proceedings of the 29th International Conference on Software Engineering
(ICSE 2007), (2007) pp. 698±707.

10. H. Vliet, Some myths of software engineering education, Proceedings of the 27th International
Conference on Software Engineering (ICSE 2005), (2005) pp. 621±622.

11. L. Williams, L. Layman, K. Slaten, S. Berenson and C. Seaman, On the impact of a collaborative
pedagogy on African American millennial students in software engineering, Proceedings of the 29th
International Conference on Software Engineering (ICSE 2007), (2007) pp. 677±686.

12. T. Hilburn and W. Humphrey, Teaching teamwork, IEEE Software, 19(5), 2002, pp. 72±77.
13. CMMI1 Web Site http://www.sei.cmu.edu/cmmi/ last visited on 2006-10-03.
14. E. Roman, S. Ambler and T. Jewell, Mastering Enterprise Java Beans, 2nd edn, Wiley, (2002).
15. JBOSS team. http://labs.jboss.com/portal/ last visited on 2006-10-03.

Professional Software Engineering Skills for Undergraduates 657

16. Eclipse project http://www.eclipse.org/ last visited on 2006-10-03.
17. Project Management Software http://www.dotproject.net/ last visited on 2006-10-03.
18. B. Bruegge and H. Dutoit, Object-Oriented Software Engineering: Conquering Complex and

Changing Systems, Prentice Hall, (2000).
19. O. Hazzan and Y. Dubinsky, Teaching a software development methodology: the case of extreme

programming, Proceedings of the 16th Conference on Software Engineering Education and Training,
2003 (CSEE&T 2003), (2003) pp. 176±184.

20. G. Mitchell and J. D. Delaney, An assessment strategy to determine learning outcomes in a
software engineering problem-based course, Int. J. Eng. Educ., 20(3), 2004, pp. 494±502.

21. CVS Tool. http://www.nongnu.org/cvs/ last visited on 2006-10-03.
22. Business Process Modeling Notation (BPMN) Information. http://www.bpmn.org/index.htm last

visited on 2007-07-05.
23. D. Johnson, R. Johnson and K. Smith, Active Learning: Cooperation in the College Classroom.

Interaction Book Co., (1998).

Rubby Casallas is an Associate professor in the Department of Systems and Computing
Engineering, University of Los Andes, BogotaÂ, Colombia. She received her Ph.D. in
Informatics from the University of Grenoble, France in 1996. Currently she is the
coordinator of the Software Construction group at the University of Los Andes. Her
interests are Software Engineering Education and Software Product Lines.

NicolaÂs F. LoÂpez is an instructor in the Department of Systems and Computing Engineer-
ing, University of Los Andes, BogotaÂ, Colombia. He received his MSc in Systems and
Computing Engineering from University of Los Andes in 2005. He is currently a software
engineering instructor and leader of the QualDev group.

R. Casallas and N. LoÂpez658

