
What can Software Engineering Students
Learn from Studying Open Source
Software?*y
D. A. CARRINGTON
School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia
QLD 4072, Australia. E-mail: davec@itee.uq.edu.au

There is a large gap between the scale and complexity of typical software products and examples
used in software engineering education. Since complexity is considered an essential property of
software systems, this gap creates a problem for software engineering students and educators.
Studying open source software can provide software engineering students with realistic and
challenging examples and pragmatic instances of abstract concepts such as software design
patterns. For software engineering educators, the vast array of freely available software sources
allows selection to suit their educational objectives and constraints. This paper reviews how open
source software is used in a software engineering studio course and discusses the outcomes from the
perspectives of students and educators.

Keywords: engineering education; open source community; learning environments; distributed
software development

INTRODUCTION

A MAJOR CHALLENGE in teaching software
engineering is helping students understand the
differences between the small programs that they
write as educational exercises and the large scale
software products that they will deal with when
they are working. This gap between education
exercises and real software systems is continually
widening. Brooks [3] identified complexity as one
of five inherent properties of modern software
systems and states that `Many of the classic
problems of developing software products derive
from this essential complexity and its nonlinear
increases with size'. Software engineering educa-
tors need techniques to help their students cross
this gap as they transition from novices to practi-
tioners.

The concept of sharing software source code is
not new and has been common in academic and
research communities since computing began.
Many open source projects have started life in
universities. However, the open source software
movement has grown rapidly in the last decade
with the expansion of the Internet and now
involves many commercial and industrial partici-
pants [5].

While not a true open source project, the origi-
nal distribution of UNIX to universities and
research organisations in the mid 1970s included
full source code and this had major consequences.
Early UNIX adopters tended to share their exten-
sions and adaptations. UNIX became widely used
by students and gave rise to computer science's
most famous `suppressed' (to protect AT&T's
trade secrets) publication when John Lions [9]
documented the UNIX kernel source code to
help teach operating system principles.

The open source software communities provide
an enormous distributed repository of software
artifacts that are freely available for study and
experimentation. Not all artifacts are exemplars,
but it is educationally valuable to expose students
to a variety of programming styles and hence
encourage their critical abilities. Hunt and
Thomas [7] refer to this type of study as `software
archaeology', but an alternative analogy is the
medical student pathology laboratory. The open
source software repository continues to grow and
adapt to changes in technologies. Using this repo-
sitory is low cost and requires a relatively small
effort by an educator. The systems are generally
realistic and practical, which can be a major factor
for student motivation. Using open source soft-
ware also has the beneficial effect of ensuring that
students are aware of the open source software
movement, and opens up opportunities to discuss
topics such as software piracy and ethics.

This paper discusses how open source software
can be used as classroom material; in particular, it
describes our experiences in a software engineering
studio course focusing on software design. The

* Accepted 25 April 2008.
y Based on `Teaching Software Design with Open Source

Software' by David Carrington and Soon-Kyeong Kim, which
appeared in the Proceedings of the 33rd Annual IEEE/ASEE
Frontiers in Education Conference, Boulder, CO, November 5±8,
2003. IEEE Catalog No. 03CH37487, pp. S1C-9±S1C-14,
2003 IEEE.

729

Int. J. Engng Ed. Vol. 24, No. 4, pp. 729±737, 2008 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2008 TEMPUS Publications.

next section briefly reviews other approaches to
using open source software as an educational
resource. The following section explores the educa-
tional objectives that can be addressed through the
use of open source software. The context for our
software engineering studio course in which
students are exposed to open source software,
typically for the first time, is then explained.
Examples of the types of open source software
that we have used (a complete list is provided in the
appendix) are given. Some of the results achieved
by students during their practical work are
reviewed, and the last section reflects on our
experiences and provides suggestions for people
interested in adopting our approach.

RELATED WORK

The availability of open source software is
changing software development practice [13, 14,
17]. The last ten years has seen an enormous
increase in software engineering research studying
open source software since the artifacts are
normally more readily available. As might be
expected, many people are also leveraging the
availability of open source software in educational
contexts [2]. Most of this usage is to employ freely
available software products as convenient and low-
cost alternatives to commercial ones. However, the
availability of source code for open source soft-
ware does not appear to be as widely exploited.

Software engineering educators are beginning to
discuss how they are using open source software to
attain educational goals. Andrews and Lutfiyya [1]
used some GNU software products in a senior
software engineering course focusing on software
maintenance. O'Hara and Kay [12] provide an
overview that includes a description of some of the
different open source licences. Nelson and Ng [11]
describe a course on computer networking that
relied on multiple open source packages. At the
SIGCSE conference in 2002, a panel reviewed the
social and ethical responsibilities associated with
using open source software [19]. Hawthorne and
Perry [6] consider the consequences for software
engineering education of distributed development
of software systems using open source software and
COTS components. Liu [10] presents an iterative
approach for developing open source software
using multiple cohorts of students with the custo-
mers being local community organisations.

Shockey and Cabrera [15] describe the results
from the SNAP Development Center within the
Inter American University of Puerto Rico. The
Center employs undergraduate student researchers
developing open source software with the primary
goal of transitioning them from trainees to soft-
ware engineering practitioners. Toth [18] discusses
how the availability of open source software en-
gineering tools allows him to get students to
evaluate existing software engineering tools,
select a candidate and then extend that tool. The

paper provides an insightful evaluation of the
associated challenges and lists multiple `lessons
learned'.

Ellis et al. [4] are using an open source disaster
management system as a basis for their software
engineering program with undergraduate students
developing software modules that are incorporated
into the current releases. Ellis et al. provide several
guidelines for using open source projects in soft-
ware engineering education. Jaccheri and ésterlie
[8] have developed an approach for teaching
master's level students using principles from
action research. Their students act as both devel-
opers and researchers in open source software
projects. The case study in their paper refers to
the Netbeans project.

EDUCATIONAL OBJECTIVES

Many aspects of software engineering can be
illustrated through open source software. The
most obvious feature is that such software is devel-
oped to solve real-world needs by software practi-
tioners. For educational purposes, this feature can
be extremely important. Open source software
examples are more realistic than examples found
in textbooks or developed specifically by teaching
staff. This is not to say that all open source software
is exemplary. Studying open source software reveals
both good and bad examples, which can be a
revelation to students who sometimes assume that
all non-student software is high quality.

One important aspect of realism is the sheer size
of real software systems. Textbook and classroom
exercises are normally carefully chosen to be
understandable after a few minutes of study,
isolating the topic of interest from everything
else. For students, this can create a false impres-
sion that all software is similarly small and
manageable. It is important that students get an
introduction to strategies for approaching a large
and unknown body of code [16].

Another key lesson for students is the value of
appropriate documentation. Novice programmers
often struggle to appreciate why and how to docu-
ment their code. When they write software, it seems
clear to them that the code is `self-documenting' and
rarely do they need to revisit their code weeks or
months later. However, the experience of studying
source code written by another person normally
makes the need for documentation clear. A parti-
cularly effective demonstration occurs if the student
is supplied with a program written in a foreign
language (identifiers and comments).

Because students tend to work on small software
assignments whose lifetime is a matter of days or
weeks, the problems associated with software
evolution are usually not experienced. Again by
inheriting an existing project and having to under-
stand it and then modify it, they get a taste for the
effort involved in software evolution/maintenance.
Reverse-engineering a design from code without

D. A. Carrington730

documentation can become a meaningful task
rather than just a topic talked about in lectures.
Refactoring code techniques can be applied to real
examples where there is no text-book answer. All
of these activities help students to understand how
software engineering is practised and to develop
appropriate skills.

LEARNING CONTEXT

The Software Engineering Studio course is a
core element of the second year program for
both the software engineering (4 year) and the
information technology (3 year) degrees offered
by the School of Information Technology and
Electrical Engineering at the University of Queens-
land. Incoming students have previously com-
pleted at least one programming course using
Java and are typically studying a data structures
and algorithms course in parallel. The goals for the
course are to:

1. demonstrate the concepts and practice of soft-
ware design and testing, the UML notation,
software design patterns, code refactoring and
configuration management;

2. extend students' programming experience, par-
ticularly in terms of program size, but also in
the use of additional program structures and
development methods;

3. provide students with positive experiences of
collaborative learning and some appreciation of
the need for life-long learning skills.

4. expose students to open source software and
real-world code written by other developers.

The one semester (13 teaching weeks) course is
normally structured with a two-hour lecture and a
two hour laboratory class each week. The practical
work in the course requires students to study and
modify one from a nominated set of open source
software systems, in teams of three or four students
(students are encouraged to suggest extra software
systems to be added to the initial set). Each lecture is
for the full class, while laboratory classes and
tutorials are subdivided into groups of up to
twenty-eight students (up to eight teams). Members
of each student team are constrained to attend the
same laboratory class so they can work as a team
during this time. Team presentations are also
required in some laboratory classes.

Assessment for the course includes three team
assignments based on open source software. In the
first assignment, students install and use their
chosen open source system so they can give a five
minute presentation to their peers explaining:

. the purpose of the system,

. the installation process, and

. how to use the system, preferably with a simple
scenario.

In the second assignment, students undertake a
detailed investigation of the source code. Using

any existing documentation as a base, the team
constructs a design guide for their system. The
guide should incorporate an overview of the
system's structure, including a complete list of
classes and explain any structuring into packages.
If the system relies on external libraries or other
systems, these should be noted.

Since some systems are much larger than others,
teams are encouraged to focus their detailed
description on a coherent subset of the overall
source code. A rationale for the selection of the
subset is required. As a rough guide to the size of a
subset for this assignment, we suggest focusing on
about twelve to sixteen classes or about 2000 to
3000 lines of code (not counting comments).

UML class diagrams are to be constructed to
capture the classes and the relationships between
them. Not all attributes and methods need to be
included for each classÐinclusion should be on the
basis of assisting understanding. UML interaction
diagrams (collaboration or sequence) are not
required in this assignment, but they can be used
where they assist the documentation goal. No
source modifications are required for this assign-
ment.

A plan for the next stage of investigation is also
required. While this plan is not binding on the
team, it represents an opportunity to prepare for
the final assignment. The plan should propose
some extensions, improvements or refactorings to
the software that the team feels capable of imple-
menting. These enhancements are to be described
as precisely as possible without getting into imple-
mentation details (i.e., what is to be extended,
improved or refactored and why, but not how
this is to be achieved). A test plan is also required
for those parts of the system to be affected by the
proposed enhancements. The test plan is to
describe the class(es) to be tested, the proposed
test process including any required test scaffolding,
and the general types of tests that the team
proposes to execute.

The final assignment requires each team to
enhance their system, either by adding function-
ality or by refactoring the existing code. The
deliverables are

1. source code changes and accompanying
descriptions;

2. UML diagrams (class and sequence) illustrating
the source changes;

3. testing information describing how the changes
have been verified, and

4. a ten- to fifteen-minute presentation in the final
laboratory class summarising the assignment
outcomes.

OPEN SOURCE SOFTWARE EXAMPLES

The Internet has provided an amazing mechan-
ism for world-wide information sharing and distri-
bution. One application has been for programmers

What can Software Engineering Students Learn from Studying Open Source Software? 731

everywhere to establish repositories of executable
systems and source code for others to use. Source-
Forge (http://sourceforge.net) is probably the best
known of these repositories. Given that Source-
Forge itself currently has over 100 000 projects of
which over 20 000 use the Java programming
language, there is a selection problem, that is,
what criteria can (and should) be used to select
open source software examples for educational
purposes.

The main criteria we have applied are:

. Relevant: The product should be potentially
relevant in some way to the students in their
software engineering studies. This criteria has
been used to exclude software for computer-
based games, a decision that is not strictly
necessary but that avoids distracting students
in their studies.

. Understandable: The application domain of the
product needs to be comprehensible to the stu-
dents otherwise they are likely to take an exces-
sive amount of time researching the problem
domain.

. Java: The software needs to be implemented in
Java since Java is the programming language
that students entering this course can be
assumed to know.

. Stand-alone: The software needs to be able to be
compiled and run in our student laboratories, so
it must not rely on other systems that need to be
installed, such as databases or web servers. For
obvious reasons, the laboratory environment is
controlled to avoid security problems.

. Modest size: This criterion was not applied when
the course was first run in 2002. The effect of
asking students to investigate Eclipse or Net-
Beans (even if they only had to study a small
part) was completely underestimated. Since
then, the size of the source has been considered
a key factor. Deciding what is reasonable is not
straightforward, but having thousands of source
lines is generally necessary to be challenging, but
having hundreds of thousands of source lines is
excessive. For some products, part of the source
code can be auto-generated by systems like
Antlr (http://www.antlr.org/). Such code is gen-
erally considered to be out of scope within this
course.

To illustrate how these selection criteria are
applied, here are some types of products found
to be effective and some examples used within this
course. More details on the examples are provided
in the appendix.

Editors and IDEs: These interactive tools easily
satisfy the relevant and understandable criteria
and are generally popular choices. Examples
include: JEdit, NetBeans, Eclipse, DrJava, Jaxe,
JOE, Jipe and RText.

Development tools: These tools assist the software
development process. Examples include:

. Abbot (GUI testing framework)

. Ant (build tool)

. JarWizy (GUI for archive files)

. Java GUI Builder

. jCVS (GUI client for CVS)

. JIP (Java Interactive Profiler)

. JODE (Java decompiler and optimiser)

. JRefactory (refactoring tool)

. JUnit (testing framework)

. Process Dashboard (PSP/TSP support tool)

Ant and JUnit has subsequently been incorporated
into the toolset used by all students within the
course. JUnit is now also used as an exemplar
during lectures on software design patterns.

Static analysers: These tools take source or byte
code as input and generate derived information.
Examples include:

. Checkstyle (checks against a coding standard)

. Classycle (analyses class and package dependen-
cies)

. JavaNCSS (measures non-comment source lines
and cyclomatic complexity)

. JDepend (generates design quality metrics)

. PMD (identifies problems like duplicate or dead
code or potential defects)

Personal calendar/organisers: These programs can
help students manage their lives. Examples
include:

. Borg (calendar & task tracker)

. ConsultComm (time tracker for projects)

. Essential Budget (personal finance manager)

. FreeMind (mind-map editor)

. JreePad (personal organiser)

. Memoranda (diary manager)

. JCycleData (training log/diary)

OUTCOMES

To appreciate what is possible for second-year
undergraduate students studying large open source
software products, three of the more successful
projects are reviewed. Successful teams generally
become absorbed in understanding and modifying
their software product. Not all student teams
achieve the same results for a variety of reasons,
including the skill and aptitude of individual team
members, team cohesion and organisation, and
interest in the course and the software under
study. The time available is limited, and of
course all the students are taking a variety of
other courses that typically reach their peak work-
load at about the same time (the end of semester).

In 2003, one of the software products to be
studied was FreeMind (version 0.6.1), an editor
for mindmaps. The source contained over 70
classes organised into four packages. One of the
teams investigating FreeMind recorded in their

D. A. Carrington732

second assignment their impression of the source
code structure:

At first when looking at the source code of FreeMind,
it is quite obvious that the developers of this program
were not writing their code to make it any easier for
other people to understand how the program actually
works. This of course made it extremely difficult to
generate a source code description for this program.
The almost complete lack of general commenting,
proper code indentation, the absence of proper Java-
doc comments, and any other documentation in
general, was extremely frustrating when attempting
to comprehend the composition and dynamics of this
program.

In their final report, this team reported making the
following changes to FreeMind.

1. The mouse listeners were revised so that the
mouse-over effect of selecting classes was dis-
abled, replaced by a one-click method for
selecting nodes and a double-click method for
folding/unfolding nodes. This functionality
change was justified in terms of conforming to
common user interface conventions.

2. The very long constructor method FreeMind()
in the Main package was refactored by introdu-
cing ten new methods. Similar changes were
made to the FreeMindApplet class.

3. The Controller class was also refactored by
removing inner classes to improve readability.

4. The java.awt.robot class used to excellent effect
for GUI-level testing (it was particularly effec-
tive in the final presentationÐ`look no hands!').
The Ant build script was also modified to
automatically run the batch tests.

In 2004, several teams investigated Java Wizard
(JWiz) (Version 1.0.4), a Java source code checker
that identifies some common mistakes made by
Java programmers. This tool was developed
around 1997 for JDK1.3.1 at the Collaborative
Software Development Laboratory at the Univer-
sity of Hawaii and has not been updated since
1999. JWiz uses the JavaCC compiler compiler to
generate a parse tree for the input. Since the
JavaCC EBNF input was not available, the
parsing part of JWiz was regarded as a black
box. One of the teams investigating JWiz made
the following changes.

1. New checks were introduced to identify:
a. lack of an update clause in a for loop;
b. a loop control variable being modified in the

loop body;
c. methods named equal, hashcode or tostring;
d. methods throwing overly general exceptions

such as Exception or Throwable.
2. A configuration file facility was introduced to

specify which checks were to be performed
(rather than always perform all checks). This
required removing the hard-coded call to checks.

3. The Factory pattern was introduced to initialise
the JWiz checks.

4. The collection of warnings in a string buffer was

replaced by an implementation of the collecting
parameter pattern to simplify the code and
allow additional operations on the list of warn-
ings.

5. The program was enhanced so it could be used
as an Ant task.

Essential Budget (Version 0.8rc2), a graphical
personal finance manager designed for tracking
home finances, was adopted in 2006 by several
teams as their open source project. One of the
Essential Budget teams undertook an extensive
redevelopment of the product that required remov-
ing three classes, adding four new classes and over
1200 lines of new code. The changes included:

1. Changing the user interface to remove dupli-
cated mechanisms for invoking functionality,
for example, menu items such as `Accounts',
`Categories' and `Budgets' appear in a menu bar
at the top of the window, also at the bottom of
the window and in a drop-down menu under
the `View' tab. The reclaimed user-interface
space was then used for new functionality.

2. Adding the ability to load and save named files
so that multiple budgets could be active on the
same computer.

3. Adding functionality to perform reconciliation
between bank statements and Essential Budget
information.

4. Providing printing facilities.
5. Linking help information by creating a browser

window onto a new HTML help file.

All teams are required to demonstrate via tests that
the changes to their product have been successfully
implemented and are encouraged to develop unit
tests (preferably using JUnit) for all modified
classes.

LESSONS LEARNT

As already mentioned in the section above,
`Open source software examples', choosing an
appropriately sized open source software product
is important if the educational objectives are to be
achieved. It is also useful to pre-test the product to
ensure that it compiles and runs within the labora-
tory environment to be used by students. Other-
wise, it can be frustrating for students and
seriously impede their progress. For one of the
early classes, we identified an interesting product
that ran in our environment. However, one of the
required libraries was no longer available, making
it impossible to build from source. The most
obvious things to check are any dependencies on
hardware or (more usually) other software. Check-
ing for the need to install servers (such as the
Apache HTTP server) or other system-level soft-
ware is important as this type of software may
conflict with limitations on student-installed soft-
ware in laboratories or organisational security
policies.

What can Software Engineering Students Learn from Studying Open Source Software? 733

It is critical to motivate the students and estab-
lish realistic expectations. Many students find it
less motivating to study existing software and
prefer to develop something new from scratch,
perhaps not appreciating that software mainte-
nance and evolution is typical of industry practice.
There is often a major hurdle with the need to
abstract from all the details of a software product
that is usually several orders of magnitude larger
than anything they have studied before. Abstrac-
tion is a non-trivial skill to develop and requires a
significant effort in this context where the detail is
initially unknown.

I believe that the use of student teams is an
essential factor in the success of this course. While
teams were introduced for other educational
reasons, they have multiple benefits for the inves-
tigation of open source software. Since studying a
large software product is a novel experience for
almost every student in the course, the team
provides a set of interdependent peers who share
the same goals and experiences. The collective
expertise of the team provides a context for discus-
sion and resilience in the face of difficulty.

For instructors there are assessment challenges,
even beyond assessing group-work. It is infeasible
for instructors to have detailed knowledge of all
the open source software products being investi-
gated. As a consequence, assessment is performed
through student presentations and reports. The
presentations offer an opportunity for the instruc-
tors to ask questions to check on the depth of
understanding and knowledge. Since the course
typically has about 100 students, we run multiple
tutorial classes (with about 20±24 students in each
class). For variety in the student presentations, the
teams in each tutorial class are constrained to
select different open source products. However
for consistency, all teams investigating the same
open source product are assessed by the same
instructors. Normally, two instructors assess each
team assignment submission. While this appears to
double the assessment load, the effect helps
improve consistency across instructors and allows
each instructor to focus on particular aspects of
the submission. A key challenge in the assessment
is realising that there is no `right' answer, so
assessment needs to be done against specified
criteria.

Teaching staff need to be capable of helping
students if they initially fail to engage with the
task. This is best done face-to-face with each team
separately, and may involve the product they are
studying or another example. Showing students

how the task might be approached and then
making concrete suggestions on how they could
proceed further usually seems to help.

In general, the better students (as assessed by
grades in courses other than this one) seem to like
the open-ended nature of their task while the
weaker students struggle. Some students find it
difficult to imagine that they might be able to
extend or improve the work of other people:

`It's hard for us to say that our design could possibly
be better than the original programmers.'

CONCLUSIONS

The open source software movement provides
wonderful resources for teaching software engin-
eering. Our experience using open source Java
systems in this course on software design and
testing has been positive, although there is still
room for improvement. Students generally
appreciate the opportunity to use and explore
real world software and to study its internal
construction. While this paper has focused on a
single course, studying open source software is
applicable throughout the software engineering
and computer science curriculum. Courses on
compilers, operating systems, networks, middle-
ware, and so on can all benefit from having
students investigate real examples of relevant soft-
ware products.

For teaching staff, the challenge is to provide
adequate support and scaffolding for open source
learning since they are unlikely to be familiar with
all the details of the systems. They need to be able
to demonstrate how to reverse engineer software
by exploring and extracting critical information
from the source code.

There are some open issues which we have not
yet resolved:

. Can students' work contribute to the open
source community through feedback, software
changes or documentation?

. Can the open source community interact with
the students other than by providing their soft-
ware?

AcknowledgementsÐI would like to thank Ian Hayes, Daniel
Jarrott, Soon-Kyeong Kim, Erica Mealy and Alan Whiteside as
additional teaching staff involved in developing and presenting
the Software Engineering Studio course over the past six years. I
also wish to thank the numerous tutors who provided face-to-
face assistance and assessment for this course. In addition, I
want to acknowledge the hundreds of students who accepted the
challenge of studying large and complex software systems.

REFERENCES

1. J. H. Andrews and H. L. Lutfiyya, Experiences with a software maintenance project course, IEEE
Transactions on Education, 43(4), (2000), pp. 383±388.

2. Graham Attwell, What is the significance of Open Source Software for the education and training
community?, Proceedings of the First International Conference on Open Source Systems, (2005)
pp. 353±358.

D. A. Carrington734

3. Frederick P. Brooks, Jr., No silver bullet: essence and accidents of software engineering, IEEE
Computer, 20(4), (1987), pp. 10±19.

4. Heidi J. C. Ellis, Ralph A. Morelli, Trishan R. de Lanerolle and Gregory W. Hislop, Holistic
software engineering education based on a humanitarian open source project, Proceedings of the
20th Conference on Software Engineering Education & Training, (2007), pp. 327±335.

5. Joseph Feller, Brian Fitzgerald and Eric S. Raymond, Understanding Open Source Software
Development, Addison-Wesley, (2001).

6. Matthew J. Hawthorne and Dewayne E. Perry, Software engineering education in the era of
outsourcing, distributed development, and open source software: challenges and opportunities,
Proceedings of the 27th International Conference on Software Engineering, (2005) pp. 643±644.

7. A. Hunt and D. Thomas, Software archaeology, IEEE Software, 19(2), (2002), pp. 20±22.
8. Letizia Jaccheri and Thomas ésterlie, Open source software: a source of possibilities for software

engineering education and empirical software engineering, Proceedings of First International
Workshop on Emerging Trends in FLOSS Research and Development, (2007).

9. J. Lions, Lions' Commentary on UNIX 6th Edition, with Source Code, Peer-to-Peer Commun-
ications, (1996).

10. Chang Liu, Enriching software engineering courses with service-learning projects and the open-
source approach, Proceedings of the 27th International Conference on Software Engineering ICSE
'05, (2005) pp. 613±614.

11. D. Nelson and Y. M. Ng, Teaching computer networking using open source software, Proceedings
of the ITiCSE 2000 conference, (2000) pp. 13±16.

12. K. J. O'Hara and J. S. Kay, Open source software and computer science education, Journal of
Computing Sciences in Colleges, 18(3), (2000), pp. 1±7.

13. Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary, O'Reilly Media, (2001).

14. M. Shaw, Software engineering education: a roadmap, Proceedings of the Conference on the Future
of Software Engineering, ACM Press, (2000) pp. 371±380.

15. Kevin Shockey and P. Cabrera, Using open source to enhance learning, Proceedings of the 6th
International Conference on Information Technology Based Higher Education and Training, (2005)
pp. 7±12.

16. Diomidis Spinellis, Code Reading: The Open Source Perspective, Addison-Wesley, (2003).
17. Diomidis Spinellis and Clemens Szyperski, How is open source affecting software development?,

IEEE Software, 21(1), (2004), pp. 28±33.
18. Kal Toth, Experiences with open source software engineering tools, IEEE Software, 23(6), (2006),

pp. 44±52.
19. M. J. Wolf (Moderator), Open source software: intellectual challenges to the status quo,

Proceedings of the 33rd SIGCSE Conference, (2002) pp. 317±318.

APPENDIX

This appendix provides an annotated list of the open source software used in the Software Engineering
Studio course over the past six years.

2002

Program name and web reference Description

Ant
ant.apache.org

Apache Ant is a Java-based build tool.

ArgoUML
argouml.tigris.org

ArgoUML is a UML modelling tool with support for UML 1.4.

Eclipse
www.eclipse.org

Eclipse is known as a Java IDE, but is much more.

jEdit
www.jedit.org

jEdit is a programmer's text editor.

JUnit
www.junit.org

JUnit is a regression testing framework for implementing unit tests in Java.

NetBeans
www.netbeans.org

NetBeans is an IDE for software developers.

PMD
pmd.sourceforge.net

PMD scans Java source code and looks for potential problems.

ProcessDashboard
processdash.sourceforge.net

Process Dashboard is a PSP/ TSP support tool.

JRefactory
jrefactory.sourceforge.net

JRefactory is a tool to refactor Java source code.

What can Software Engineering Students Learn from Studying Open Source Software? 735

2003

Program name and web reference Description

Classycle
classycle.sourceforge.net

Classycle analyses Java class and package dependencies.

FreeMind
freemind.sourceforge.net

FreeMind is an editor for mind-maps.

ICEMail
www.icemail.org

ICEMail is an email client.

JarWizy
sourceforge.net/projects/jarwizy

JarWizy is a GUI for archived file formats (jar, zip, tar).

Java2D
java.sun.com/products/java-media/2D/

Java2D is part of the Sun Java distribution and includes a set of
sample programs.

JavaNCSS
www.kclee.de/clemens/java/javancss

JavaNCSS is a utility for measuring two standard source code metrics for the Java
programming language.

jCVS
www.jcvs.org

JCVS is a GUI client for CVS.

JDepend
clarkware.com/software/JDepend.html

JDepend generates design quality metrics for Java.

LOCC
csdl.ics.hawaii.edu/Tools/LOCC

LOCC measures the size of work products.

SwingSet2
Part of the Sun Java 1.4 distribution

Program demonstrating features of the SwingSet library.

2004

Program name and web reference Description

Borg
borg-calendar.sourceforge.net

BORG is a combination calendar and task tracking system.

ConsultComm
consultcomm.sourceforge.net

ConsultComm keeps track of time spent on projects.

DrJava
www.drjava.org

DrJava is a Java development environment, designed primarily for students.

JMT
jmt.tigris.org

JMT (Java-Measurement-Tool) measures and judges Java code.

Jreepad
jreepad.sourceforge.net

Jreepad is a personal organizer, information manager and text editor.

JWiz
csdl.ics.hawaii.edu/Research/
JWiz/JWiz.html

JWiz is an automated code checker for Java programs.

Memoranda
memoranda.sourceforge.net

Memoranda is a diary manager and a tool for scheduling personal projects.

UMLet
www.umlet.com

UMLet is a simple UML drawing tool.

2005

Program name and web reference Description

Abbot
abbot.sourceforge.net

Abbot is a framework for unit and functional testing of Java GUIs.

Checkstyle
checkstyle.sourceforge.net

Checkstyle is a tool to help programmers adhere to a coding standard.

Jaxe
jaxe.sourceforge.net

Jaxe is a Java XML editor.

Java Gui Builder
jgb.sourceforge.net

The Java Gui Builder decouples the GUI building code from the rest of the
application using an XML file.

jGnash
jgnash.sourceforge.net

jGnash is a personal finance manager.

JODE
jode.sourceforge.net

JODE is a java decompiler and an optimizer.

Mars Simulation Project
mars-sim.sourceforge.net

The Mars Simulation Project is a simulation of human settlement on the planet
Mars.

NFC Chat
nfcchat.sourceforge.net

NFC is a chat server and client.

Phosphor
phosphor.sourceforge.net

Phosphor is a peer-to-peer file sharing program.

D. A. Carrington736

2006

Program name and web reference Description

Essential Budget
sourceforge.net/projects/essentialbudget

Essential Budget is a personal finance manager.

Java Outline Editor (JOE)
outliner.sourceforge.net

The Java Outline Editor (JOE) is a folding editor.

JCycleData
jcycledata.sourceforge.net

JCycleData is a training log / diary.

Jipe
jipe.sourceforge.net

Jipe is a small Java IDE.

RText
rtext.sourceforge.net

RText is a programmer's text editor.

Search and Whatever
searchnwhatever.sourceforge.net

`̀ Search and Whatever'' is a utility to assist performing search operations.

2007

Program name and web reference Description

Classroom scheduler
sourceforge.net/projects/cr-scheduler

An application used to help avoid conflicts when scheduling courses and professors
into classrooms.

CyVis
cyvis.sourceforge.net

CyVis is a software metrics collection, analysis and visualisation tool for java based
software.

DocSearcher
docsearcher.henschelsoft.de

DocSearcher provides searching capabilities for text, HTML, MS Word, MS Excel,
RTF, PDF, Open Office (and Star Office) Documents.

Factory
projectfactory.sourceforge.net

Factory is a project management tool, but it should be considered first as a personal
organizer.

Google Web Toolkit (GWT)
code.google.com/webtoolkit/

GWT is a software development framework that makes writing AJAX applications
easy for developers.

JIP
jiprof.sourceforge.net

JIP is a code profiling tool much like the hprof tool that ships with the JDK.

Rachota
rachota.sourceforge.net/en/index.html

Rachota is an application for time-tracking multiple projects. It displays time data in
diagram form and creates HTML reports.

Timmon
timmon.sourceforge.net

Timmon is a time tracking tool helping to keep track of time spent on different
projects.

David Carrington is an Associate Professor in the School of Information Technology and
Electrical Engineering at the University of Queensland, Australia and is the program
director of the Software Engineering program. David has a broad range of research
interests in the areas of software development, user interfaces and processes, including
techniques and tools for formal specification, refinement techniques, design methods,
programming environments and specification-based testing methods and tools. He was
the Knowledge Area Specialist for the Software Engineering Body of Knowledge Project
(SWEBOK) in the area of software engineering infrastructure (tools and methods).

What can Software Engineering Students Learn from Studying Open Source Software? 737

