
Empirical Studies in Software Engineering
Courses: Some Pedagogical Experiences*

FEÂ LIX GARCIÂA, MANUEL SERRANO, JOSEÂ A. CRUZ-LEMUS, MARCELA GENERO,
CORAL CALERO, MARIO PIATTINI
Alarcos Research Group, University of Castilla-La-Mancha, Paseo de la Universidad, 4, 13071 Ciudad
Real, Spain. E-mail: felix.garcia@uclm.es

Empirical studies in software engineering are essential for the validation of different methods,
techniques, tools, etc. Students play a fundamental role in carrying these studies out successfully
and, as a consequence, most experiments connected with software engineering are conducted in
academia. Benefits which are concerned exclusively with aspects of research are not the only ones
to come from studies of this kind: it is very important also to consider benefits from a teaching point
of view. Therefore, when experiments are conducted in academia, they must be planned not only to
obtain insights into research but also to help students who participate as experimental subjects.

Keywords: computer science education; software engineering; student experiments

INTRODUCTION

A MAJOR PROBLEM with software engineering
is that often a great diversity of methods,
languages, tools, environments, etc. are proposed,
without their usefulness having been demonstrated
in practice. The current competitive market which
the software world has become is forcing compa-
nies to improve their quality. In many situations
this search for quality requires the adoption of new
technologies where no evidence about their prac-
tical usefulness exists. Other proposals are not
considered despite their practical validity. For
example, the appearance of the Object Oriented
(OO) paradigm is supposed to have had a great
impact on software development. Among its
advantages, it is said to produce less complex
code and be more comprehensible, maintainable
and reusable. Currently, however, questions about
the extent to which OO technology has fulfilled its
promises are answered more by intuitive feelings
than by empirical and quantitative evidence [1].

Therefore, it is fundamental for company
managers to adopt an `evidence-based software
engineering' approach when making decisions,
which could very well bring about great benefits
to the operation of the company [2]. For this
reason, the focus on empirical methods in software
engineering research has been gaining more rele-
vance in the last ten years. By means of empirical
methods it is possible to evaluate new contribu-
tions before they are introduced in the software
processes of companies [3]. The most commonly
used empirical studies in software engineering are:
controlled experiments, case studies and surveys,
which differ from each other with respect to their

objectives and restrictions. In the academic en-
vironment, the most significant empirical studies,
from the perspective of both the researcher and the
instructor, are experiments [4].

When carrying out experiments, students can
play a very important role. In fact, before perform-
ing empirical studies in industrial settings, (which
requires a significant cost in terms of time, effort
and resources), many researchers carry out pilot
studies in academic environments [5]. In this way,
most experiments connected with software engin-
eering are conducted in academia [6], and so,
students are used as experimental subjects. Many
of the publications that present some empirical
validation with students as empirical subjects,
have focused on the presentation of the benefits
that the studies have provided to research, leaving
the students and their interests out of the equation.
Thus it would appear that in many cases the
students have been used in a selfish way, to
attain research goals. For this reason we should
not only focus egoistically on the role of researcher
but also ensure that our students benefit from the
experiments.

In fact, empirical studies not only contribute to
research, but also provide important pedagogical
benefits in software engineering courses, such as
gaining practical experience in applying particu-
larly state-of-the-art techniques, also using the
experiments as exercises to validate some techni-
ques [7]. Thus, there is a very important link
between research and teaching which is important
to analyse [5].

Though the potential benefits are great, the
introduction of empirical methods into software
engineering courses should not be taken lightly.
Advantages must be presented to students when
experiments are being planned and carried out in* Accepted 25 March 2007.

761

Int. J. Engng Ed. Vol. 24, No. 4, pp. 761±771, 2008 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2008 TEMPUS Publications.

their educational environments. Each new experi-
ment must be integrated into the course, lectures
and exercises must be prepared, a grading policy
must be developed, etc. Generally though, the
benefits outweigh the complications [8].

STAKEHOLDERS OF EXPERIMENTATION
IN SOFTWARE ENGINEERING

When experiments are conducted in software en-
gineering courses, four main stakeholders can be
identified [5]: the Researcher, who is responsible
for the planning and execution of the experiment;
The Instructor, who is in charge of the student
group which constitutes the context of the experi-
ment; The Students, who take part in the experi-
ment; the Company which is often the sponsoring
body. Each has different objectives and might
benefit from the results in different ways. As our
perspective in this work is to present the pedago-
gical benefits of experimentation, we will focus on
the objectives and benefits for the students:

. Training in topics which are complementary to
regular teaching, given that researchers carry
out empirical studies on topics having close
connections with the state of the art, since they
investigate problems that still need to be solved;.

. Awareness of new problems to be solved in
software engineering in general and in compa-
nies in particular;

. Better self-assessment of their level in some
practical software engineering topics rather
than in traditional lectures which focus more
on theoretical items;

. Perception of the advantages of empirical studies.

Students can gather empirical evidence about the
relevance of testing hypotheses concerning new
technologies. They appreciate the need to base
software engineering improvements on evidence-
based grounds. This perception can be achieved
by a debate among the students or by means of
specific questionnaires. Moreover, the attitude
perceived by the instructor when carrying out
the experiment is a good insight into the practical
utility of this educational initiative;

. Preparation for students' professional future
during which on many occasions they will have
to face assessments through questionnaires,
reports, surveys, etc. Empirical studies may
show them that they should not be afraid of
being the subjects of empirical studies and data
collection activities.

A brief summary of the benefits for the instructors
and researchers, is presented in Table 1 (see [5] for
further details).

In spite of the benefits for students in being part
of experiments, it is very important to know the
negative effects that might occur so that care is
taken to avoid them [5].

From the students' perspective, problems can
arise from the belief that the experiments are a
waste of time, especially if they require extensive
training that involves several lectures. The alter-
native is for them to be taught interesting or useful
topics more relevant to their future as profes-
sionals. Another potential problem occurs when
the results of an experiment demonstrate that a
method or technique is not useful. It is possible
then to look to the pedagogical imperative, which
requires that a new or promising technique or
technology cannot be accepted without evaluating

Table 1. Benefits of Empirical Studies for Instructors and Researchers

Stakeholder Benefits

Instructor Stimulating them to use less conventional means of teaching, especially if the instructor is not
used to promoting student participation. Experimentation can be a practical way to teach topics
of the subject which are closer to scientific research.

Encouraging them to introduce problem based software education. There is a universal
agreement that learning-by-doing should be more emphasized in software engineering courses
[29].

Stimulating teamwork, to replicate industrial practice. This situation helps students to work in
groups.

Improvement of communication with students. By monitoring the experiment, the instructor
obtains much better feedback about what the students have learned.

Introduction of Empirical Software Engineering as part of the teaching in Software Engineering.

Maintaining the students' interest, due to a better communication with the students.

New ways of evaluating students in situations where they do not have the typical stress of a
formal examination. Continuous monitoring and observation of students will certainly provide a
more accurate and effective evaluation of the students' skills and knowledge.

Researcher Preliminary evidence to accept or reject the hypotheses.

Demonstration to companies of the relevance of the research and the usefulness of carrying out
empirical studies in their own facilities.

Allows the prediction of the resources needed to perform experiments in industrial settings and
preparation of the required material

Fine-tunes the organization and details of an empirical study, before it is carried out in an
industrial environment.

F. Garcia et al.762

it in practice. It might also be a good idea to look
for any causes of failure.

The design of an experiment is another factor
that may affect its outcome. If a within-subjects
design is applied, i.e every subject works with all
the techniques or methods under evaluation,
students can be made aware first-hand of the
advantages or disadvantages of using one proposal
or another and they are trained in both proposals.
However, when between-subject designs are
involved, i.e. one group of students constitutes a
control group which applies the traditional method
and others the experimental group which applies
the new method under test, it is fundamental that
students are able to participate in an intensive
post-experiment session in which both groups
discuss the planning and analysis of the experiment
in detail and deliver an opinion of the suitability or
otherwise of the new technique or proposal. Thus,
all students can have an overall rather than one-
sided picture of an experiment which would, say,
not be profitable in terms of future training.

From the researcher's perspective the drawback
of using students as subjects in empirical studies is
the effort necessary to prepare them, a fact that
should never be ignored. The researcher must
expend time and imagination to design the experi-
ment, prepare the materials, run the experiment
and analyse the results. Moreover, as a prelimin-
ary, the researcher needs to devise an intensive
training session with the students, introducing the
technique, method or tool that will be used in the
experiment.

From the instructor's perspective the problems
that can arise are: the need to motivate the
instructor to carry out the experiment due to the
extra effort in preparation and training that the
experiment implies in comparison with a normal
lecture and the fact that the instructor has to
motivate students accordingly by creating a suit-
able environment in class. In addition to this, the
instructor must also have the ability to resolve any
doubts that the students may have. These require-
ments are largely satisfied if the instructor and the
researcher are the same person.

It is therefore important to consider the advan-
tages and drawbacks reported in the planning of
empirical studies, the aim being that students
perceive the advantages and that, as far as is
possible, we avoid the appearance of any problems
which include, for example, lack of motivation and
dissatisfaction on the part of the student.

THE EXPERIMENTAL PROCESS

The main advantage of experiments is that they
can determine the situations in which certain
claims or hypotheses are valid and can provide
the context in which some standards, methods and
tools are advisable. In order to obtain credible and
useful results certain essential aspects must to be
taken into account [9], [10], [11], [12], [13]. For this

reason, it is advisable to follow a systematic
process which provides checklists and guidelines
about what to do and how to do it. Wholin et al.
[10] proposed an experimental process with the
following steps:

. Definition, in which the experiment is defined in
terms of the problem and its objectives. This
definition determines why the experiment is con-
ducted.

. Planning, in which the experiment's design and
instrumentation are determined. Planning pre-
pares how the experiment is to be conducted.

. Operation, in which the experiment is run and
the empirical data are collected.

. Analysis and Interpretation, in which the col-
lected data are analysed and interpreted by
using statistical techniques.

. Validity Evaluation, in which the issues that may
threaten the experiment's validity are evaluated
(construct, internal, external and conclusion
validities).

. Presentation and Diffusion, where a report with
the results is put together, allowing other
researchers to replicate the experiment.

EXPERIENCES OF EXPERIMENTATION IN
SOFTWARE ENGINEERING COURSES

Two controlled experiments were performed
within normal class timetables, taking part in
them was voluntary and the students were accord-
ingly motivated as they perceived how potentially
beneficial this kind of study could be for them.
With the aim of avoiding any possible threats to
the experiments' validity, the following steps were
taken:

. The subjects who were called to do the experi-
ment had similar experience and knowledge.

. The domains of the models and diagrams pro-
vided were simple and common enough to avoid
problems of understanding on the part of the
students.

. In order to avoid the effects of learning, the
diagrams were given to the subjects in a different
order.

. The subjects who performed each experiment
had not previously participated in one which
was similar or identical, so the effects of persis-
tence were attenuated.

. The exercises were part of the knowledge they
had to learn in their overall training.

. The students were not allowed either to talk to
each other during the running of the experi-
ments or to cheat.

. Any doubts were resolved by the instructor who
supervised the experiment.

. The subjects did not have preliminary know-
ledge either of the aspects the experimenters
aimed to study or of the hypotheses formulated.

Empirical Studies in Software Engineering Courses 763

EXPERIMENT ABOUT SOFTWARE
PROCESS MODELS

The modelling and measurement of software
processes have become one of the main levers in
promoting their improvement. For the purpose of
evaluating the structural complexity of software
process models (SPMs), a set of significant metrics
has been defined [14], [15]. As is indicated in the
literature, the structural complexity of a software
product may affect the ease of its maintenance, i.e.
its maintainability. However, there is no confirma-
tion of this in the domain of software processes. In
order to find out which of the metrics can be
applied as useful maintainability indicators, an
experiment was carried out [14]. An impression
of the experimental design is illustrated in Fig. 1.

Design and execution: planning
The subjects who took part in the experiment

were two groups of students enrolled in the
Department of Computer Science at the University
of Castilla-La Mancha in Spain. The first group
was forty-six students in their final (third) year of
Computer Science (BSc) in the speciality of
management; the second group had forty-one
students in their final-year in the systems speciality
of Computer Science (BSc). All the subjects had
previous knowledge of product modelling (struc-
tured analysis and design, UML, databases, etc.)
but no experience of software process modelling.
For this reason, a lesson was given in which the
importance of effective management of software
processes in improving the quality of software

products was explained, by emphasizing the influ-
ence of appropriate process modelling. The
language of software process modelling learned
was SPEM (Software Process Engineering Meta-
model) [16].

The experimental material was composed of ten
SPMs with different values of structural complex-
ity (obtained by varying the metric values). The
models were based on different methodologies and
SPMs found in the relevant literature such as, for
example, PMBOK [17], Rational Unified Process
[18], the Spanish methodology METRICA 3 [19],
etc. The objective of the experiment consisted of
evaluating whether the structural complexity of the
models (independent variable) could affect the
understandability and the modifiability of the
models (dependent variables). For each model
two different exercise sheets were prepared: one
on which it was necessary to answer the under-
standability questions and the other containing
modification tasks. The material also included an
already- solved example which indicated how to do
the experiment. Each subject received material
composed of ten models, five containing only
understandability questions and the other five
consisting only of modification tasks. An excerpt
of the material is illustrated in Fig. 2.

The independent variable was measured through
the defined metrics and the dependent variables
were measured by calculating the time that the
subjects spent in answering the questions (under-
standing time) and in carrying out the required
modifications (modifying time). The assumption
was that the less time a subject took to understand

Fig. 1. SPMs Maintainability: Overview of Experimental Design.

F. Garcia et al.764

and modify a process model, the easier it would be
for this model to be maintained.

Design and execution: operation
First of all, a training session was given in which

an example, similar to the required tasks of the
experiment, was worked through to its solution. In
this session the students were familiarized with the
kind of tasks to be carried out in the experiment.

Design and execution: analysis and interpretation
By using the Spearman correlation coefficient

the relationship between the proposed metrics and
the understanding and modifying times was
analysed. Table 2 shows the defined metrics and
the analysis results.

Table 2 shows, from the researcher's perspective,
that significant conclusions were obtained, due to
the validation of several metrics (see bold-faced

Fig. 2. SPM Experiment Material. Excerpt of Model 1.

Table 2. Spearman Correlation Results (a= 0.05).

Metric UND
Time

MOD
Time

NA (Number of Activities) 0.841
p� 0.002

0.640
p� 0.046

NWP (Number of Work Products) 0.826
p� 0.003

0.650
p� 0.042

NPR (Number of Process Roles) 0.074
p� 0.838

0.377
p� 0.283

NDWPIn (Number of input dependences of the Work Products with the Activities) 0.786
p� 0.007

0.738
p� 0.015

NDWPOut (Number of output dependences of the Work Products with the Activities) 0.886
p� 0.001

0.791
p� 0.006

NDWP (Total number of dependencies of the WorkProducts with the Activities) 0.893
p� 0.001

0.707
p� 0.022

NDA (Number of precedence dependences among activities) 0.821
p� 0.003

0.599
p� 0.067

NCA (Activity Coupling) Level) ÿ0.752
p� 0.012

ÿ0.44
p� 0.203

RDWPIn (Ratio Input Work Products Dependences) 0.79
p� 0.828

0.115
p� 0.751

RDWPOut (Ratio Output Work Product Dependences) ÿ0.79
p� 0.828

ÿ0.115
p� 0.751

RWPA (Total Ratio Work Product-Activity Dependences) ÿ0.116
p� 0.751

ÿ0.30
p� 0.934

RRPA (Ratio Process Roles and Activities) ÿ0.560
p� 0.092

ÿ0.141
p� 0.697

Empirical Studies in Software Engineering Courses 765

values), thus demonstrating that some had influ-
ence on the maintainability of the models. These
metrics could be used as indicators of the time
necessary to understand and modify a SPM. They
could also be useful in comparing and evaluating
the best model among those which are semantically
equivalent but with varying complexity.

PEDAGOGICAL ANALYSIS OF THE
EXPERIMENT DEALING WITH SPMS

From the students' perspective, the run of this
experiment in the third year of a software engin-
eering course allowed us first of all to teach a
special lesson about software process modelling
and technology. In this lesson, the students studied
the definition of software processes, their most
significant elements and the importance of the
quality management of the processes and learned
how to model software processes in detail. This
helped them to have a broader vision of software
engineering. The topic of software processes is only
touched upon in normal lectures when software
lifecycles are tackled.

Moreover, the students, who are only used to
applying software product modelling techniques
during the course, also learnt about process model-
ling. Most aspects of this topic belonged to state-
of-the-art research, so the students were aware of
the problems being addressed currently in process
modelling.

On the other hand, the students worked with
software process models which had different
complexities as regards their ease of maintenance;
as a consequence they perceived the importance of
providing more maintainable process models to
improve their quality and, ultimately, management.

The pedagogical benefits that students obtained
when the results were communicated must also be

considered. For this reason, another lecture was
given where, before they did anything else, they
were made aware of the importance of carrying out
empirical studies. We explained to them that more
maintainable software process models can benefit
from the management of software processes. They
become able to guarantee the understanding and
diffusion of the processes as they evolve, without
being stopped from bringing a successful execution
to completion. They can reduce the effort neces-
sary to change the models, thereby reducing main-
tenance costs. This is due to their influence on the
software lifecycle costs [20]. They were also
encouraged by having their results compared
with those obtained in the same experiment by
qualified engineers working in a software company
and with students from two Italian universities and
finding that results were similar (see Figs 3 and 4),
which demonstrates that, under some circum-
stances, there are no great differences between
students of final-year courses and practitioners.
As we can see, this experiment was very profitable
for these students, who are the qualified profes-
sionals of tomorrow.

Finally, it is important to emphasize that the
training of students in the topics tackled in the
current experiment was more profitable for being
included in the context of empirical research. By
means of conventional teaching the training of
subjects could be only partially attained. The use
of an empirical study allowed students to demon-
strate the usefulness of the metrics not only based
on subjective criteria, but also on quantitative and
objective data. Such objectivity can only be
attained by applying empirical studies. Further-
more, students worked as experimental subjects,
regarded as basic training for future experimenters
who need to know how a subject might behave in
order to learn how to properly design experiments
and to avoid possible threats to validity.

Fig. 3. Comparison of SPM Understandability Times.

F. Garcia et al.766

EXPERIMENT FOR EVALUATING THE
EFFECT OF COMPOSITE STATES ON THE

UNDERSTANDABILITY OF UML
STATECHART MODELS

UML statechart diagrams have become an
important technique for describing the dynamic
aspects of a software system and are also a relevant
element of OO design documents [21]. In a
previous work [22], we have already defined a set
of metrics for evaluating the structural properties
(size and structural complexity) of UML statechart
diagrams and partially validated them as early
indicators of UML statechart diagrams under-
standability, through a family of experiments.

These previous experiments have also revealed
that some UML constructs such as the fact that the

number of simple states and the number of events,
etc. seem to have a close relationship with the
understandability of UML statechart diagrams.
But in these studies composite states apparently
did not influence the diagrams' understandability.
Having read what was reported about this issue in
the literature, this fact seemed quite suspicious to
us [23], so we decided to go a step further and
perform a controlled experiment (see Fig. 5), along
with a replication of it, to investigate the effect that
composite states have on the understandability of
UML statechart diagrams [22].

Design and execution: planning
The experiments and the replication were

performed by computer science students in Span-
ish Universities: in the original experiment 55

Fig. 4. Comparison of SPM Modifiability Times.

Fig. 5. UML Statecharts: Overview of Experimental Design.

Empirical Studies in Software Engineering Courses 767

students (enrolled in the fourth year), who are
taking a second software engineering course at
the University of Murcia participated, and in the
replication 178 students (enrolled in the second
year), who are taking a first software engineering
course, at the University of Alicante participated.
So, the subjects in the original experiment were
more experienced in working with UML diagrams
than the subjects of the replication.

We selected a factorial with interaction
confounded experimental design. The dependent
variable was the understandability of UML state-
chart diagrams. The independent variables were the
Universe of Discourse (UoD) to which the diagrams
were related and the Use of Composite States (CS)
in statechart diagrams. We used two UoDs: an
ATM machine and a phone call. For each of
them, we presented two different diagrams, which
were conceptually identical. One of the diagrams
included composite state(s) and the other did not.

As each subject would receive two diagrams, one
with and the other without composite states, and
each of them related to a different UoD, we
obtained two different groups as shown in Table
3. The diagrams of each group were given to the
subjects in different orders. For instance, in group
A, the subjects first had to solve the tasks related
to an ATM machine without composite states and,
after that, those related to a phone call with
composite states or exactly the same tasks for the
same diagrams but in a different order (the phone
call with composite states and then the ATM
machine without composite states).

Group A had 28 subjects and group B 27
subjects in the original experiment and 92 and 86
subjects respectively, in the replication.

Each diagram had a test which contained six
questions which were conceptually similar and set
out in the same order. In fact, in both diagrams of
each UoD, the questions were the same. An example
of the experimental material is shown in Fig. 6.

The subjects had to write down the times at
which they started and finished answering the
questions, as well as providing the answers to the
questions themselves. From this, we obtained their
understandability efficiency, defined as the number
of correct answers divided by the time the subjects
spent answering them. We therefore need to test
whether the use of composite states improves the
efficiency of the subjects when carrying out under-
standing tasks.

Design and execution: operation
The experiment started with a twenty-five

minute introductory session in which the instructor
briefly explained what the experiment had been

Table 3. Material Assignment

Universe of Discourse

ATM machine Phone call

Without composite states Group A Group B
With composite states Group B Group A

Fig. 6. Example of UML statechart diagram with composite states (phone call).

F. Garcia et al.768

designed to achieve as well as the constructs of
UML statechart diagrams. After that, the materi-
als for the experiment were randomly distributed
to the subjects.

At this point two examples in shortened versions
were performed by the instructor, who explained
the correct answer to each question and how to
correctly note down the starting and finishing
times.

Design and execution: analysis and interpretation
The results obtained through an ANOVA reveal

that:

. The use of composite states noticeably improved
the understandability of the diagrams in the
original experiment, i.e. the level of efficiency
of the subjects was significantly better.

. In the replication, there seemed to be no differ-
ence in the understandability efficiency of the
subjects when they worked with or without
composites states.

The difference between both populations could be
caused by the fact that the subjects of the replica-
tion were not sufficiently skilled in the use of UML
statechart diagrams, so they did not appreciate the
advantages of composite states. Therefore, the
experimentation showed that the use of composite
states could improve the understandability effi-
ciency of UML statechart diagrams if the subjects
have a certain level of experience in working with
this material.

PEDAGOGICAL ANALYSIS OF AN
EXPERIMENT WITH COMPOSITE STATES

IN UML STATECHART DIAGRAMS

Through experimentation we have obtained the
following principle benefits:

. The students gather their own empirical evi-
dence about the influence of composites states
on the understanding of UML statechart dia-
grams. Thus, they have confirmed the intuition
about composites states.

. The students have appreciated the need to cor-
roborate through experimentation certain claims
that are sometimes only based on experience or
intuition.

. The experiment was very profitable for students
in their training, as UML Statechart Diagrams
is part of the knowledge they have to acquire on
the software engineering course.

. The students demonstrated a very positive atti-
tude when carrying out the experiment and in
later debate they fully agreed upon the relevance
of this type of exercises in software engineering
courses.

. Another very interesting finding is the fact that
when someone faces the task of understanding a
diagram of this kind, the presence of composite
states can help to carry it out in a more efficient

way, always supposing that the students have
certain previous knowledge and experience of
UML statechart diagrams. This is why we con-
sider that it is highly advisable for teachers to
pay special attention to the use of composite
states in UML statechart diagrams in software
engineering courses.

CONCLUSIONS

In this paper, we have tackled the pedagogical
view of running empirical studies in software en-
gineering courses by means of two experiences in
which the potential benefits of empirical studies for
students were considered in the planning phase.

As a result diverse pedagogical benefits were
obtained. Among those previously mentioned,
one of the outcomes of the planning, execution
and communication of results, is the importance of
early training of students in the empirical method.
It is what makes software engineering a `science'.
This point of view is not restricted to software
engineering: good science in general is character-
ized by its emphasis on empiricism [24]. This must
be instilled into students whenever possible in
software engineering courses. The running of
experiments in academic environments is a good
way to achieve success in this respect. Along with
training in the empirical method, we must not
forget that carrying out experiments with students
educates them in topics that are near to state-of-
the-art research. Although most of the benefits
that may be achieved by running experiments can
be acquired by other teaching techniques, both
these benefits are almost exclusively down to
experiments.

Furthermore, as a measurement of the benefits
that this experience gave our students, we carried
out a post-experiment session where we provided
them with all the experimental material and the
results. After which we discussed the development
and outcome of the experiments with them. These
sessions were very positive from the point of view
of both the instructor and the students. The
students learnt how to perform experiments, how
to analyse and interpret the empirical data, and the
experiments also allowed them to doubt prejudices
and statements that were widely-accepted but
which had not previously been validated, when
the results were not what they expected [25]. The
enthusiasm shown by the majority of students in
participating in and performing the experiments,
as well as their interest in knowing the final results,
is a clear indicator that these studies are beneficial
and should be carried out in all universities, as
indeed is happening in many international
academic institutions [26], [27].

The results demonstrate, we think, that when
planning empirical studies in software engineering
courses the pedagogical benefits they provide must
be kept in mind. A careful experimental plan

Empirical Studies in Software Engineering Courses 769

conducted in the right teaching period and right
context (skills and capabilities of the students of
the course, topics, etc.) can benefit all the stake-
holders involved. Furthermore, diverse ethical
considerations [28] must be considered in order
to avoid any lack of motivation or dissatisfaction
on the part of the students. In the end, the benefits
should be greater than the disadvantages of

performing experiments; if this is not the case, we
should not make that empirical validation.

Our experience convinced us that the participa-
tion of students in empirical studies is of great
relevance to them and does not only provide
benefits to research. Therefore, we plan to
continue performing experiments in our software
engineering courses.

REFERENCES

1. I. Deligiannis, Shepperd M., Webster S. and Roumeliotis M. A Review of Experimental into
Investigations into Object-Oriented Technology, Empirical Software Engineering, 7, 2002, pp. 193±
231.

2. T. Dyba, B. Kitchenham and M. Jorgensen, Evidence-Based Software Engineering for Practi-
tioners, IEEE Software, 22(1), 2005, pp. 58±65.

3 M. HoÈst, Introducing Empirical Software Engineering Methods in Education, Proc. 15th
Conference in Software Education and Training (CSEET'02), 2002, pp. 170±179.

4. L. Baresi, S. Morasca and P. Paolini, Estimating the Design Effort of web Applications, Proc. 9th
International Software Metrics Symposium (METRICS'03), 2003, pp. 62±71.

5. J. Carver, L. Jaccheri, S. Morasca and F. Shull, Issues in Using Students in Empirical Studies in
Software Engineering Education, Proc. 9th International Software Metrics Symposium
(METRICS'03), 2003, pp. 239±251.

6. D. Sjùberg, Hannay, J., Hansen, O., By Kampenes, V., Karahasanovic, M., Liborg, N and Rekdal,
A. A Survey of Controlled Experiments in Software Engineering. IEEE Transactions on Software
Engineering, 31(9), 2005, pp. 733±753.

7. M. Ciolkowski, Muthig, D. and Rech, J. Using academic courses for empirical validation of
software development processes. 30th Euromicro conference (EUROMICRO'04). 1089±6503/04.
IEEE Computer Society, 2004, pp. 354±361.

8. D. Port and Klappholz, D. Empirical Research in the Software engineering classroom. 17th
Conference on software engineering education and training (CSEET'04). 1093±0175/04. IEEE
Computer Society, 2004, pp.

9. N. Juristo and A. Moreno, Basics of Software Engineering Experimentation, Kluwer Academic
Publishers, (2001).

10. C. Wohlin, P. Runeson, M. HoÈst, M. Ohlson, B. Regnell and A. WessleÂn, Experimentation in
Software Engineering: An Introduction. Kluwer Academic Publishers, (2000).

11. D. Perry, A. Porter and L. Votta, Empirical Studies of Software Engineering: A Roadmap, Future
of Software Engineering, ACM, Anthony Finkelstein Ed., pp. 345±355, (2000).

12. V. Basili, F. Shull and F. Lanubile, Building Knowledge Through Families of Experiments, IEEE
Trans. on Software Engineering, 25(4), 1999, pp. 435±437.

13. B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam and J. Rosenberg,
`̀ Preliminary Guidelines for Empirical Research in Software Engineering'', IEEE Trans. on
Software Engineering, vol. 28(8), 2002, pp. 721±734.

14. F. GarcõÂa, F. Ruiz, and M. Piattini, Definition and Empirical Validation of Metrics for Software
Process Models, Proc. 5th International Conference Product Focused Software Process Improvement
(PROFES'2004), LNCS, 3009, Kansai Science City (Japan), pp. 146±158, (2004).

15. F. GarcõÂa, F. Ruiz, F. and M. Piattini, An Experimental Replica to Validate a set of Metrics for
Software Process Models, Proc. European Software Process Improvement Conference, LNCS, 3281,
pp. 146±158, (2004).

16. Software Process Engineering Metamodel Specification; adopted specification, version 1.0. Object
Management Group. November 2002. Available http://cgi.omg.org/cgi-bin/doc?ptc/02±05±03

17. Project Management Institute, PMBOK: A Guide to the Project Management Body of Knowledge.
Project Management Institute Communications, United States, (2000).

18. I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development Process, Addison
Wesley, (1999).

19. METRICA 3: Methodology for the Planning, Development and Maintenance of Information
Systems, Ministry of Public Administrations, Spain, available on http://www.csi.map.es/csi/
metrica3/ (in Spanish)

20. T.M Pigoski, Practical Software Maintenance. Best Practices for Managing your Investment, John
Wiley & Sons, (1997).

21. J. A. Cruz-Lemus, M. Genero and M. Piattini, Metrics for UML Statechart Diagrams, in Metrics
for Software Conceptual Models. M. Genero, M. Piattini and C. Calero Eds., Imperial College
Press, UK, (2005).

22. J. A. Cruz-Lemus, A., M. Genero, Ma. E. Manso and M. Piattini, Evaluating the Effect of
Composites States on the Understandability of UML Statechart Diagrams, MODELS/UML 2005,
LNCS 3713, pp 113±125, (2005).

23. G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling Language User Guide, 2nd
edition, Addison-Wesley Professional, (2005).

24. S. L. Pfleeger, Soup or Art? The Role of Evidential Force in Empirical Software Engineering, IEEE
Software, 2005, pp. 66±73.

25. A. Endres and D. Rombach, A Handbook of Software and Systems Engineering: Empirical
Observations, Laws, and Theories, Addison-Wesley, (2003).

F. Garcia et al.770

26. J. Carver, L. Jaccheri, S. Morasca and F. Shull, Using Empirical Studies during Software Courses,
Experimental Software Engineering Research Network 2001-2003, LNCS, 2765, 2003, pp. 81±103.

27. M. HoÈst, B. Regnell and C. Wholin, Using Students as SubjectsÐA comparative Study of Students
& Professionals in Lead-Time Impact Assessment, Proc. 4th Conference on Empirical Assessment &
Evaluation in Software Engineering (EASE), Keele University, UK, 2000, pp. 201±214.

28. J. Singer and N. Vinson, Ethical Issues in Empirical Studies of Software Engineering, IEEE Trans.
Software Engineering, 28 (12), 2002, pp. 1171±1180.

29. G. Mitchel and J. Declan Delaney. An assessment strategy to determine learning outcomes in a
Software Engineering Problem-based Learning Course, International Journal on Engineering
Education, 20 (3), 2004, pp. 494±502.

[11] Denger, C. and Ciolkowski, M.: High Quality Statecharts through Tailored. Perspective-Based
Inspections. Proc. of 29th EUROMICRO Conference ``New Waves in System Architecture''.
Belek, Turkey. (2003) 316±325

[4] L. Briand, S. Arisholm, F. Counsell, F. Houdek, and P. TheÂvenod-Fosse, ``Empirical Studies of
Object-Oriented Artefacts, Methods, and Processes: State of the Art and Future Directions'',
Empirical Software Engineering, vol. 4(4), pp. 387±404, 2000.

FeÂlix GarcõÂa is M.Sc. and Ph.D. in Computer Science from the University of Castilla-La
Mancha (UCLM) in Ciudad Real, Spain. He is Assistant Professor in the Department of
Information Technologies and Systems at the Escuela Superior de Informatica (UCLM)
and member of Alarcos Research Group. His research interests include business process
management, software processes, software measurement, empirical software engineering
and agile methods. About these topics he has published two books, and several book
chapters and articles in journals and national and international conferences.

Manuel Serrano is M.Sc. and Ph.D. in Computer Science from the University of Castilla-La
Mancha (UCLM) in Ciudad Real, Spain. He is Assistant Professor in the Department of
Information Technologies and Systems at the Escuela Superior de Informatica (UCLM)
and member of Alarcos Research Group, in the same University, specializing in informa-
tion systems, databases and software engineering. His research interests are: dataWare-
houses quality and metrics, software quality.

JoseÂ A. Cruz-Lemus is an Assistant Professor at the Department of Information
Technologies and Systems at the University of Castilla-La Mancha in Ciudad Real,
Spain. He received his M.Sc. degree in Computer Science there in 2003. He will receive
his Ph.D. degree at the University of Castilla-La Mancha by the summer of 2007. His main
interests in research are: empirical software engineering, software metrics and conceptual
data models quality. The results of his works have been published in several prestigious
conferences, such as E/R, MoDELS/UML, ISESE, SEKE, etc.

Marcela Genero is Associate Professor at the Department of Information Technologies and
Systems at the University of Castilla-La Mancha, Ciudad Real, Spain. She received her
M.Sc. degree in computer science in the Department of Computer Science of the University
of South, Argentine in 1989, and her Ph.D. at the University of Castilla-La Mancha,
Ciudad Real, Spain in 2002. Her research interests are: empirical software engineering,
software metrics, conceptual data models quality, database quality, quality in product lines,
quality in MDD, etc. She has edited two books and published in prestigious journals and
conferences. She has served as reviewer of many workshops, conferences and journals. She
is member of the International Network of Empirical Software Engineering (ISERN).

Coral Calero is M.Sc. and Ph.D. in computer science. She is Associate Professor in the
Department of Information Technologies and Systems at the Escuela Superior de
Informatica, UCLM in Ciudad Real, Spain. She is a member of the Alarcos Research
Group. Her research interests are: advanced databases design, database/datawarehouse
quality, web/portal quality, software metrics and empirical software engineering. She is
author of articles and papers in national and international conferences on these subjects.

Mario Piattini is full professor at UCLM. His research interests include software quality,
metrics and maintenance. He has a Ph.D in computer science from the Technical University
of Madrid, and leads the Alarcos Research Group. He is CISA and CISM by ISACA. He
leads the Joint SOLUZIONA-UCLM Software Research and Development Center. He is
member of ACM and IEEE Computer Society.

Empirical Studies in Software Engineering Courses 771

