Int. J. Engng Ed. Vol. 24, No. 4, pp. 833-842, 2008
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2008 TEMPUS Publications.

A Teaching Strategy for Developing
Application Specific Architectures for

FPGAs*

JOAO M. P. CARDOSO

Universidade Técnica de Lisboa (UTL), Instituto Superior Técnico (IST), Department of Informatics
Engineering, INESC-ID, Lisboa, Portugal. E-mail: jmpc@acm.org

This paper presents an approach to teaching design of non-programmable application-specific
architectures using VHDL, logic and physical synthesis tools and FPGAs. The approach relies on
mini-projects that resemble typical problems that students may face in real-life concerning the
design of application-specific architectures. The teaching approach presented in this paper supports
the incremental learning of both VHDL and the tools used, as the projects are being developed, i.e.,
students are motivated to acquire skills at the pace at which those skills are required to advance
project development. The results so far are very encouraging. Even students with little knowledge of
hardware design and embedded systems have succeeded in their assignments. Feedback obtained
from students reveals the suitability of certain aspects of the approach and the major difficulties

they have faced.

Keywords: FPGAs; VHDL; application-specific architectures; digital systems; education

INTRODUCTION

APPLICATION SPECIFIC ARCHITECTURES
can be used to achieve certain requirements (e.g.,
performance demands, energy savings), unlikely to
be otherwise met. Therefore, skills on how to
design application specific architectures are
becoming very important. Years ago, the design
of those architectures was mainly carried out by
hardware experts with deep understanding of low-
level details. Those architectures were mostly
implemented as ASICs (Application-Specific Inte-
grated Circuits) [1], whose design efforts and skills
required were typically mastered by electrical and
computer engineering graduates. This is still the
case even with the massive use of hardware
description languages (e.g., Verilog [2] and
VHDL [3]) and more powerful software tools to
synthesize the hardware structures from textual
descriptions (similar to programming) [4].
However, with the advent of FPGAs (Field-
Programmable Gate Arrays) [S]—seen as the soft-
ening of hardware [6]—making it possible to
implement complex architectures with the poten-
tial of being used as computing engines [7], this
scenario seems to be changing, i.e., computer
science students might play an important role in
programming hardware based layers of FPGA
based computing systems.

In certain computing systems (e.g., embedded
systems) an FPGA might be used as the core
component. That FPGA may integrate one or

* Accepted 12 April 2007.

833

more on-chip microprocessors (in softcore or hard-
core modalities) and dedicated components, some
of them to globally accelerate the target applica-
tion or to meet, besides performance, other
requirements (e.g., energy savings, fault-tolerance,
and security) [8]. Programmers of the emerging
systems may also need the knowledge in order to
specify the organization of the system architecture,
since even that can be defined by programming the
FPGA [9]. The hardware structures of FPGAs are
new synergies available to system architects and
programmers. Programmers may also need to
know how application specific architectures may
meet certain requirements and how those architec-
tures can be designed so that programmers are able
to go ahead with the development of certain
systems. Since FPGAs are being more widely
used, it might be possible in coming years to
witness the mainstream use of FPGAs by compu-
ter science graduates without low-level hardware
design expertise. This opinion has been also
recently manifested in [10] and success requires
that computer science graduates have knowledge
of RTL (Register Transfer Level) design. This is
even true when software programming languages
(e.g., C) are used for FPGA programming [11].
Although many academic and industrial efforts
have been made in order to make the automatic
path from software code to hardware a reality (the
subject started in the 80’s with the advent of
“silicon compilers” [12]), there are many unsolved
issues that still hinder a generic tool to efficiently
generate application specific architectures from
pure software programs (e.g., coded using C
language). This is one of the main reasons why

834 J. M. P. Cardoso

computer science students may need to acquire the
knowledge of how to develop application specific
architectures properly to execute a given algorithm
in FPGAs.

Concerning embedded systems, a number of
authors have already addressed the knowledge
needed by future computer science graduates [13]
and have also discussed several open issues [9].
They have pointed out the need to teach FPGA
programming, among other important topics.
Owing to their increasing importance, embedded
systems have been the ultimate focus of several
teaching efforts [14]. Those systems benefit most
from using FPGAs. Note also that many authors
use reconfigurable hardware platforms (using an
FPGA as the main device) to teach embedded
systems [15, 16], computer architecture and
networks [17] embedded systems and mobile
robotics [18], digital hardware design [19, 20], etc.
Others use special courses on reconfigurable
systems [21]. However, few of them strictly focus
on FPGA programming bearing in mind the
execution of algorithms as the main goal. An
exception is the approach presented in [22],
which uses mobile robotics as a motivational
target to teach embedded systems and reconfigur-
able computing.

Many courses on how to teach hardware design
using logic synthesis and hardware description
languages (HDLs) for electrical and computer
engineering programs have been proposed (see
[23] and [24], just to name a few). In computer
science programs, such courses frequently use the
same methodologies, which most often address
circuit design rather than architecture-specific
design to execute a given algorithm. This paper
shows the details of an approach to teach how to
program FPGAs, in order to implement dedicated
hardware engines for executing algorithms (image
processing algorithms are mainly used). Note,
however, that this approach assumes students
know the basics about computer architecture and
digital system design. Student’s feedback based on
collected responses to questionnaires, answered
anonymously by students, shows experimental
evidence of the effectiveness of the approach. The
approach seems to have motivated students to
acquire the required skills. This has been also
proven by the fact that some of them, although
at first attracted to software programming,
computer networks, and information systems,
have chosen final year engineering projects' using
FPGA:s.

The remainder of this paper is structured as
follows. The next section presents the approach.
Following that, the most relevant mini-projects
students are required to implement are presented.
Then some results of two implementations
performed by students are given. The penultimate

' An engineering project in the last year of the engineering
program that usually requires one or two semesters in full-time
or part-time (with courses), respectively.

section presents some feedback from students and
overall comments. Finally, the last section gives
the conclusions.

METHODOLOGY

The approach presented in this paper has been
tested in a single-semester course, named “Hard-
ware/Software integration”, in the Sth-year of the
Informatics and System Engineering program at
the University of Algarve in Portugal. The course
has been taken by students from informatics,
computer networks and embedded systems
branches. All of them had single-semester courses
on imperative and object-oriented programming
languages (typically C and Java), algorithms and
data-structures, mathematics (analysis and alge-
bra), computer architecture (based on the
Hennessy and Patterson book [25]), digital systems
(covering Boolean functions, combinational and
sequential circuits, finite state machines, arithmetic
operations, etc.), operating systems, circuit analy-
sis and signals and systems. “Hardware/Software
integration” was the first course where students
encountered FPGAs and VHDL.

Tools and devices

There are a number of tools and devices that can
be used to assist the learning process. In the
context of the course presented in this paper,
Xilinx ISE WebPack [26] was used for synthesis
and place and route and ModelSim SE from
Mentor Graphics [27] was used for VHDL simula-
tion. Both are freely available, which is important
for students to test their designs at home. As for
the FPGA board, the Xilinx Spartan-3 Starter Kit
Board [28], has been the one most used. It is a low
cost board (approximately $90) with a Xilinx
Spartan-3 FPGA (XC3S200FT256-4). In addition,
the board includes a number of important devices
such as: SRAM, Flash, 3-bit (8-color) VGA
display port, RS-232 serial port, expansion
connectors, LEDs, buttons, interrupts, and 7-
segment displays.

Course organization

The part of the course dedicated to VHDL,
FPGAs and application-specific architecture
design consists of PowerPoint™ presentations
and laboratory lessons. A hands-on approach is
used in the lab lessons. Students are able to try out
their ideas and to learn from their own mistakes.
The help of a faculty member is always important
in areas where they are having more problems
during those experiments. In the first part of the
laboratory lessons students acquire the knowledge
needed to be prepared for the mini-project (second
part).

Figure 1 shows the flow of topics and examples
used until students start their mini-project. In this
flow some steps are dedicated to learning impor-
tant aspects related to the boards used, FPGA

A Teaching Strategy for Developing Application Specific Architectures for FPGAs 835
TOPICS IMPLEMENTATIONS
T ®
Introduction to
\VHDL for r 1 VHDL and RTL
l .
RTL synthesis Ged example | synthesis
Introduction to
FPGAs FPGAs
__ .
Intreduction to the

Design flow for
FPGAs

| VHDL up-down counter |

design tools and
experiments with

(including some
options in the

. Similitude between two images

FPGA external
f devices (buttons,

displays, RAMs,
‘ etc.)

tools)

:_Mini-_pr_qjgact |

™ Design of

L application-
specific

JI architectures

Fig. 1. Flow of topics and examples used.

design flow (from VHDL to download of
bitstreams), main options of the synthesis and
place and route tools, VHDL simulation at differ-
ent levels (functional, post place and route, etc.),
and to some details (e.g., assigning FPGA pins to
VHDL entity ports, interfacing to buttons and 7-
segment displays, etc.). To test the board and the
interface with displays and buttons a simple up/
down counter is used.

VHDL

A subset of VHDL, enforcing synthesizable
constructs, which can easily be understood by
students, is adopted. Synthesizable VHDL code is
something they have to master. Sometimes because
they could be coding something impossible to
implement with the library of hardware compo-
nents, other times because an architectural synth-
esis” tool would be needed. The greatest common
divisor (gcd) algorithm presented in Fig. 2(a) shows
students at the very beginning of the limitations of
RTL and logic synthesis. Some of the students ask
why the solution is not simply to code the algorithm
in VHDL using a process instead of having to design
a datapath and a control unit. Thus, students are
exposed to the difference between architectural and
RTL synthesis from the very beginning. A special
focus on imaging the inferred hardware one may
expect for each VHDL statement or group of
statements is privileged. This enforces a connection
to synthesis from the start and is usually well
accepted by students.

In this phase, it is of extreme importance for
students settle their doubts concerning the concur-
rent mechanism of VHDL and the delta cycle
semantics [3]. Experience has shown that when

2Also known as “behavioral synthesis” and “high-level
synthesis”. It is related to the capability of the synthesis tool
to create a specific circuit with a datapath and a control unit
from an algorithm.

doubts about the concurrency model of VHDL
persist, they become the source of most problems
students face when coding VHDL.

To guide students, the following VHDL tips are
applied.

® Use process constructs as much as possible (code
inside processes is more similar to the imperative
model to which they are used).

® Use few VHDL lines per process (this reduces
the potential for coding either non-synthesizable
VHDL or erroneous functional descriptions).

® Use only “for loops” and with iteration bounds
known at compile time (i.e., possible to be fully
unrolled).

® Think as if one needs to construct the system
based on components such as registers, ALUs
(Arithmetic Logic Units), memories, FSMs
(Finite State Machines), etc.

® Use a separate entity for each component of the
architecture (this enhances modularity and helps
test).

® Perform synthesis for each VHDL entity (this
always gives students the perception of what
hardware structures they are specifying).

e Use functional simulation to test each VHDL
entity alone and integrated with other compo-
nents early.

Synthesis topics

This methodology assumes students do not have
previous experience with high-level synthesis and
they have only limited experience with datapath
and control units in the one-semester courses:
digital design and computer architecture. Those
courses are not focused on design but mainly on
analysis, assembly and on computer architecture
concepts. When guiding them to application speci-
fic architectures, emphasis on a first assumption
that the FSM of the control unit of the specific
architecture they are supposed to design can be

836 J. M. P. Cardoso

il inputs: u and v

f output: v
while(u>0) { BBO
if(usy BB1

int t=u
u=v, BB2

U= BB3

(a) (b

©

Fig. 2. (a) Algorithm to calculate the greatest common divisor (gcd) between two integer values; (b) control flow graph (CFG) of the
algorithm; (c) state transition graph (STG) directly based on the CFG.

directly based on the control flow graph (CFG) of
the algorithm (see the gcd example in Fig. 2). The
CFG is a single-entry, single-exit, directed graph
where each node represents a basic block (a
sequence of instructions in the original code
where the flow always starts on the first instruction
and only leaves on the last instruction). From the
CFG of a given algorithm they can easily achieve a
first specification of a control unit: the state
transition graph (STG), representing the states
and transitions between states of the control unit,
can be an image of the CFG. Later, they may think
about optimizing the STG by including additional
states (when scheduling the operations on each
basic block) or by removing states. A dataflow
graph is used in order to expose the data-depen-
dences between operations to schedule the opera-
tions in each basic block, thus explicitly showing
operations to be executed in sequence and those
that can be executed in parallel.

Based on this approach, they also easily recog-
nize the needed datapath hardware structures and

result
Seld —_—

— | Selt

e
Sel2 u
—_—

R
Control Ld1 Datapath v
Unit | —————e -
LdD
resot | S
Ith
| P S |
clk a0

(a)

the signals from the FSM to implement the itera-
tion control of each loop, for instance.

Initial examples

The gcd example (see Figs 2 and 3) is used to
continue the learning process about the flow to
design an application-specific architecture and the
simulation levels. In this example, students imple-
ment the architecture based on the algorithm and
the datapath block diagram provided at the begin-
ning. Afterwards, a design contest with two pos-
sible awards, one for the gcd architecture with the
best execution time for a set of inputs previously
given, and the other for the gcd architecture using
the minimum FPGA resources (number of slices),
is usually held. With regard to performance, they
acquire sensitivity towards the balance between the
number of clock cycles to determine the ged and
the maximum clock frequency achieved to reach
the minimum execution time.

An example is then used so that students can
gain experience with memories (on-chip block

Selt v 1

Selz ——n_ MUX 1

Ld1 Ld0
_.| REG 1 REG 0
| | I result

4 ¢ +—
v +
]

COMPARATOR suB

a<b a0

Ith g0

(b)

Fig. 3. The greatest common divisor (gcd): (a) block diagram of the application-specific architecture; (b) block diagram of the
datapath.

A Teaching Strategy for Developing Application Specific Architectures for FPGAs 837

Histogram
Equalization

(a)

Template
Matching

v Y

| Match? | Image with higher

similitude?

(b)

Fig. 4. Input/output results for two mini-projects: (a) image histogram equalizer; (b) image template matching.

RAMSs are used, in this case). They design an
architecture to calculate the similitude (the sum
of the square differences is used) between two
vectors stored in RAMs.

These two types of examples have been of very
important in the successful achievement of the
goals of the approach discussed in this paper.

Overall comments

This approach has successfully enabled students
to acquire the skills needed to design specific (non-
programmable) architectures to be implemented in
FPGAs. It mainly focuses on autonomous skills
that students usually acquire hands-on, conducting
mini-projects during a number of laboratory
lessons. At the end of the semester, students pres-
ent and discuss their work and are required to
write a technical report about the architecture
designed. The following section shows the most
relevant mini-projects used in past courses.

MINI-PROJECTS

The approach mainly uses image processing
kernels as the algorithms for which students have
to design a non-programmable specific architec-
ture. Figure 4 shows the expected input/output
results for two of the algorithms used. In projects
of this kind, images are usually the main input/
outputs of the system to be implemented. Exam-
ples of image processing algorithms that have been
used: are as follows.

® The image smoothing algorithm is an image
filter used in image pre-processing tasks to
reduce noise in images.

® The image equalization based on a histogram
(the code of the algorithm is presented in Fig. 5)
is used to enhance contrast in images.

® The template matching algorithm is an algo-
rithm to find the closest image in a given data-
base of images to an input image. It considers
database images of the same size (smaller than
or equal to the input image) and working by
moving each image in the database through the
input image, calculating the similitude (the sum
of the square differences is used) at each posi-
tion. At the end, the image in the database
leading to a similitude value below a certain

threshold is considered to be the matching one.
LEDs in the board are used to indicate the result
of the algorithm after execution.

Main characteristic of the examples

Besides other properties, those examples have
loop nested structures and array variables, impor-
tant computing and data constructs to achieve the
goals of our approach, because they expose
features that exist in the most interesting applica-
tions and are able to gain from implementations
using application-specific architectures. Note that
our goals include programming FPGAs being
aware of the hardware resources available in
order to achieve efficient non-programmable
application-specific architectures.

Work methodology

During the course students are invited to search
VHDL components available on the Internet (e.g.,
repositories of IP cores) and to give them in-house
cores such as: a combinatorial VHDL integer
divider, a VGA interface core, VHDL cores to
inference Block RAMs, etc. In addition, students
receive the code for each of the algorithms and
input test images. In this way, they have an
executable and correct specification of the prob-
lem, so they have a reference whenever they need
to compare VHDL or FPGA results with those
obtained by executing the algorithm using soft-
ware. This has also been important with examples
where students need to transform floating- to
fixed-point representations, because they can
measure the accuracy obtained after the transfor-
mation and can explore the number of bits of the
fixed-point representations before starting the
design of the architecture. They also receive auxili-
ary programs in order to help them in the design
process. One of the programs reads images (jpeg
and gif formats) and translates them into VHDL
representations in order to initialize RAM content.

Students are encouraged to design architectures
with parameterization capabilities so that the
hardware description of the design can be adapted
to different characteristics (e.g., image sizes consid-
ering maximum sizes of 1024 x 740 pixels).

FPGA Resources
FPGA on-chip memories (Block RAMs) have

838 J. M. P. Cardoso

/I L = 256; number of gray values

/I short Xsize = 64, Ysize = 64;

/I byte image[Xsize][Ysize]; (input image)

/I int histogram([L]; (histogram)

/I int gray_level_mapping[L]; (gray mapping)
/] byte out_image[Xsize][Ysize]; (output image)

for (int 1 = 0; i < L; i++) histogram([i] = 0;

/I Compute the image’s histogram
for (int i = 0; i < Xsize; i++)

for (int j = 0; j < Ysize; j++)

histogram[image[i][j]] += [;

/I Compute the mapping from the old to the new gray levels
Float cdf = 0.0;
Float pixels = (float) (Xsize*Ysize);
for (inti=0;i<L;it++) {
cdf += ((float)(histogram[i])) / pixels;
gray_level_mapping[i] = (int) (255.0 * cdf);
}

/I generate the new image
for (int 1 = 0; 1 < Xsize; i++)
for (int j = 0; j < Ysize; j++)
out_image[i][j] = gray_level_mapping[image[i][j]];

Fig. 5. Java code for the image histogram equalization algo-
rithm (based on [29]).

been used to store images and auxiliary arrays, if
needed. This might constrain the dimensions of the
images to low sizes but has the convenience of
simplifying tests, because this solution does not
need to transfer image data to SRAMs on the
board. The images are transferred along with the
FPGA programming bitstreams®. To test the
architectures, input/output interfaces are usually
employed such as: LEDs, VGA monitors, or
specific hardware components added to the
design. One of those components uses a Block
RAM having the expected content and an auxili-
ary circuit to compare contents of RAMs. It
traverses the RAM content output by the archi-
tecture and the correct content stored in the added
Block RAM and flags possible mismatches.

Optimizations

Algorithms using floating-point representations
are first translated to fixed-point by students. In
this step, they have to study the accuracy to obtain
acceptable fixed-point representations (as is the
case for the example shown in Fig. 5 for the code
statements referring to the scalar variable cdf). In
some of the mini-projects students also observe the
optimizations that can be carried out when divi-
sions and multiplications by constants are needed
(operator strength reduction) and they acquire
more awareness to some code transformations
(e.g., loop unrolling, scalar replacement).

3 Binary data to program the FPGA hardware resources.

Comments on the mini-projects

Other mini-projects include microprocessor and
microcontroller cores (simple MIPS and PIC
cores). However, these kinds of projects are usually
less motivating to computer science students since
they do not see the practical advantage, besides
learning hardware design, of designing a micro-
processor. Conversely, they easily see the advan-
tage in being able to implement a specific machine
(e.g., to accelerate an algorithm). Also note that
mini-projects based on microprocessor and micro-
controller cores are the ones usually used in most
teaching approaches. The fact that image process-
ing algorithms appear to capture students’ atten-
tion better also seems to be relevant. This may be
comparable to the motivation students show when
applications for mobile robotics are used (see, e.g.,

[181]).

Hlustrative example

As an illustrative example of the options
students may have to face, two implementations
of the image histogram equalization algorithm
carried out by two groups of two students (identi-
fied here as Group A and Group B) are illustrated.
Table 1 shows the main design options faced by
students and their decisions. The following para-
graphs illustrate some of the main design decisions
that students made.

® Group A implemented an architecture that is
able to compute images of 95x96 in 73 315
clock cycles (maximum frequency of 74.6
MHz). This group parameterized the number
of bits used for the fractional part of the com-
putations (when using 8 bits instead of 16 the
maximum clock frequency is about 100 MHz).
They decided to use a single hardware structure
responsible for loop iterations and to share it
among all the loops in the program. They also
decided to implement the required divider as a
datapath and control unit.

® Group B designed an architecture able to com-
pute images of 67x80 pixels in 49 533 clock
cycles (maximum frequency of 13.3 MHz).
They used a combinatorial implementation of
the divider and thus obtained a lower clock
frequency (higher clock frequencies would
require the insertion of pipelining stages or
additional FSM states) and needed a higher
number of FPGA resources. This group did
not consider sharing hardware structures. As
an example, Fig. 6 shows three views of the
architecture: (a) the interconnections between
datapath and control units, (b) the state transi-
tion graph of the control unit, and (c) the block
diagram of the datapath (RTL).

Figure 7 shows the number of FPGA resources
used (Slices, Flip-Flops, 4-LUTs and BRAMs) for
the two architectures selected. As shown, very
different solutions have been achieved by the two
groups of students. Results of this kind are impor-
tant to show and discuss with students, so that they

A Teaching Strategy for Developing Application Specific Architectures for FPGAs

Table 1. Main options and those taken by each group

839

Design options Group A Group B
Division Sequential (control + datapath) Combinatorial
Fractional bit-widths 8 or 16 8

Sharing of functional units

Sharing of internal memories

Sharing of a single hardware structure to control loop iterations No
among all the loops

Same memory to store input and output image Different memories

resat
i * i ¥ l
Seld E— start
Selt ucend
Sel2
Outim (7:0) Seld
-t
Sels Lo2=0 Ld2=1
Ld0 HistWe=1
Ldi -
Datapath Ld2 Controlo ‘—
HistWe °
GimWe
OutWe La0=0 Ld2=1 enable=1
@enable GimWe=0
Ith
fth1 OutWe=1
—_ R ——
ucends=1 OutWe=0
Ldt=1
(@) (b)
o
v 1 1]
Sel0) Mux0 / Seld —\ Muxa vt
Se2
resel
g address v datain
Ldo Regl Histogram
= () » ww—
IncO ComparadorQ Ld2
tho feset
1]
l datain — e
n 1
Sell=¢ b e v l resat enable
resel ‘ kg l L—[@_’
Ld1 Reg1 255
XYsizo 4 i L
Inct |Corrpa-auor1
glmwe
m — |

[r
y Catain

outwe

©

Fig. 6. Image histogram equalization architecture implemented by Group B: (a) top level of the architecture; (b) state transition graph

for the control unit; (c) block diagram of the datapath unit.

840 J. M. P. Cardoso

900
800
700
600
500
400
300

483

200

200 152 499
o i &
0

Flip Flops:

Slices

844
| Group A
0 Group B
324
10 8
#4-LUTs # BRAMSs:

Fig. 7. Resources used for two implementations of the image histogram equalization algorithm done by students.

|

Q BEELLELLELILLLLELL

Fig. 8. FPGA board used in the experiments.

observe the substantial differences on the imple-
mented architectures.

Figure 8 shows the FPGA board used by
students to implement the image histogram equal-
ization architecture. The cables used to connect the
board to the VGA monitor and to the JTAG
interface for programming via a PC are shown.
The arrows at the bottom point to one push-
button and two switches used for hardware reset,
to start the execution of the image histogram
equalization, and to select the image seen in the
VGA monitor (between the input and the output
image), respectively. Figure 9 shows an example of
the pictures they obtained in real-time connecting
the FPGA board to a VGA monitor (using 3-bit
color representation).

OVERALL COMMENTS

Students’ opinions were collected in the 2004/
2005 and 2005/2006 academic years using ques-
tionnaires. Approximately 62% of the students
consider the projects either very or just interesting.
Although students do not consider the projects
simple, they do not judge them as more difficult
than the most difficult ones they have done in
other undergraduate courses. The semantics and
especially the support to VHDL concurrency have
been mentioned as the most difficult topics when
learning the language. Students mentioned
advanced digital systems, computer architecture
and applications (image processing, signal process-
ing, control systems, etc.) as the most necessary
skills to perform the projects.

As for the biggest difficulties they faced, they
claimed these were the problems they had using the
tools (especially the simulator). This is not surpris-
ing, since for most of them this was the first
experience with an HDL simulator. VHDL learn-
ing has also been chosen by most students as one
of their most problematic topics.

Experience has revealed that groups of two
students are preferable. A student alone may
become frustrated in certain phases of the project
since they are unable to consult with other students
involved in the same problem. Groups of more
than two students seem to lead to inadequate task
distribution, which in the end usually results that

(b)

Fig. 9. VGA monitor showing results obtained with the hardware implementation of the image histogram equalization: (a) the input
Naruto image with 3-bit color representations; (b) the resultant image.

A Teaching Strategy for Developing Application Specific Architectures for FPGAs 841

one of the members contributed much less to the
solution. Note that two students per group also
creates the potential to experiment with modern
software engineering methods such as pair-
programming [30], which can also be successfully
applied to VHDL coding.

A choice of different types of projects allows
students to be able to select the one that more
highly motivates them. This seems to be very
important, especially when they have to face learn-
ing challenges, which are easier to undertake with
high levels of motivation.

CONCLUSIONS

This paper presents an approach to teaching
FPGA programming to informatics engineering
undergraduate students. The goal is that they
acquire the necessary skills in order to program
FPGA devices to execute dedicated computing
engines. This is a challenging task since informatics
engineering students do not usually master low-
level hardware details. From these experiences the
approach seems to allow students to acquire the
necessary knowledge to design non-programmable
application-specific architectures for FPGAs
successfully. Such knowledge includes the learning
of a VHDL Ilanguage subset, synthesizable
constructs, FPGA commercial tools and relevant
FPGA internal structures. Strong evidence has
shown us that image processing algorithms not
only expose the most relevant architectural
issues, but also add greater motivation for students

to achieve these goals. The fact that these system
inputs and/or outputs images can be seen on a
VGA monitor connected to the FPGA board
strongly contributes to the extra motivation.

The approach is not tied to a specific under-
graduate degree in computer science or informatics
engineering and only requires students to master
traditional topics taught in digital systems, compu-
ter architecture, and programming languages.
Using mostly image processing algorithms does
not make the approach less effective with other
kinds of applications. Note, however, the design of
complex and sophisticated interface circuits may
require students to master lower levels of hardware
design.

Future enhancements should include topics
about loop pipelining to raise students’ awareness
of the performance improvements that can be
obtained using this optimization. In addition to
this, creating a higher level of abstraction to help
on teaching architectural design appears to be
important. A graphic tool where components can
be defined and interconnected (component-based
approach), each one implementing a VHDL entity
with only one process would discipline and may
avoid many of the problems faced by students
when developing synthesizable VHDL code.

Acknowledgments—The author acknowledges the donation of
boards and software licenses from Xilinx, Inc. The ideas
presented in this paper have been tested and evaluated during
the author’s affiliation with the University of Algarve, Portugal.
A warm acknowledgement is given to all the students who
contributed to the validation of the ideas presented. The author
especially acknowledges students Jodo Bispo, Ricardo Avo,
José Coimbra and Ruben Gomes for the mini-project imple-
mentations and results shown.

REFERENCES

1. Michael J. S. Smith, Application-Specific Integrated Circuits (The VLSI Systems Series), 1st edn,

Addison-Wesley Professional, (1997).

2. Donald E. Thomas and Philip R. Moorby, The Verilog™® Hardware Description Language,

Springer, 5th edn, (2002).

3. Gray Armstrong, VHDL Design Representation and Synthesis, Prentice-Hall, (2000).
4. Pong P. Chu, RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and

Scalability, Wiley-IEEE Press, 2006.

5. Stephen Brown and Jonathan Rose, FPGA and CPLD architectures: a tutorial, in JEEE Design &

Test of Computers, 13(2), 1996.

6. F. Vahid, The softening of hardware, IEEE Computer, 36(4), 2003, pp. 27-34.

7. Maya Gokhale, and Paul S. Graham, Reconfigurable Computing: Accelerating Computation with
Field-Programmable Gate Arrays, Springer, 1st edn, 2006.

8. Patrick Lysaght and Wolfgang Rosenstiel (Eds), New Algorithms, Architectures, and Applications
for Reconfigurable Computing, Springer, 1st edn, 2005.

9. Jodo M. P. Cardoso, New challenges in computer science education, in 10th ACM Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE'05), Universi-
dade Nova de Lisboa, Lisbon, Portugal, June 27-29, 2005, ACM Press, pp. 203-207.

10. Kevin Morris, Death of the hardware engineer: A dirge for the digital designer, FPGA and
Structured ASIC Journal, April 18, 2006 [http://www.fpgajournal.com)].

11. David Pellerin and Scott Thibault, Practical FPGA Programming in C, Prentice Hall, 2005.

12. D. Gajski (Ed.), Silicon Compilers, Addison-Wesley, Reading, MA, (1987).

13.

14.

15.

R. Hartenstein, The changing role of computer architecture education within CS curricula, invited
talk in Workshop on Computer Architecture Education (WCAE'04), June 19, 2004, at 31st Int.
Symposium on Computer Architecture, Munich, Germany, June 19-23, 2004.

W. Wolf, and J. Madsen, Embedded systems education for the future, in Proceedings of the IEEE,
88(1), 2000, pp. 23-30.

Falk Salewski, Dirk Wilking and Stefan Kowalewski, Diverse hardware platforms in embedded
systems lab courses: A way to teach the differences, SIGBED Review: Special Issue on the First
Workshop on Embedded System Education (WESE), 2(4), October 2005.

842

J. M. P. Cardoso

16. Stephen A. Edwards, Experiences teaching an FPGA-based embedded systems class, in Proceed-
ings of the workshop on embedded systems education (WESE), Jersey City, NJ, September 2005.

17. Koki Abe, Takamichi Tateoka, Mitsugu Suzuki, Youichi Maeda, Kenji Kono and Tan Watanabe,
An integrated laboratory for processor organization, compiler design, and computer networking,
IEEFE Transactions on Education, 47(3), 2004, pp. 311-320.

18. V. Bonato et al., “Teaching embedded systems with FPGAs throughout a computer science course,
in Workshop on Computer Architecture Education (WCAE 2004), June 19, 2004, at 31st Int.
Symposium on Computer Architecture, Munich, Germany, June 19-23, 2004, pp. 8-14.

19. N. Calazans and F. Moraes, Integrating the teaching of computer organization and architecture
with digital hardware design early in undergraduate courses, IEEE Transactions on Education,
44(2), 2001, pp. 109-119.

20. J. Amaral, P. Berube and P. Mehta, Teaching Digital Design to Computing Science Students in a
Single Academic Term, IEEE Transactions on Education, 48(1), 2005 pp. 127-132.

21. Valery Sklyarov and Iouliia Skliarova, Teaching reconfigurable systems: Methods, tools, tutorials,
and projects, IEEE Transactions on Education, 48(2), 2005, pp. 290-300.

22. Jorge Silva, Marcio M. Fernandes, Vanderlei Bonato, Ricardo Menotti, Joao M. P. Cardoso and
Eduardo Marques, Using mobile robotics to teach reconfigurable computing, The Ist International
Workshop on Reconfigurable Computing Education (RC-Education), March 1, 2006, Karlsruhe,
Germany.

23. G. Puvvada, and M. A. Breuer, Teaching computer hardware design using commercial CAD tools,
IEEE Transactions on Education, 36(1), 1993, pp. 158-163.

24. Tsai Chi Huang, R.W. Melton, P.R. Bingham, C.O. Alford and F. Ghannadian, The teaching of
VHDL in computer architecture, in International Conference on Microelectronics Systems Educa-
tion (MSE’97), (1997), p. 0133.

25. D. A. Patterson and J. L. Hennessy, Computer Organization & Design: The HardwarelSoftware
Interface, Morgan Kaufmann, 3rd edn, (2004).

26. http://www.xilinx.com

27. http://www.mentor.com

28. Xilinx Inc., Spartan-3 Starter Kit Board User Guide, UG130 (v1.1), May 13, 2005.

29. P. M. Embree and B. Kimble, C Language Algorithms for Digital Signal Processing, Prentice-Hall,
(1991).

30. Pair Programming, an Extreme Programming practice, http://www.pairprogramming.com

Jodo M. P. Cardoso finished his Ph.D. in Electrical and Computer Engineering at the IST,
Lisbon, Portugal, in 2001. He has been Assistant Professor in the Department of
Informatics Engineering at the Instituto Superior Técnico (IST), Technical University of
Lisbon since April 2006. He is also a senior researcher at the INESC-ID in Lisbon.
Previously, he was a faculty member in the Faculty of Sciences and Technology, at the
University of Algarve, Portugal. In 2001/2002 he worked for PACT XPP Technologies,
Inc., Munich, Germany. There he participated in the research and development of the C
compiler for the eXtreme Processing Platform (XPP). He was program chair of ARC’05
and general co-chair of ARC’06, the International Workshop on Applied Reconfigurable
Computing. He serves as a Program Committee member for various conferences (IEEE
FPT, FPL, ARC, SAMOS VI, ACM SAC-EMBS, etc.). His research interests include
reconfigurable computing, compilation techniques, application specific architectures and
design automation of embedded systems. He is a member of the IEEE, the IEEE Computer
Society and the ACM.

