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This paper advances the hypothesis that engineering design is most effective when heuristics are
used in many aspects of the design process, particularly in structuring sequences of experiments and
adapting the design based on data. These heuristics appear to be natural behavior in the sense that
engineers will use them when no training or external incentives are offered to encourage alternative
approaches. Our observations of seven repetitions of a student design exercise with a total of over
300 students are consistent with our hypothesis. The approaches used by students appear to be
economical and highly effective even though they are not consistent with theoretically optimal
experimentation techniques. Our observations are related to recent research in cognitive psycho-
logy, especially the work of the Adaptive Behavior and Cognition group regarding `fast and frugal
heuristics' and also the observations of some researchers in Design of Experiments. The implica-
tions for design practice and education are considered.
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I. MOTIVATION

A HEURISTIC is a generally reliable, but
potentially fallible, simplification that enables a
problem to be addressed within resource
constraints. Given that engineering design poses
many very difficult problems and that it must be
conducted under stringent competitive conditions,
it seems natural that heuristics would be a major
part of the professional practice of engineering
design. An ad hoc approach is one that is suited
to a specific purpose and cannot be guaranteed for
general purposes. Given that engineering poses a
broad range of distinct challenges with different
problem structures, it is natural that different
heuristics are applied to different problems. So,
the terms `heuristic' and `ad hoc' denote what
appear to be reasonable strategies for tackling
engineering challenges.

Nevertheless, in engineering design, there is a
strong tendency to believe that general-purpose
approaches described as `systematic' and `mathe-
matically rigorous' are to be preferred to `heuristic'
or `ad hoc' approaches. For example, the United
States National Science Foundation states that in
pursuing research they seek `rigorous application
of fundamental theories taken from disparate
disciplines, such as mathematics, economics and

operations research, to the engineering design
process' and that `preference is given to
approaches that include mathematical rigor, as
opposed to ad hoc and heuristic methods that
have limited application' [1]. This preference does
not appear to be limited to academic circles. A
recent trend toward more systematic engineering
processes is the proliferation of Six Sigma
programs, which are described as `analytical' [2]
or `highly disciplined' [3]. Thus it appears that both
academia and industry overtly prefer general-
purpose problem solving as opposed to heuristics.

The motivation of this paper is to build a
positive case for heuristic approaches to engineer-
ing design and to argue against the idea that
making designers use a more systematic, rigorous,
general-purpose approach leads to better designs.
This paper was inspired by the authors' experience
leading a design exercise intended to teach students
about experimentation and its role in engineering.
The students resist using a general-purpose
approach and those teams that tended to be
more systematic did not fare better in the exercise.
Our observations paralleled our experiences in
industrial settings with experienced engineers.
These observations have led us to relate recent
cognitive science research to engineering design.
In doing this, we follow many others who have
linked design research with cognitive science [4±8].
It is hoped this paper will lead to careful scientific* Accepted: 14 December 2005
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investigation of the nature of heuristics applied
during design and the ways these heuristics provide
value to the outcome of that process.

The education module
The educational module is designed to teach

undergraduates about experimentation in engin-
eering design. The module has been part of the
Undergraduate Practice Opportunity Program
(UPOP) program at MIT for four years. The
name UPOP was chosen because it complements
the very successful Undergraduate Research
Opportunity Program (UROP). What UROP has
done for research experiences, UPOP aims to do
for engineering practice experiences. UPOP
includes an industrial summer intern experience
coupled with pre- and post-intern activities
designed to create an integrated program whose
goal is to provide students with the opportunities
to apply their classroom learning in stimulating,
real-world settings [9]. A major part of the pre-
intern learning occurs in a one-week course struc-
tured like an executive education or corporate
training seminar. The students do all modules as
ten-person teams and each team has an experi-
enced engineer who acts as a mentor to the group.

The co-authors have jointly developed a three-
hour module on experimentation in design and
delivered it to the groups over the four years of
the UPOP program. More than 300 students have
participated in the module so far. The module
begins with a short lecture on experimentation
and its role in design. The themes for the lecture
include variability, quality, design of experiments,
and Taguchi methods. Specific concepts and tools
introduced include balance, orthogonality, statis-

tical efficiency, and deliberate introduction of
noise factors into experiments.

After the lecture, the students engage in a brief
design contest depicted schematically in Fig. 1 and
employing the rules listed in Table 1. The students
are asked to develop a paper airplane that will fly a
given distance consistently. The design space is
limited to a parameter space of four variables,
each variable having three levels. There are thus
81 possible distinct paper airplane designs. The
template used for folding the planes is based on
`Taguchi airplanes' developed by Eppinger [10].
The teams have a limited budget to explore the
design space. A maximum of 30 flights can be
made, so the search is necessarily incomplete.
Further, there is competitive advantage to limiting
the development cost by experimenting with even
fewer alternatives. In addition, the development
time is limited to 40 minutes. Once the allotted
development time has elapsed, the teams submit

Fig. 1. A schematic representation of the design challenge.

Table 1. The rules of the design challenge

Every team designs a paper airplane (constrained to the
choices on the template).

The development budget is $300. Any experimental flight
costs $10.

There are 40 minutes for all planning, experimentation, and
decision-making.

The competition comprises five flights. A teaching assistant
does the throwing.
� $100 for each landing in the `target' (17 ft±22 ft)
� $50 if past the target (>22 ft)
� $0 if short of the target (<17 ft)

Profit equals revenue minus cost. The team with the highest
profit wins the contest.
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their chosen designs and the planes are flown five
times. The payoff for the flights is based on their
flight distance. This payoff minus the development
costs incurred represents net profit. The team with
the highest profit wins the contest.

OBSERVATIONS OF THE DESIGN
CONTEST: PROCESSES USED AND

RESULTS OBTAINED

In delivering this module an interesting finding
has emerged. Although the lecture describes
factorial design of experiments and its advantages,
student teams generally do not elect to use factorial
design for the contest (note that the rules in Table
1 do not compel them to do so). When students
engage in design, they naturally gravitate to a
process that is more adaptive than statistical
Design of Experiments (DOE) or Taguchi
methods. They use their current knowledge about
paper airplanes and engineering science to make a
series of guesses interspersed with experiments to
try to determine what will work best. They repeat
this process until they are satisfied with their
choice or until time runs out. This general
approach has many variants, but students natu-
rally tend to use an approach along these lines.

This heuristic, adaptive approach has been
successful in competition with factorial DOE.
The number of experiments conducted by student
teams is generally quite low (3±7 typically)
compared with that needed to perform a resolution
III factorial design (nine experiments if all four
factors and all three levels are included). The
payoffs achieved by teams using the heuristic
approach apparently exceed the average payoff
provided by factorial design or the payoff through
selecting the alternatives at random and selecting
the best one. These conclusions were made by
comparing the student team results to an investiga-
tion of factorial design and random selection using
data re-sampled from a full factorial experiment
with the paper airplanes [11]. On the one occasion
a TA strongly mentored a team to use an ortho-
gonal array, the team did so. However, in align-
ment with our other findings, this team did not
attain the top-performing airplane, despite having
high development costs.

Because this design activity was developed as an
educational activity and not as a scientific experi-
ment, we cannot draw conclusions about the
statistical significance or scientific validity of the
trends observed. The evidence so far is purely
anecdotal and is presented here to motivate further
exploration of our hypothesis. In this case, we
observe that the approach that engineering
students naturally tend to apply apparently leads
to better designs and lower costs than theoretically
superior experimental plans. In the next section,
we consider related inferences about the design
process and designers.

RELATED OBSERVATIONS FROM
INDUSTRY AND ACADEMIA

The observations made during this design
contest seem to us to be closely related to a
number of other observations one can make
about engineering design:

. Many companies are teaching engineers about
statistical DOE and encouraging (or sometimes
requiring) engineers to use DOE in product
design. Despite this training and encourage-
ment, engineers often strongly resist applying
the techniques. Indeed, it is our experience that
the best engineers are often the strongest oppo-
nents of such requirements.

. The resistance to systematic approaches is not
limited to DOE. Design approaches that em-
phasize `rational' or `scientific' methodology [12,
13] have not been widely embraced by experi-
enced and successful design engineers in industry
or academia.

. The teaching of design is generally recognized as
best done by hands-on, project-based courses
[14]. Educators who are also excellent designers
are among the strongest opponents of teaching a
single, systematic process for design.

. The early examples of human accomplishments
in design (e.g., Stone-age tools, Neolithic stitch-
ing, Bronze-age metallurgy) are a result of the
natural human design process unaided by artifi-
cial, systematic methodology.

. Despite the continued lack of a single systematic
design process in industry, highly successful
results continue to accumulate as humans prac-
tice engineering design by the processes cur-
rently in use.

All of these observations suggest that humans are
naturally skilled at design. It is possible that the
natural, heuristic design process is superior to any
systematic, general-purpose process that has been
so far devised. Recent cognitive science findings
lend some support to this hypothesis.

REVIEW OF SELECTED RECENT
COGNITIVE SCIENCE FINDINGS

Recent cognitive science research indicates that
problem solving behaviors of humans and animals
in naturalistic tasks is often superior to theoreti-
cally optimum general-purpose problem solving
methodology. In particular, Gigerenzer's Adaptive
Behavior and Cognition (ABC) group has devel-
oped a persuasive set of results summarized in
three recent books [15±17]. The ABC group
builds upon Simon's concept of `bounded rational-
ity', which acknowledges the tight resource
constraints imposed in real world tasks and their
implications for problem solving and economic
activity. The ABC group holds that some inter-
pretations of bounded rationality have distorted
the concept in such a way that it is practically and
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psychologically implausible. Figure 2 depicts a way
of categorizing various ways of conceptualizing
rationality. On the left side are approaches based
on `demons' that need not respect the computa-
tional or cognitive constraints. Under this category
is `unbounded rationality' in which a person is
rational only if he acts to maximize utility despite
the unrealistic computational demands this can
imply. If `unbounded rationality' is reformulated
to include the resource constraints, a new problem
is created that may be even more computationally
demanding than the previous problem. Alternative
conceptions of rationality that inherently respect
resource constraints are presented on the right of
Fig. 2. One example is Simon's concept of satisfi-
cing behavior in which stopping rules are used to
simplify the problem. A new conception of
rationality is `fast and frugal heuristics.' As
discussed in the next sub-section, the ABC group
has shown that many heuristic strategies are extre-
mely effective as long as they are applied in a
manner consistent with the naturally occurring
domains in which they evolved through natural
selection or learning [18]. As a consequence, a new
conception of rationality emerges in which
bounded rationality is neither sub-optimal nor
irrational.

SOME FAST AND FRUGAL HEURISTICS

The simplest heuristic explored by the ABC
group is the `recognition heuristic.' In many
cases, if a person or animal faces a choice between
two objects and recognizes one object and not the
other, then they will assume the recognized object
rates higher along some dimension. This heuristic
is employed, for example, by rats that eat foods
only if they have eaten them before or if they smell
them on the breath of other rats. This heuristic has
significant advantages for an animal that
scavenges for food and faces the possibility of
poisoning. The ABC group has shown that the
recognition heuristic is effectively used by humans
in other domains.

A second simple heuristic applies when one
recognizes both objects and has to retrieve further
information to make an inference. `Take the Best'

(TTB) is a lexicographic strategy for search and
use of information [20, 21]. Attributes or cues
about the two objects are ranked for their effec-
tiveness in distinguishing relative to a desired
characteristic. The attributes for the two objects
are then compared in rank order with the first cue
that differs between the compared objects being
the basis for the decision. TTB employs a very
simple stopping ruleÐuse the highest ranked cue
that has been successful for discrimination and
ignore the rest.

Many tasks of interest go beyond simple
comparison of two objects and involve choice
among numerous alternatives. The fast and
frugal character of `Take the Best' can be
preserved in cases of this type through the use of
a simple stopping rule to limit information search:
seek cues in rank order until enough is known to
make a decision. The decision rule in this case is
the `elimination heuristic' in which successive cues
are used to eliminate more and more alternatives
until a single option remains. Eliminated options
that do well on later criteria are not re-instated;
indeed, they are not even evaluated on the later
cues, they are ignored.

In a similar spirit, the `QuickEst' heuristic [22] is
designed to estimate the value of objects (relative
to a defined criterion) while using as little informa-
tion as possible. QuickEst associates a set of cues
that are related to the defined criterion and these
cues are characteristics of the kinds of objects
being examined. For example, if city size is being
estimated, whether it has a professional football
team and whether it has a symphony are such cues.
To estimate the criterion value of a given object,
QuickEst looks through the cues in reverse order
until it comes to the first one the object does not
possess. It then estimates the object criterion as the
mean value associated with the absence of that
criteria. Thus, QuickEst uses features that are
present to eliminate all smaller criterion categories
and absent features to eliminate all larger criterion
categories, so that only one criterion estimate
remains. No cue combination is necessary, and
no adjustment from further information is pos-
sible.

Another heuristic that uses the elimination prin-
ciple is the `Categorization by Elimination' heur-

Fig. 2. Models of bounded rationality [19].
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istic [23]. In this case, the task considered is choice
of a categoryÐfrom among several possibleÐthat
a given object falls into. The simple heuristic
makes category judgments by using each successive
cue to eliminate some of the categories until only
one category remains. Again no reconsideration of
eliminated categories is allowed due to information
from later cues.

In this rather brief overview, it is possible to see
that the mechanisms proposed by the ABC group
involve very little computation and information.
This is why they are referred to as `fast and frugal'
heuristics. The next subsection considers how
much accuracy is sacrificed to attain the speed
and economy of these simple heuristics.

ACCURACY OF SOME FAST AND FRUGAL
HEURISTICS

The most detailed assessment of the fall-off in
accuracy with a fast and frugal heuristic has been
done with the `Take the Best' (TTB) heuristic [24,
25]. TTB has been compared with linear regression
and with two Bayesian approaches including Baye-
sian Networks, which are considered by many to
be the best mechanism for extracting useful infor-
mation from data. Table 2 shows 20 cases that
have been assembled and compared by Martignon
[25]. In the fitting task, the entire data set is used to
train the various methods. In the generalization
task, 50% of the objects in the data set were chosen
at random 10,000 times and the model obtained on
the training set was then tested on the remaining
50%. It is remarkable how well the simple TTB
heuristic does in this comparison, especially in the
generalization task. It often is actually more accu-
rate than linear regression (indeed for the overall

average for the 20 data sets it is superior by 3% in
generalization) and is amazingly competitive in
most data sets with the Bayesian Network. Two
explanations have been identified for the accuracy
of TTB [26]: (1) the simplicity of TTB provides
robustness as compared with linear regression,
which tends to `overfit' data; and (2) the TTB
heuristic exploits the structure of the information
in the environment (for example, the importance of
dominant cues) in ways that general approaches do
not.

Another heuristic whose accuracy has been
studied by the ABC group is the recognition
heuristic. For instance, a problem has been devised
in which two city names are presented to a subject
and the subject is asked to select the city with a
larger population. A surprising result is that Amer-
ican students perform better given pairs of German
cities than they do given pairs of American cities
and German students perform better given pairs of
American cities than they do given pairs of
German cities.

The resolution of this paradox hinges on the
recognition heuristic. It has been shown that
subjects presented with one city that they recognize
and one city that they do not, assume that they city
they recognize is more populous. This strategy is
quite successful if the subjects recognize about half
of the city names in the set and works poorly if the
subjects recognize the vast majority. Hence, more
knowledge can be detrimental to successful perfor-
mance. This `less is more' effect is arises frequently
in analysis of simple heuristics.

The ABC group has also analyzed the perfor-
mance of QuickEst. This heuristic has been shown
to be accurate for estimating quantities whose
distribution is such that small values are common
and large ones rare. Such distributions apply to a

Table 2. Performance of different algorithms in 20 data sets [24,25]

Environment Fitting Generalization

# Objects # Cues PM TTB Reg NB BN TTB Reg NB BN

Ozone in San Francisco 11 3 85 84 85 84 84 79 77 80 78
Cow manure 14 6 83 79 79 79 80 76 72 78 79
Oxidant 17 4 93 84 84 84 84 80 76 81 82
Mortality 20 15 100 77 83 78 79 62 54 66 67
House price 22 10 96 86 86 87 87 84 68 86 86
Rainfall 24 6 71 67 71 68 68 53 56 57 59
Biodiversity 26 6 88 84 80 83 83 80 72 80 82
Attractiveness of women 30 3 80 71 71 71 71 66 67 68 59
Attractiveness of men 32 3 75 73 73 73 73 71 69 72 70
Mammals' sleep 35 9 95 78 79 77 83 75 65 76 80
Car accidents 37 13 93 71 79 75 75 64 64 71 71
Obesity at age 18 46 10 70 74 74 77 79 71 63 71 69
Fuel consumption 48 6 87 78 79 78 80 73 74 76 76
Homelessness 50 6 82 69 70 68 77 63 62 64 65
Professors' salaries 51 5 87 80 83 80 84 80 80 80 81
High school drop out rates 57 18 90 65 72 65 65 60 54 61 60
Land rent 58 4 82 80 81 80 81 77 80 77 78
City population 83 9 80 74 74 74 76 72 71 72 74
Body fat 218 14 87 59 61 80 82 56 55 79 80
Fish fertility 395 3 75 73 75 73 75 73 75 74 75
Average over the 20 data sets 85 75 77 77 79 71 68 73 74

PM = profile memorization, TTB = take the best, reg = regression, NB = naõÈve Bayes, BN = Bayesian network.
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wide variety of naturally occurring phenomena
including a large class dominated by the `rich get
richer' model [27]. This growth pattern applies to
cities so that very big cities are much less common
than smaller ones and this permits QuickEst to
estimate rapidly the small sizes of most cities. The
performance of `Categorization by Elimination'
has been shown [28] to be within a few points of
the accuracy of categorization algorithms that
employ exemplar and neural nets despite only
using one quarter of the information that these
other models employ. In situations where categor-
ization must be fast (for example, hospital emer-
gency rooms) and where additional cues take time
to search for, the fast and frugal, and surprisingly
accurate, `Categorization by Elimination' has
striking advantages.

While this section has emphasized the research
of the ABC group, other cognitive science research
has also had important implications for use of
heuristics. In the `heuristics and biases' research
program [29], human departures from rational
prescriptions are identified and sometimes miti-
gated. Most of the research in the `heuristics and
biases' program has been conducted in academic
laboratory environments, which are usually not
very similar to real world problem environments.
Recognizing this, Klein [30] has coined the term
`microcognition' to describe cognitive processes
such as short-term and long-term memory, sensa-
tion, and attention, which tend to dominate in
laboratory-based tasks. By contrast, the term
`macrocognition' describes skills needed to build
and maintain the big picture, make sense of
ambiguous data or large volumes of data, and
maintain the same shared frame of reference with
others. Studies have demonstrated that success in
real world settings is predominantly determined by
macrocognitive skills [31]. Macrocognitive skills
may also be critical in engineering design and
may have even dominated in the simple design
exercise described in the `Education module'
section above,

We have now described a range of recent
research results in cognitive psychology. These
results are giving rise to a new conception of

human rational behavior, `ecological rationality,'
in which behaviors are judged by their fit with the
regularities of the natural environment rather than
by traditional criteria such as self consistency or
utility maximization [32]. We now explore the
potential application of such concepts within en-
gineering design starting with the role of experi-
mentation in design.

HEURISTICS FOR EXPERIMENTATION IN
ENGINEERING DESIGN

The cognitive science research just reviewed
suggests that humans do not employ a general-
purpose problem solving strategy, but rather
choose from a toolbox of heuristics. The research
also suggests that heuristics can be extremely
effective when they exploit regularities of specific
problem domains. Thus, adaptive application of
heuristics is not only descriptive of natural beha-
vior, but also prescriptive in the sense that the
natural behaviors are as effective as any alterna-
tives so far devised. This same model of human
behavior and the same prescriptive conclusions
may also apply to engineering design. This section
explores this hypothesis in light of the design
exercise described in `The education module'
section above.

The phenomena we observed about experimen-
tation can be described as part of a spectrum of
experimentation behavior as depicted in Fig. 3. At
one vertex of the spectrum is prediction. If a
designer knows all the technology and physics,
experiments may be unnecessary or perhaps used
only to confirm finally what is already established
with a high degree of certainty. Another vertex is
labeled `Design of Experiments' in which specially
devised plans are defined at the outset of the
experiment for exploring the design space and
gathering information efficiently in the presence
of experimental error. Design of Experiments
requires, in principle, very little a priori knowledge
of the domain and, in some variants, leaves little
room to adapt to data as it emerges. A third vertex
is labeled `build±test±fix', denoting a sequential

Fig. 3. Heuristics in experimentation.
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adaptive approach guided by very little physical
insight.

Our observations suggest that the paper airplane
design contest was somewhat closer to the `predic-
tion' vertex than any other vertex. In the design
exercise, we observed that student teams usually
made conjectures based on physical intuitions
before performing an experiment. For example,
in beginning the process the team might decide
that airplanes with larger wings are likely to glide
farther than airplane with small wings. This
informed an initial choice of design, which was
then flown to establish an estimate of its perfor-
mance.

Our observations also suggest that the paper
airplane design contest was somewhat closer to
the `build±test±fix' vertex than the DOE vertex.
For example, the teams frequently changed only
one factor at a time, which is an approach strongly
discouraged by DOE. A common scenario is that a
team might observe that their current design lacks
directional stability, and therefore tends to drift
left or right, making flight distance less consistent.
The team might then discuss the option of folding
up the tabs on the wing tips as provided on the
template. Some team members might mention that
airplanes typically have vertical stabilizers on the
tail of the plane and that such vertical stabilizers
tend to keep a plane's nose pointed in the direction
of flight. Since the tabs on the wing look like a
conventional vertical stabilizer but are attached at
the wing tip rather than the tail, the team might
infer they serve to promote directional stability but
also experience some uncertainty. As a conse-
quence, a team might agree that the costs of an
experimental flight are justified to explore this
issue. The current design might then be modified
by folding up the wing tips and a single trial or a
few replicates might be conducted. This kind of
process was repeatedly observed. As a result, many
sequences of experiments conducted by the teams
varied in only one parameter from trial to trial.

We speculate, based on observations in industry,
that while engineering design behavior can be
observed all over the spectrum, a large amount
of engineering design is as far from the DOE vertex
as was the behavior we observed in the student
design contest (Fig. 3). Further, we suggest that
that this strategy is well suited to most engineering
practice providing better outcomes in many cases
than other points on the spectrum. As support for
this hypotheses, consider that the pattern of single
factor experimentation observed in the student
design project has long been observed in industrial
experimentation. The noted statistician Cuthbert
Daniel made the following observation based on
extensive consulting experience:

Some scientists do their experimental work in single
steps. They hope to learn something from each run, or
trial. They see and react to data more rapidly than
experimental agronomists or clinical investigators
whose endpoints may take months or years to materi-
alize. The statistician who tells such an experimenter

that he can secure much greater precision or validity by
doing 16 or more runs in a balanced set, may be listened
to with courtesy, but rarely with enthusiasm [33].

We propose that Cuthbert Daniel had observed a
commonly used engineering heuristicÐin experi-
mentation, change only one factor at a time.
Further, Daniel observed resistance to abandoning
the heuristic in favor of prescriptions derived from
mathematical theory. Statistical theory suggests
that balanced sets of experiments will be more
efficient. But practitioners often have a goal at
odds with DOEÐ`to see and react to data more
rapidly.' Daniel, rather than pushing the prescrip-
tions of DOE overly hard, offered practitioners a
further heuristicÐuse one factor at a time plans
only when the `effects are expected to be of
magnitude 4� or more' and when the experiments
in question yield results quickly so that they
`cannot conceivably be used in agricultural field
trials, in long term clinical trials, . . . or in studies of
consumer product shelf life' [33]. Cuthbert Daniel
seemed to understand that experimenters had an
adaptive toolbox and that they needed simple rules
to determine which heuristic to select. We propose
that the kind of advice Daniel offered is among the
most useful in promoting effective engineering
practice and is well supported by recent cognitive
science. As an interesting finding relative to the
accuracy of this heuristic, recent work [34] has
uncovered a finding much like those of the ABC
group relative to the use of formal DOE processes.
An adaptive variant of one-factor-at-a-time experi-
mentation (adaptive OFAT) was compared to
factorial designs in a study of 66 responses from
published experiments. The result was that OFAT
provided more improvement than factorial designs
as long as experimental error was less than a
quarter of the factor effects (as anticipated by
Cuthbert Daniel). In addition it was found that
adaptive OFAT provided more improvement when
interactions among control factors are more than
one quarter of all factor effects. Further work
indicates that the effectiveness of the adaptive
OFAT heuristic is strongly related to the general
structure of statistical effects in engineered systems
including effect scarcity, effect hierarchy, effect
hereditary, and the predominance of symmetric
two-factor interactions [35]. Thus, we have an
existing case where `ecological rationality' seems
to be observed in engineering designÐa heuristic
has evolved, is used naturally by designers, and
effectively exploits the structure of engineering
problems to deliver better performance than theo-
retically optimal alternatives.

The tension between theory of DOE, prediction,
and adaptation has been further explored by
George Box, a pioneer and leader in statistical
methods for engineering. Box argued that the
mathematical basis of DOE has led to over-use
of formally optimal experimental designs that tend
to be `one-shot' procedures [36]. Thus, Box argued
against a push by the statistics community toward
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the upper vertex of Fig. 3. Instead Box advocated
Response Surface Methodology (RSM)Ðan itera-
tive and partly heuristic application of DOE for
seeking improvement. Box argued that RSM
would enable more leveraging of human scientific
insight. He described the use of experiments as part
of an iterative cycle as depicted in Fig. 4. Experi-
menters need to plan experiments based at least
partly on physical insight and then update their
mental models based on what they observe. (It is
interesting to note that the discussion above shows
that the students apply this thought process in the
airplane design contest). The superiority of such a
heuristic approach over `one-shot' procedures
cannot be proven mathematically. This led Box
to conclude that `scientific method is thus mathe-
matically incoherent.' The observations in this
paper support Box's message that over-reliance
on mathematics and logic can be detrimental in
engineering design.

HEURISTICS IN ENGINEERING DESIGN:
SUGGESTIONS FOR FUTURE RESEARCH

The previous section argued that engineers use
heuristics to plan and analyze experiments for
engineering design and that this practice is highly
effective. This raises many important questions
including: (1) Are there any other heuristics
widely used in engineering design? (2) How are
engineering heuristics related to other heuristics
identified by cognitive scientists?

In this section, we pursue these questions by
following the recent formulation of design thinking
detailed by Dym et al. [14]. Table 3 outlines the
analysis followed in this discussion.

Eris has described the `Divergent±Convergent
Questioning Mode' and provided evidence of its
importance in engineering design [37]. We note
that the students in the paper airplane design
contest appeared to employ convergent±divergent
questioning very naturally and without prompting
and that Fig. 4 is a clear example of this mode of
thought [36]. This questioning mode may be well
modeled as adaptive application of a toolbox of

engineering heuristics. Studies might be devised to
test this hypothesis.

Dym et al [14] emphasize the importance of
design conceptualization and the difficulty most
approaches have in helping people in this critical
task. The importance of analogy in such tasks is
well known. In addition, the ABC group has
emphasized the importance the implicit analogy
with tools (statistical testing, computers) in creat-
ing models/theories/concepts [38, 39]. This `tools as
theories' heuristic has a clear analogy in design
where the nature of CAD, CAE prototyping have
often been at least anecdotally [40] related to the
nature of design concepts. It is our experience that
acceptance of a design concept is dependent upon
existing frameworks and tools for imagining the
completed design; this acceptance effect is emphas-
ized in [39].

Sterman [41] studied the ability of people to
reason about system dynamics. Fairly simple
scenarios including stocks and flows can confound
people (even highly educated people). A research
program to look at this has been suggested by
Doyle [42]. From the many studies done by the
ABC group to reframe problems such as those
used [29] to indicate great weaknesses in human
statistical reasoning, the first step would be to truly
see if people in their actual environment [17] have
such weaknesses. The essential point is that
humans developed their toolbox in the EEA (en-
vironment of evolutionary adaptation) [18] and if
we structure our test and representations to fool
them, they can be fooled. But if representations are

Fig. 4. A cognitive model of experimentation (adapted from [36] ).

Table 3. Outline of engineering design thinking [14]

Design thinking

� Design thinking as divergent±convergent questioning

� Thinking about designing systems
± Thinking about system dynamics
± Reasoning about uncertainty
± Making estimates
± Conducting experiments

� Making design decisions

� Design thinking in a team environment

� The languages of engineering design
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appropriate, mistakes are not made. We suggest
that more research should be conducted to deter-
mine whether people are able to reason about
system dynamics when placed in a problem setting
more characteristic of real-world engineering prac-
tice.

Dym et al. [14] emphasize the criticality of
reasoning about uncertainty as part of the engin-
eering design process. Extensive work by the ABC
group [43] has shown that humans do this very well
if frequencies rather than probabilities are used. In
addition, Clausing and Frey [44] have recently
suggested that shifting emphasis away from prob-
ability may improve the performance of reliability
engineers. More research should be done to assess
the effect of abstractions such as those used in
probability on the design processes and outcomes
of engineers. On the basis of what such research
reveals, new design tools (especially for reliability
engineering) should be proposed and evaluated.

Linder [45] emphasizes the importance in engin-
eering design of making reasonable estimates of
relevant physical quantities. `QuickEst' or a related
method may well be the heuristic used by highly
skilled engineering designers to make such esti-
mates rapidly. Further research would be required
to establish whether this is the case.

Dym et al. [14] discuss decision-making in en-
gineering design. In a more general sense, decision-
making is a central focus of the ABC group and
the heuristics that they have already identified may
already be employed by good designers. Dym et al.
[14] also emphasize that design is a social process.
The ABC group has studied [17] `Social Rational-
ity', which they treat as a special form of ecological
rationality in which the environment consists of
con-specifics and that highlights domain-specific
behavior and cognition in social environments. It
includes study of the utility for cognition and
decision-making of emotion, copying, norms, etc.
Dym et al. [14] emphasize the importance of
representation (multiple languages). The ABC
group has shown that the way in which humans
used vision and they way that they experienced the
world (in the environment of evolutionary adapta-
tion) is found to influence the appropriate repre-

sentation for us to make appropriate decisions
now [43]. Thus, the emphasis on multiple repre-
sentations seems to be in agreement with the basic
approach of the ABC group.

This discussion indicates the potential for rich
connections between what is known to be impor-
tant in design and the work of the ABC group.
However, we do not want anyone to be mistaken
about our view of the completeness of this correla-
tion. We have only outlined a beginning of such
thinking because, to our knowledge, the ABC
group has not even considered the design process
(especially the engineering design process).

CLOSURE

The ideas discussed in this paper are all at a very
preliminary stage of development. We take per-
sonal observations from the engineering classroom
and from industry practice and relate them to
emerging results from cognitive science and statis-
tics. Our current belief is that engineering designers
use a toolbox of fast and frugal heuristics. The use
of this toolbox benefits greatly from adaptation,
with more importance given to flexibility in the
learning process than formal optimality. Further,
the behaviors we observe seem to be highly effec-
tive, representing a practice to be encouraged and
honed through experience rather than drummed
out by teaching formal, systematic design metho-
dology. All of these observations seem to be highly
consistent with recent results from cognitive
science, particularly those of the Adaptive Beha-
vior and Cognition group. We therefore submit
that exploring the implications of fast and frugal
heuristics in the engineering design process is a
fruitful area for further research. Such heuristics
may be a key to understanding the innate human
ability for engineering design and the prodigious
performance of engineering design so far in
history. If the role of heuristics can be verified
and quantified, the implications may be significant
both for industry as it seeks to improve its design
process and for universities struggling to help
young people become skilled designers.
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