
Adopting Lakatos in a Software
Engineering Course*

NICHOLAOS PETALIDIS
Department of Informatics and Communications, Technological and Educational Institute of Serres, Serres,
Greece. E-mail: n.petalidis@computer.org

The standard practice in a software engineering course is to present the theory as a list of dogmatic
guidelines. In this setting problems appear artificial and consequently students fail to appreciate
them. Similarly, solutions arrive magically, letting students believe that this is the norm. The value
of an incremental and iterative methodology is therefore missed. A different approach, borrowed
from Lakatos [1], is presented here. Students are given a problem and through `trial-and-error'
discover their own solutions. Unlike a typical term-project that follows the theory, it is the problem
that drives the theory. The result is better appreciation and comprehension of software engineering
notions.

Keywords: software engineering education; constructivism; reflective learning and teaching

INTRODUCTION

IN HIS SEMINAL WORK, Lakatos [1] presents a
dialogue between a teacher and his students. The
dialogue starts with a problem: whether there is a
relation between the number of vertices, V, the
number of edges, E, and the number of faces, F, of
regular polyhedra. The students after many
attempts, notice that

V ± E + F = 2 (Euler's formula).

The discussion carries on and progressively the
students rework both the formula and the notion
of a regular polyhedron.

The work is usually considered as an attack on
meta-mathematics and the `formalist' school. But
it is much more than that. Throughout the text
Lakatos also comments on the way mathematics is
taught. For example on p. 142 [1], Lakatos notes:

Euclidean methodology has developed a certain obli-
gatory style of presentation. I shall refer to this as
`deductivist' style. This style starts with a painstak-
ingly stated list of axioms, lemmas and/or definitions.
The axioms and definitions frequently look artificial
and mystifyingly complicated. One is never told how
these complications arose.

Lakatos' view of mathematics and his method of
proofs and refutations are quite similar to the way
that software is developed: someone builds a
solution, and a series of tests. If the tests fail, the
solution is reworked and new tests are devised and
so on until the various notions involved in the
problem become clear and a solution is found that
doesn't fail the tests. This correspondence between
Lakatos' `proofs and refutations' technique and
software engineering is not of course a new obser-

vation. Researchers have drawn upon it before, for
example in [2] and [3].

However, Lakatos' constructivist approach to
teaching has only recently started being considered
in software engineering courses.

In this paper the results of such an approach are
presented. The paper proposes a `proofs and
refutation' iteration, after which the notions high-
lighted through the first iteration are taught
formally with traditional lectures. The proposed
methodology can be classified as a problem-based
methodology of teaching because the students
learn by working on an open-ended problem with
an unknown solution. It can also be classified as a
collaborative-learning methodology, as students
are encouraged to work with other students in
informal group activities.

The paper is arranged as follows. First a review
of other approaches to constructivist learning and
their relation to the one presented here is made.
Then the standard practice in teaching software
engineering is presented together with an analysis
of problems inherent to teaching software engin-
eering. Following this, the proposed course struc-
ture based on Lakatos is described together with a
working example. The paper concludes with the
presentations of the conclusions from the experi-
ment.

RELATED WORK

There are various works that describe attempts
to deviate from the traditional lecturing approach
to software engineering education.

In [4] the design of a two-year undergraduate
software engineering program with emphasis on
exploratory learning is presented. The program
considers lectures to be supporting activities;* Accepted 7 June 2005.

738

Int. J. Engng Ed. Vol. 24, No. 4, pp. 738±746, 2008 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2008 TEMPUS Publications.

knowledge is mainly built by hands-on exercises
and a set of project courses where students actively
search for solutions to the problems they experi-
ence. The teacher plays the role of an advisor that
helps the student understand how the content
taught fits into the greater picture.

A similar plan is reported in [5] where the design
of Carnegie Mellon's master of software engineer-
ing curriculum is presented. Students have the
opportunity to practice in a studio under the
supervision of a coach, much like students in
architecture practice in a studio under the super-
vision of a teacher. In the studio, students work on
a project that spans many semesters. The coach is
responsible not for supplying solutions but for
providing suggestions, asking why-questions and
helping students maintain the vision of the project.
In such a setting, students learn through reflection.
The goal of the studio-approach is to provide a
place to practise techniques learned in the core
courses. Similar approaches, where intense
student±supervisor communication in a studio en-
vironment replaces the traditional lecture-hall
interaction, are also presented in [6] and [7].

The above proposals are basically problem-
based, collaborative learning approaches that
require students to get actively involved in learning
activities and they can be broadly classified as
constructivist educational methodologies [8]. In
this respect, they are similar to the one presented
here. They however describe a comprehensive plan
that requires restructuring of the whole curricu-
lum; this might not always be possible. They also
represent activities that run in parallel with lectur-
ing, in contrast with the flow presented here.

Another suggestion for a software engineering
course based on active learning is presented in [9].
There, student learning is based on a team project
that is accompanied by mini-lectures with immedi-
ate in-class applications, peer-teaching and small
group discussions. Students also practise their
writing skills and critical abilities through guided
writing exercises, Toulmin analysis of articles and
minute papers. The benefits of group-discussions
are also reported in this paper, but the rest of the
course structure proposed here differs.

Perhaps the methodology that most closely
resembles the one presented here can be found in
[10], where all lecturing from the course was
removed and replaced by interactive class discus-
sions and small group lab-work where students
asked questions and added the missing pieces in
their understanding of the project. In here
however, lecturing is not removed but used in a
subsequent iteration to emphasise and formalise
the acquired knowledge.

Apart from experimentation with different
course structures, researchers have also tried differ-
ent technologies and techniques to deliver active-
learning courses. One such approach can be found
in [11] where the Web is employed to assist an
active learning methodology and in [12] where the
use of an educational simulation game is described.

THE TRADITIONAL COURSE
STRUCTURE

Software engineering is a subject that is taught
in most of the computer science curricula around
the world. Its main purpose is to provide students
with a background in executing large software
projects and offer a glimpse of the processes
followed by software companies. It is generally
considered a difficult subject to teach as other
authors have also mentioned (e.g. [13, 14]) and
the results are, frequently, less than ideal: the
software industry has complained several times
that the level of education of future software
engineers is not satisfactory [15, 16, 17].

In most cases the course is taught through a
series of lectures that go through the topics of
software methodologies, requirement capture,
design and implementation, testing and maybe
even project management. It is also common, in
an effort to help students experience the practical
side of software engineering, to combine the
lectures with a small term-project that, too, follows
the same sequence.

Popular textbooks on the subject include (but are
not limited to) [18, 19, 20]. These textbooks usually
present their material in a sequence. For example in
[18] the material is developed according to well-
defined phases of software engineering: project
management, requirements capture, design, testing,
etc. Even the proposed term-project follows this
sequence.

But why are there so many complaints? This
lecture-based approach, accompanied by some lab
work or short project is the same approach that is
followed in other courses, for example image
processing or computer networks.

We believe that the main problem is the
complexity inherent in the course. Software engin-
eering is about executing large projects sensitive to
requirements about quality, redundancy, mainte-
nance and reusability. The knowledge required to
carry out such projects comes from different back-
grounds such as computer science, or management
and psychology. As [15] notes, `software engineer-
ing is a multi-faceted discipline'. In addition soft-
ware engineers have to operate in a rapidly
changing environment, since theories, methodolo-
gies and tools may soon become obsolete [4].

Thus, when someone is designing a software
engineering course he or she has to take into
account all of these problems and this is not easy.

For a start, as several authors have noted (e.g.
[12, 14, 15, 21, 22]) it is impossible to reconstruct
projects of the required complexity in a classroom.
Instead the students either experiment with toy-
projects or are guided with so much attention that
they never experience the problems that software
engineering is supposed to solve. In these cases the
students are presented with a series of the `proper'
steps they have to follow in order to produce a
quality software product: write down require-
ments, make an analysis, design and implement

Adopting Lakatos in a Software Engineering Course 739

according to standard programming guidelines.
The problems that may arise if they don't follow
the rules are of course briefly mentioned. But most
students fail to grasp the extent of the damage that
may be caused to the project in this case. After all,
most of them up to this time have only worked on
very small projects that came with explicit require-
ments and there was no need for software reuse
and extensibility. (A similar remark is also made in
[23].) As a result, they cannot relate to the concepts
taught. The same problem is also reported in other
studies [13, 14].

For example, students are taught programming
guidelines and the text presents what should go
into the comments section of the code. Students
will duly note that, and they will probably write
some comments in this style should the lecturer
specifically requests it next time they hand in an
assignment. Most of them consider it a burden or
something that is `nice to have' but `not absolutely
necessary'. Most of them will also complain if they
are marked down for failing to put proper
comments. This is something that should be
expected, though, because the current educational
practice fails to pass on to them the importance of
proper commenting in a large setting. As [14]
notes: `Which teacher has never experienced the
greatest difficulties to convince students that
comments are essential in a program? The docu-
mentation of the source code is, in their eyes,
useless.'

Similarly, in the course, students may be taught
about cohesion and coupling. Students will write
down the various coupling and cohesion levels,
note the `bad' ones and mark the advantages of
the `good' ones. However the student never realises
how really `bad' a program with high coupling is. It
is common for students that scored high marks in
written exams to have at the same time submitted
code for their term projects that contained lengthy
functions (over 100 lines for a single method) with
multiple nested levels of if-else and switch state-
ments. This shows that even though the students
have learned all the right things they still find that it
is unnecessary and time-consuming to actually
apply what they have learned. And one of the
problems that they consistently mention is that
they feel that it is not necessary to go to the extra
length of proper design, as long as their project
executes as it should.

Even the notion of iterative and incremental
development usually fails to make an impression
to the students. After all, the lectures follow the
waterfall-like approach present in the textbooks.
The students will hear about the advantages of an
iterative methodology but the reality is that they
will not experience it in the lectures. Some times
they might not even have the time to experience it
in the lab [24].

Thus the inability to reconstruct a real-life
setting prohibits the students from understanding
and appreciating the ideas present in software
engineering [13].

In addition, students will probably fail to see the
multi-faceted nature of software engineering and
will more often than not play down the importance
of non-technical skills required in a large project.
As [25] notes about the classical approach to
teaching software engineering: `Learning targets
that go beyond technical questions are hard to
teach in this kind of setting.'

Moreover, in order to maintain currency it is
important to teach students skills that will allow
them to carry on learning on their own, after their
graduation. But such self-directed learning is not a
skill that can be acquired during the traditional
lecture-based methodology where the students'
learning solely depends on the lecturer's presence.

Interestingly enough though, prior students of
Software Engineering modules, doing their place-
ment year in rather disorganised small software
companies, have reported that they realised the
value of the software engineering course only after
they saw the failures of ad-hoc development. It was
these comments that provided the incentive to try a
different teaching methodology.

AN ALTERNATIVE COURSE
STRUCTURE

In order to overcome the difficulties mentioned
in the previous section a different approach was
tried out. The idea was to slowly instil in the
students the basic pillars of a successful software
project, through an example.

In this setting, the whole course was divided in
two parts.

The purpose of the first part was to illustrate the
process of software development through a work-
ing problem. The purpose of the second part was
to revisit all the areas that were highlighted during
the first part in a more formal setting. In software
engineering terms there were two `releases', the
first being an investigative beta release and the
second an official release.

It should be noted here that the working prob-
lem mentioned above does not serve the same
purpose as the usual term-project that students
undertake during a software engineering course.
In the latter the project follows the theory. In the
former it is the problem that drives the theory.

In the first part, each lecture starts with a
problem. The students discuss the problem and
propose solutions. The role of the teacher is,
through the questions and counter-examples he
or she makes to guide the discussion so that the
roots of the problem and the constituent parts of
each proposed solution are made clear. Problems
do not come out of the blue. Each problem comes
as a consequence of a previous problem and an
assorted solution. Through this process the
students learn how to ask the right questions and
how to improve on their solutions. More impor-
tantly they also see how and why software engin-
eering practices are developed. The second part

N. Petalidis740

reiterates the lessons learned in the first part.
During the second part the students learn through
the traditional lecture-based approach and carry
on developing the project that they started in the
first part.

In both parts students are expected to work in a
group. Such a collaborative model of groups
between two and four persons has been frequently
suggested in the literature (e.g. [10, 11]) and has
been deemed as beneficial.

At the end of the course the students sit an
examination that focuses on theoretical issues.
The result of this exam constitutes 50% of their
final grade in the course. The other 50% is the
individual project grade that each student received.

The project grade for each student is calculated
as follows: At the end of each release each project
is marked according to its adherence to require-

ments, implemented functionality, design and
provided documentation and each team member
has an oral interview in order to determine his/her
contribution to the project. Thus for each of the
two releases, a different mark for each student is
calculated. The average of the two marks is the
student's final project grade.

The alternative course plan proposed here is
described better in Table 1. Note that the course
is divided into two major parts. The `Activity'
column describes the activities during each week.
During the first part most of the activity is a
discussion on the problems the students faced
and the possible solutions. During the second
part the activity is mainly a lecture or a demonstra-
tion of a tool. The `Project Deliverables' column
describes what the students are expected to deliver
before the start of the next week. The last column

Table 1. The suggested course plan

Part Week Activity Project deliverables CC2001 suggested SE core topics

Trial-Error approach 1st
Part

1 Introduction to the course
Project handout
Discussion on the project's
requirements

Software (Code+
Executable), v. 0.1
(Throw away prototype)

Software Requirements and
Specification

2 Discussion on requirements
capture
Techniques for writing
down requirements

Software (Code+
Executable), v. 0.2
(Evolutionary prototype)
Requirements document,
v. 0.1

Software Requirements and
Specification

3 Discussion on
Programming Guidelines
Discussion on API
Documentation

Software
(Code+Executable), v. 0.3
(Improvement on
programming style)
API documentation

Using APIs
Software tools

4 Discussion on cohesion,
coupling
Measures of a design's
quality

Software
(Code+Executable), v. 0.4
(Improvement on cohesion
and coupling)
Requirements document,
v. 0.2

Software Design

5 Discussion on design
patterns
Short discussion on UML

Software
(Code+Executable), v. 0.5
(Application of Design
Patterns)
UML Diagrams

Software Design
Software tools

6 Discussion on software
methodologies

Software (Code+
Executable), v. 1.0

Software processes

Iterative/Incremental
methodology

Short paper on the
methodology followed

Lecture Based approach
2nd Part

7 Software Processes 2nd Release plan Software processes
(Waterfall, XP, RUP, etc)

8 Requirements Capture
(Functional, Non
Functional Requirements,
Use Cases, etc)

Requirements document,
v. 1.1

Software Requirements and
Specification

9 UML
(Diagrams, Tools)

UML Diagrams
Design Document v. 1.1

Software Design
Software tools

10 Software Design Issues
Coupling, Cohesion,
Architectures

Design Document, v. 1.2
Software
(Code+Executable), v. 1.1

Software Design

11 Design Patterns Software
(Code+Executable), v. 1.2
Design Document v. 1.3

Software Design

12 Course Review Software
(Code+Executable), v. 2.0

Adopting Lakatos in a Software Engineering Course 741

describes the relevance of the taught material to
the proposed Software Engineering course
contents of the ACM/IEEE Computing Curricu-
lum 2001. Note that the course plan does not
include content relevant to software project
management, software quality and testing. These
are expected to be taught in a subsequent more
advanced course regarding software engineering.

A WORKING EXAMPLE

The proposed example and methodology was
adopted when teaching the software engineering
module at the department of Informatics and
Communication at the Technological and Educa-
tional Institute of Serres, Greece during the Spring
term of 2006±2007. This is a 12-weeks module,
offered during the 6th term of the degree
programme of the Institute. By that term most
students are familiar with the basics of procedural
programming and have taken an introductory
course on OO programming and database design
but have no major project assignments. During
their 7th term students also take an `Advanced
software engineering' module that focuses on soft-
ware management and quality issues, but this
module is not described here.

In the past software engineering was taught in a
more traditional way, introducing development
methodologies with some emphasis on RUP,
requirements capture, analysis and design patterns,
programming and documentation guidelines all of
them in sequence. The main problems from this
approach were presented and analysed in the
previous sections.

In this experiment, however, the first half of the
course, i.e. the first six weeks, was designed around
a central example which served as the basis for
discussion and experimentation. The selected ex-
ample was that of a logging library, in the line of
log4j [26]. The example was chosen on purpose to
be something that most students were not familiar
with as none of them had developed a library
before or even used logging somewhere in their
previous works. The students were allowed to
work in teams of up to three people.

The second half of the course followed the
traditional lecture-based approach and was used
to re-emphasise the lessons learned during the first
part. During the second part the students were
asked to carry on with their team-project and pair
the library with an application that provided a
graphical interface and a parser that could read
and display logging messages in a GUI environ-
ment. In the following we present the iterations
carried out during the first and second part.

Iteration 1.1
The purpose of the first iteration was to intro-

duce to the students the importance of proper
requirements capture. Students were given the

project description which was intentionally short
and ambiguous:

You are required to write a logging library with
support for different logging levels and different
output destinations, (e.g. a console or a database)

No reference on how this project will be marked
was given.

In this respect, the project started in a manner
similar to that of many real-life projects: with a
vague description by the customer, no agreement
on when this project will be considered `done' and
lots of other unanswered questions.

Students initially argued heavily on the vague-
ness of the project but soon started asking ques-
tions to clarify it. Questions though were not
focused but ranged from issues like `what is
logging' to `can we use the X compiler' or `do we
have to use ADO or ODBC to connect to a
database?'

Students soon realised that no matter how much
they debated on implementation issues they did
not progress much on understanding the project.
So the discussion focused on what sort of ques-
tions would bring more valuable information, and
what would be the best approach to understanding
the customer's wishes.

Concluding the discussion, the students were
asked to explore further on the projects' require-
ments by consulting the functionality of other
libraries and present their first version of the
solution. The students delivered an implementa-
tion of their idea of the required solution. This in
effect was a throw-away prototype, that was used
later to clarify the project's requirements.

Iteration 1.2
Upon delivery of the first version the students

had a clearer idea of the requirements, but still
lacked comprehension in many areas. The
presented solutions were crude and somewhat
inconsistent as different groups understood the
requirements in a different way.

For example some solutions would only output
messages if the logging level was exactly the same
as that of the message, others would `hard-wire'
the required output destination at the time of the
creation of the logger. Others would `prompt' the
user for the desired destination every time a
message needed to be output.

However, this time questions were better aimed:
`How do you want to use the library?', `What is a
logging level?', `Will there be a possibility of
simultaneous output to different destinations?'

Also, once the initial confusion over the require-
ments started clearing up, the question on how we
agree that the project was completed was raised.

This in turn proved to be a starting point for a
discussion on techniques and the reasons for writ-
ing down and agreeing on requirements. Students
were asked to write down the prerequisites for the
project in order next time to agree on how the final
deliverable will be graded.

N. Petalidis742

Iteration 1.3
The second version showed a better understand-

ing of the project and delivered a working proto-
type with written requirements. For most students
this should have been a `completed' version, had it
been a different programming module. But this
module put more emphasis on delivering
`products' rather than programs (in the notion
described in [27]). In order to highlight this differ-
ence each group was asked to adopt another
group's library to demonstrate its usage.

Groups, however, implemented the library in
different ways and adoption was difficult. For
example some groups had logging levels starting
from 0 to 5, others from 1 to 6. Others were
expecting one parameter to each loggin function,
others had more and no documentation was
provided. Parameters were named unintelligibly
and it was not obvious from a first read what
their purpose was.

So, the resulted discussion centred on methods
to overcome these problems through proper docu-
mentation and coding standards.

Typical questions that were discussed were the
following: `What sort of comments will be useful to
another person trying to read the code?', `What is
the best way to name variables etc.?', `What sort of
hidden assumptions do we make about parameters
and how shall we protect against them?'

For the next version teams were given the task of
reworking their code according to the clarified
requirements and of improving both coding stan-
dards and existing documentation. A reference to
the documentation tool Doxygen was also made in
order to use it in their code.

Iteration 1.4
The third solution produced code that was

better suited to the requirements and adhered to
coding standards. In addition some documentation
was provided. However coupling was high and
cohesion was small. Typical solutions included
code that looked as follows:

void error(
int output,
string message
)
{
if (output == 1) {
// append to console
} else if (output == 2) {
// send to db
}
}

At that point students were asked to add more
output destinations, like BSD sockets and files,
and to think how they would go on redesigning
their solution. This led some students in writing
different functions as follows:

void writeToConsole(string msg);
void writeToDb(string msg);

void writeToFile(string msg);
void writeToNet(string msg);

This in turn generated a discussion on why they
considered the second solution better than their
first.

A typical answer from most of the students was:
`I wrote it as an independent function in order to
be able to re-use it should the case arise', which in
turn raised the question: `Will you only need to re-
use it in the environment of a Logger?' which in
turn gave a good lead to discuss coupling and
cohesion.

At the same time students were asked to amend
their list of requirements to include the possibility
of different layout schemes for each output. They
were also asked to produce another version with a
better design that reduced coupling and increased
cohesion.

Iteration 1.5
The fourth version saw the delivery of software

that was better designed in terms of coupling and
cohesion, even though it still lacked excellence in
many cases. Most groups had identified different
classes for loggers, layouts and appenders (see
[26]) but they made poor use of object-oriented
features. A typical solution contained a class of the
following form:

class Writer {
writeToConsole(string msg);
writeToFile(string msg);
. . .
};

However this solution provided a basis for another
discussion:

Do we need to group all of the function in a
single class? What do all these functions share in
common? Can we explore inheritance? What
advantages do we get if we apply it in the code?

Also, questions on why these classes were
chosen, or whether we could spot these classes
from the start were asked. The similarity between
the requirement to have different output destina-
tions and different layout schemes for each desti-
nation was also explored. This led to a discussion
on common patterns in a design and an introduc-
tion to the idea behind design patterns in general
was made.

Students were asked to revisit their code and
improve their designs according to the outcomes of
the previous discussion.

Iteration 1.6
The fifth version of the code was by far the

better one as students had applied the strategy
pattern they `discovered' in order to provide for
a solution with low coupling and high coherence.
They also added extra functionality to the library
by including other output destinations and layout
schemes.

At this point the students were asked to review

Adopting Lakatos in a Software Engineering Course 743

the steps that brought them to this point. A
discussion on development methodologies started
as they realised the iterative and incremental
nature of the process they followed. A debate on
the merits of the approach was initiated and other
approaches were also discussed. The advantages
and disadvantages of having short repetitions were
also brought up.

The students were asked to write a paper
describing the steps and the methodology they
followed.

At the end of the first release the students
delivered a requirements document and a short
paper on the iterative and incremental approach
that they followed. They also submitted around
1200 lines of code, API documentation in HTML
format and UML diagrams that were generated by
the Doxygen documentation tool.

Iteration 2.1
The second part of the course used the tradi-

tional lecture-based approach accompanied by a
small project that reiterated the concepts learned
during the first part. For this second part students
were also asked to develop a parser and a GUI
displaying logging messages as an addition to the
project they developed in the first part. The
students were expected to carry on with their
teams, but this time without much intervention
from the lecturer.

The first lecture formalised the theory behind
software methodologies, explained the notion of
iterative and incremental development and
described the waterfall approach, XP and UP
together with their prospective advantages and
disadvantages. The students were also asked to
submit a release plan for the second part of their
project.

Iteration 2.2
The second lecture focused on requirements

capture using various techniques (e.g. use cases,
decision tables, BNF) and formalised the notions
of functional and non-functional requirements.
The students were also asked to deliver a require-
ments document for their project.

Iteration 2.3
The third lecture presented UML in a more

academic setting and let students experiment with
the use of a UML drawing tool. For their project
the students were asked to submit relevant
diagrams presenting the domain model of their
project and flow of control.

Iteration 2.4 and 2.5
The fourth and fifth lectures were concerned

with design, presented different architectural
approaches, revisited the coupling and cohesion
metrics for OO programs and described some of
the GoF design patterns. Accordingly, the students
were asked to submit relevant design documents in
UML, code and executables for their project.

Iteration 2.6
The final lecture revisited the issues covered and

discussed issues that the students thought were still
unclear to them. The students also delivered the
final version of their project with the accompany-
ing requirement documents, design documents and
API documentation.

CONCLUSIONS

Students generally showed a better appreciation
of software engineering methodologies than they
did with a traditional course. Most groups carried
on improving their designs even after the end of the
first half and they were intrigued to find more on
software engineering practices on their own. Some
of them even redesigned previous projects.

Students also got more chances to develop their
problem-solving skills, since they had to experi-
ment with different solutions and find the under-
lying reasons behind each decision for themselves.
They also had to learn to work in a team, to listen
to others and sometimes accept that they were not
always right.

Compared with previous classes, questions in
the second half of the course were more mature
and better expressed. Pass rates amongst students
that followed the course were also higher. In
previous semesters the pass rates of students that
were attending the course was around 45%
whereas with the new course structure, the pass
rate rose to 65%.

The results from a sample of opinions of 25
students that attended the course are presented in
Table 2. One student remarked `The teaching
methodology was exponentially better [than the
ones in other courses]'. Most students remarked
that they found discouraging the small amount of
information they had before each class, although
they enjoyed the subsequent researching and
discussion.

However there are other notes that should also
be made.

The presented course structure requires a certain
maturity from the students that is not always
present in an undergraduate course. This was
discovered when attempts were made to follow
the same methodology in previous years. Students
generally expected the lecturer to first present the
`correct' approach and then ask them to apply this
approach to a similar problem. The idea that they
had to investigate multiple solutions until they
arrived at the `better' one was some times difficult
for them to comprehend.

Students also seemed confused when there was
no definite solution to a problem. They would
frequently ask at the end of each lecture: `What
shall we write down as the correct answer?' Thus
the previous attempts to centre the whole of the
semester on this approach were not as successful as
students were accustomed to a formally structured
course. A similar result regarding students' expec-

N. Petalidis744

tations is also reported in [28], where the authors
note: `The attempt to move towards self-guided
learning has been markedly less successful, and
students are still relying almost entirely on the
lecture to learn the concepts'. The division of the
course into two major iterations proved to be a
solution to this problem as initially students were
let to discover the problems themselves and later to
relate the theory being taught to the problems they
encountered earlier.

The choice of the initial problem discussed is
also important. If the subject matter is too familiar
to the students the requirements capture process
may be underestimated. If it is, on the other hand,
too difficult then too much time may be dedicated
to requirements analysis. The design decisions
required by the students need to be few in order
to narrow down the possible problems that might
be encountered but not overly simplistic. In
general projects that require the development of
a library in the first part and some application of
the library in the second part can be useful.

Finally, the adopted course structure did not
leave enough time to cover topics such as project
management and quality assurance procedures.
However these topics are covered in subsequent
more advanced modules. The suggested course
structure also had little time to spend on the use
of modern development tools. Even though this
can be considered a drawback, it was done on
purpose as it was deemed more important to
develop the problem-solving skills of the students
rather than spend considerable time on a tool that
in the near future may become obsolete.

A summary of the strengths and weaknesses of
the proposed approach as the teacher and the
students perceived them can be found in Table 3.

Regardless though of the presented weaknesses
we believe that the adoption of `trial-and-error'
sessions proved beneficial to the students as the
process of software development was de-mystified
and better appreciated by them.

REFERENCES

1. Imre Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery, (1976).
2. Gerhard Fischer and Matthias Schneider, Knowledge-based communication processes in software

engineering, Proceedings of the 7th International Conference on Software Engineering, (1984).
3. Mark Priestley, The logic of correctness in software engineering, 1st International Workshop on

Philosophical Foundations of Information Systems Engineering, (2005).

Table 2. Students' opinions of the course

Question
Strongly

agree Agree Neutral Disagree
Strongly
disagree

The adopted course structure helped you in understanding
the basic concepts of software engineering? (Requirements
capture, design, coupling, cohesion)

80% 20% 0% 0% 0%

The adopted course structure helped you in developing team,
communication and problem-solving skills

80% 20% 0% 0% 0%

The adopted course structure should be extended to other
modules

60% 4% 36% 0% 0%

The same results with respect to understanding could have
been achieved with the traditional course structure

4% 8% 20% 20% 48%

The same results with respect to team, communication and
problem-solving skills could have been achieved with the
traditional course structure

0% 0% 4% 20% 76%

Table 3. Relative strengths and weaknesses of the proposed approach

Strengths Weaknesses

Better understanding of crucial concepts in software engineering Not enough time to cover software management and quality.
There should be a follow-up module covering these.

Better understanding of the rationale behind design decisions Little emphasis on tools

Students actually enjoyed practising the theory Students must be willing to be active learners. Not always
possible in a classroom

Development of problem-solving skills Difficult to choose an appropriate project

Development of team and communication skills

Adopting Lakatos in a Software Engineering Course 745

4. Conny Johansson and Lennart Ohlsson, A practice driven approach to software engineering
education, IEEE Transactions on Education, 38(5), (1995).

5. J. Tomayko, Carnegie Mellon's software development studio: a five year retrospective, Ninth
Conference on Software Engineering Education, (1996).

6. Sarah Kuhn, The software design studio: An exploration, IEEE Software, 15(2), (1998).
7. O. Hazzan and Y. Dubinsky, Teaching a software development methodology: the case of extreme

programming, Software Engineering Education and Training, (2003).
8. Jean Piaget, The psychogenesis of knowledge and its epistemological significance, Language and

learning, (1980).
9. Lonnie R. Welch, Sherrie Gradin and Karin Sandell, Enhancing engineering education with

writing-to-learn and cooperative learning: experiences from a software engineering course, 2002
ASEE Annual Conference & Exposition, (2002).

10. H. J. C. Ellis, An experience in collaborative learning: Observations of a software engineering
course, Frontiers in Education Conference, (2000).

11. S. Hadjerrouit, Learner-centered web-based instruction in software engineering, IEEE Transac-
tions on Education, 48(1), (2005).

12. Alex Baker, Emily Oh Navarro and AndreÂ van der Hoek, An experimental card game for teaching
software engineering processes, Journal of Systems and Software, 75(1±2), (2005).

13. David Evans, Teaching Software Engineering Using Lightweight Analysis, http://www.cs.virginia.
edu/~evans/pubs/ccli01.pdf, (2001).

14. Daniel Deveaux, Regis Fleurquin and Patrice Frison, Software engineering teaching: a `Docware'
approach, ACM SIGCSE Bulletin, 31(3), (1999).

15. Mehdi Jazayeri, The education of a software engineer, Proceedings of the 19th IEEE International
Conference on Automated Software Engineering, (2004).

16. D. Callahan and B. Pedigo, Educating experienced IT professionals by addressing industry's needs,
IEEE Software, 19(5), (2002).

17. R. Conn, Developing software engineers at the C-130J software factory, IEEE Software, 19(5),
(2002).

18. Shari Lawrence Pfleeger and Joanne Atlee, Software Engineering: Theory and Practice, (2005).
19. Roger S. Pressman, Software Engineering: A Practitioner's Approach, (2004).
20. Ian Sommerville, Software Engineering, (2004).
21. M. I. Alfonso and F. Mora, Learning software engineering with group work, Software Engineering

Education and Training, (2003).
22. Carlo Ghezzi and Dino Mandrioli, The challenges of software engineering education, Proceedings

of the 27th International Conference on Software Engineering, (2005).
23. Barbara Bracken, Progressing from student to professional: the importance and challenges of

teaching software engineering, Journal of Computing Sciences in Colleges, 19(2), (2003).
24. M. Gnatz, L. Kof, F. Prilmeier and T. Seifert, A practical approach of teaching Software

Engineering, Software Engineering Education and Training, (2003).
25. W. G. Bleek, C. Lilienthal and A. Schmolitzky, Weaving experiences from software engineering

training in industry into mass university education, Information Systems Education Journal, 3(1),
(2005).

26. Apache Software Foundation, Log4J Project, http://logging.apache.org/log4j/docs/index.html,
(2002).

27. Frederick P. Brooks, The Mythical Man Month and Other Essays on Software Engineering,
Pearson, (1995).

28. Stephanie Ludi, Swaminathan Natarajan and Thomas Reichlmayr, An introductory software
engineering course that facilitates active learning, ACM SIGCSE Bulletin, 37(1), (2005).

Nicholaos Petalidis is a consulting software engineer. Since 2004 he has been teaching
Software Engineering at the Technological Educational Institute of Serres, in the Depart-
ment of Informatics and Communications. He received his BSc degree in Computer Science
from the University of Crete, Greece in 1994 and his Ph.D. from the University of Brighton,
UK in 1999. His research interests include software development methodologies and formal
methods, but lately he has begun looking into ways to improve the education of future
software engineers.

N. Petalidis746

