
Introduction to Real-time Control
using LabVIEWTM with an Application
to Distance Learning*

Ch. SALZMANN, D. GILLET, and P. HUGUENIN
Swiss Federal Institute of Technology Lausanne, Switzerland. E-mail: christophe.salzmann:epfi.ch

This paper presents the approach taken to give engineering students the necessary competencies and
facilities to implement real-time control solutions. This goal is achieved first by way of an
introduction to the basic principles underlying real-time control. Then, by motivating the use of
personal computers as a versatile alternative to more traditional implementation equipment.
Finally, by combining LabVIEW and DAQ boards to form an integrated framework for fast
prototyping of real-time control solutions. Control algorithms written in G (the graphical
programming language of LabVIEW), in C or as S-functions (MATLAB scripts describing
SIMULINK dynamical models) can be validated on laboratory-scale processes. The possible real-
time control and monitoring of ongoing operations, either locally on the host computer or remotely
via the Internet, is a key feature from an educational point of view. In fact, the chosen paradigm
truly enable the `learning by doing' approach. Moreover, this practical activity can be carried out at
any time from anywhere to efficiently support automatic control study.

INTRODUCTION

FEEDBACK CONTROL LOOPS are imple-
mented to increase dynamical performance or
precision of scientific and industrial equipment.
The basic principle of such loops is to take into
account actual measurements in order to compute
appropriate actuations that adjust the operational
conditions to meet given requirements. Motion
control and process control are two major appli-
cation areas of this paradigm. Due to this
broad application field and its interdisciplinary
nature, Automatic Control is a fundamental
subject usually taught in many engineering
disciplines, such as electrical, mechanical and
chemical engineering.

Practical experimentations are made during
laboratory sessions where students can try out on
real processes the material they learn during the
class [1]. As a matter of fact, implementing a
complete control solution from scratch requires
knowledge not only of the matter studied but
also of the different technologies needed to inter-
face the real process, such as sensors and actuators,
to the computer used to conduct the experiment.
Computer knowledge such as hardware interfacing
and real-time programming are also needed to
carry out the experiment. Fundamentals of all
these aspects should be taught to students in
automatic control.

Acquisition of measurements and modification
of actuations are the usual tasks carried out by

LabVIEWTM and DAQ boards. This implementa-
tion paradigm based on personal computer and
standard operating systems constitutes a new trend
in automation. It allows the user to avoid such
aged, specialised or expensive solutions as analog
PID loops, programmable logic controllers (PLC)
or dedicated hardware based on digital signal
processors (DSP).

To stress the advantage of the above-mentioned
open paradigm, the students are provided with an
integrated framework versatile enough to be
quickly adapted to their different needs and back-
grounds. This solution reduces the additional
knowledge required to proceed with the imple-
mentation and helps students focus on essential
concepts. To be attractive to the students, the
framework needs to be highly interactive and
offer a well-designed graphical user interface.

The recent increase in availability of personal
computers at home and on campus has allowed
students to exploit computer-aided instruction
(CAI) tools to learn in their own way and at
their own pace. Unfortunately, such independent
work is not possible on laboratory-scale processes
since these cannot be moved easily or duplicated in
sufficient numbers. Therefore, experimental work
is done in the laboratory according to a predefined
schedule.

Both the recent developments in the Internet
and the introduction of the World-Wide-Web
(WWW) are opening the ways to interactive
presentations, even remote access opportunities
to real-world equipment. The availability and the
capabilities of these new communication facilities,
combined with the generalisation of computer use* Accepted 9 September 1999.

255

Int. J. Engng Ed. Vol. 16, No. 2, pp. 255±272, 2000 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2000 TEMPUS Publications.

for data acquisition and control of real processes,
enable the students to move from a presence at
the equipment location to a more versatile tele-
presence, thereby allowing remote experimentation.

This paper discusses the necessary competencies
and facilities to implement real-time control solu-
tions, either in traditional education or in distance
learning. An example of ditributed applications
using LabVIEW is given, where an electrical
drive is introduced as convenient setup to study
locally or remotely applications in motion control.
This example serves as illustration throughout
the paper. The advantages and the potential of
local and remote experimentation supported by
LabVIEW are expressed as conclusions.

FUNDAMENTALS OF REAL-TIME
CONTROL

The notion of real-time implies that computer
operations rely on absolute and irreversible
time. These operations are generally performed

accordingly with the evolution of a physical
system. If necessary, the system-state is made
available to the computer through appropriate
interfacing devices, such as sensors and converters.
The notion of real-time control reinforces the
original definition by specifically emphasising
actions carried out in addition to observations.

These notions can be illustrated by comparing
data acquisition and processing (Fig. 1) with real-
time control (Fig. 2). There are two main dif-
ferences. In the former case, a finite number of
acquisition cycles are performed to provide a
stream of data for post processing operations. In
the latter case, continuous operation cycles are
performed. During these cycles only one data
sample is acquired and immediately processed.

Moreover, in contrast to data acquisition,
control operations require actuation values to be
computed and written to output ports at every
cycle. This removes the possibility of performing
batch processing based on the data stored in an
acquisition buffer (if there is any).

Appropriate actuators and amplifiers interfaced
with the output ports enable the computer to drive

Fig. 1. Data acquisition and processing sequence. The AI_MULT_PT VI acquires a stream of data coming from the radar, these data are
then processed (FFT) in one pass and displayed.

Fig. 2. Control cycle. The position of the robot arm read by the AI_ONE_PT VI is compared, within the controller (PID VI), to the
reference value. The AO_ONE_PT VI writes the controller command in the output, thus closing the loop. This operation is performed at

each loop iteration.

Ch. Salzmann et al.256

the physical system with the necessary amount of
energy.

Implementation constraints
Figure 3 presents the standard structure for a

feedback loop. The output of the controller drives
the input of a physical system, whereas the output
of the physical system is reintroduced as the input
for the controller, thus closing the loop. To
guarantee an efficient and reliable control, some
implementation constraints must be taken care of.

The operations performed by the controller have
to comply with a standard sequence. The first
operation performed is the measurement and the
analog-to-digital conversion of the input signal (1).
Once converted into a digital number (2), this
value is compared to a reference value (3) resulting
in an error signal which is used by the control
algorithm to compute the command or output
value (4). Other quantities may also be computed
depending on the application (such as parameters
or state estimates). The output value is then
converted to an analog signal (5) and applied to
the controlled system. This sequence of operations
forms a real-time task (RTT), which is repeated
at a fixed interval, called the sampling period or
the cycle time. In advanced applications, the
implementation of different real-time tasks with
different sampling periods and priorities may be
required. The sampling period must be adapted to
the dynamics of the physical system. If the sampling
period is too large, the control of the system will be
lost and if it is too short, quantisation problems
may occur.

To allow the use of the traditional control
analysis and design techniques, the sampling
periods are assumed to be constant. In other
words, the cadence at which the real-time tasks
are called must be as regular as possible. This is
generally guaranteed by interruptions. Interrup-
tions are generated either by an on-board timer
(host computer) or by an external source located
on the acquisition device (Fig. 4). These inter-
ruptions tell the operating system (OS) to switch
from the current task to the real-time tasks
according to their respective priority. Once the
real-time tasks are completed, the OS resumes
the original task.

The cadence is mainly limited by the under-
lying OS. Most of today's OSs only partially
support real-time operations and therefore
accurate cadence cannot always be guaranteed.
The use of specialized OSs, dedicated processors
or embedded systems are required for mission-
critical implementations where, for example,
people or equipment safety must be guaranteed.

The accumulated duration of the real-time
operations should be smaller than the sampling
period for obvious roll-back reasons.

The time between the occurrence of the inter-
ruption and the launch of the real-time tasks is
called the latency. This time is variable and OS
dependent but should be much smaller than the
sampling period.

Under tight time constraints, the real-time tasks
(RTT) are generally monitored by a supervision
task (ST). The supervision task has a lower priority
than RTT and runs asynchronously. The ST

Fig. 3. Feedback structure. (1) The measurement is converted into a number (2) and compared to a reference value (3) within the
controller. The resulting command (4) is converted to an analog signal (5) applied to the physical system.

Fig. 4. Interruption cycle. The Interruption triggers the signal acquisition and tells the OS to switch from the current task to the RT
task. The time between the interruption and the execution of the RT tasks is called the latency.

Introduction to Real-time Control using LabVIEW with an Application to Distance Learning 257

performs all the functions that are not time depen-
dent such as managing the user interface. The
ST exchanges data with RTTs through a circular
buffer (Fig. 5). The RTTs update one position of
the buffer at each interruption, on the other hand
the ST uploads the all buffer in one operation. The
cycle time of the supervision task is generally much
longer than the cycle time of RTT.

When the user wants to modify a RTT para-
meter, the RTK must reflect this modification in
real-time (interactivity). The user parameters are
transmitted asynchronously by the ST to the RTT
through a buffer. This asynchronous buffer is not
updated at each interruption, but only when a
parameter is modified.

Requirement for real-time control in education
The real-time control capabilities required in

education are generally reduced compared to
industrial applications, mainly because laboratory
experiments only show one aspect of the theory at
a time. Usually, only one physical system is
controlled and only one real-time task is sufficient,
such as open-loop measurement, identification or
closed-loop control.

To minimize the time spent by the students in
the laboratory, the application should be well
designed and well integrated within the environ-
ment. The user interface should be of high quality.
This might be different from industrial products
where the GUI is less important in the exploitation
phase. As a consequence, enough processor time
should be reserved for the supervision task which

allows interaction between the user and the
running controller.

The classical trial and error learning approach
implies that successive changes should be made in
the control algorithm before getting the required
or desired dynamical performance. This can be
developed using a fast prototyping environment
where the design-implementation-test cycle should
be as short and as integrated as possible.

The use of a software-only solution guarantees a
low price and a great expendability. Moreover,
remote experimentation, presented later, relies on
a software-only solution for the distant users.

FUNDAMENTALS OF PID CONTROLLER

Typical controllers are implemented as numeri-
cal algorithms that are designed to compute, at
every sampling time tk � kh (where h is the
sampling period and k is the sample index), a
correction factor u�k� which is added to the
nominal excitation of the controlled process. The
nominal excitation is a predefined signal based on
a priori knowledge and issues to bring the process
to desired operation conditions or to track given
trajectories. The correction is necessary to both
handle unexpected disturbances which affect the
dynamic behaviour of the controlled process and
to cope with the unavoidable imprecision of the
nominal excitation.

The most commonly used controller is called
the PID. The corresponding algorithm issues a

Fig. 5. Data sharing principle. The RT task loop reads the input, executes the control algorithm (PID), writes the output and saves one
position in the circular buffer at each sampling period. The supervision task uploads the whole buffer in one operation and displays its

content. It also updates the RT task parameters.

Ch. Salzmann et al.258

correction according with the time evolution of
the actual error e�k� existing between the desired
and the measured output of the controlled
process, respectively denoted yc�k� and y�k�.
The acronym PID is due to the way the correc-
tion is computed. The first term uP�k� of the
correction is proportional (P) with the current
error:

uP�k� � KP e�k� �1�
The second term uI �k� takes into account the
error history in order to cancel out an eventual
bias. To avoid the storage of all previous
samples, the past behaviour is summarised using
the integral (I) of the error signal. In the discrete
case, the integral can be evaluated in various ways.
The method chosen is the sum of the trapezoidal
areas obtained by linking the successive error
values (Fig. 6).

uP�k� � uI �k ÿ 1� � KP
1

TI

e�k� � e�k ÿ 1�
2

� �
h

�2�
In addition, the correction has to take into

account the speed of the error evolution. If the
error varies quickly, the correction has to be

stronger to avoid overshoots. Such an action is
obtained by introducing a last term UD�k� which is
proportional to the derivative (D) of the error
signal computed using the last two available
samples.

uD�k� � KP TD
e�k� ÿ e�k ÿ 1�

h
�3�

Finally,

u�k� � uP�k� � uI �k� � uD�k� �4�
In equations 1, 2 and 3, the factors KP, TI and TD

are the tuning parameters defining the behaviour
of the closed-loop system.

It is essential to underline that the PID described
in this chapter is purely discrete, which is the right
form for a computer implementation. Rigorous
techniques based for example on the Z-transform
can be applied for analysis and design purposes [2].
However, it is often sufficient to carry out a single
open-loop experiment on the physical system to be
controlled to get a convenient set of parameters.
The idea is to apply a step of level U as an
excitation signal of the system (Fig. 7). The corre-
sponding variation of the output provides the
slope a at the inflection point (or at infinity if the
response reaches no stationary value) and the time

Fig. 6. Time evolution of the error used by the PID controller.

Fig. 7. Step response of the system to be controlled.

Introduction to Real-time Control using LabVIEW with an Application to Distance Learning 259

interval L between the step and the crossing of the
tangent at the inflection point with the time axis.

The convenient parameters are listed in Table 1,
with respect to the results of the experiment and
the desired controller type.

The resulting sequence of operations which have
to be implemented to complete the PID correction
at time k is:

. acquire the measurement y�k�;

. get from the user the current PID parameters
KP, TI and TD, as well as the reference signal
yc�k�;

. compute the error e�k� � yc�k� ÿ y�k� (some
filtering can also be considered here);

. compute uP�k�, uI �k�, and uD�k� if applicable
(the states of the controller uI �k ÿ 1� and
e�k ÿ 1� have to be available);

. compute the sum u�k� and limit its value in a
range compatible with the physical devices
(power amplifier, motor);

. output the previously computed control signal
u�k� (orwait for thenextsamplingperiodtodoso).

PID CONTROLLER IMPLEMENTATIONS
WITHIN LabVIEW

This section presents the different alternatives for
the real-time implementation of a PID controller

using LabVIEW (National Instruments propose a
PID toolkit with autotuning). The first solution is
a plain LabVIEW implementation written in G.
The next two solutions combine LabVIEW with a
real-time kernel allowing the code of the control
task to be written in C or as a MATLAB/
Simulink S-Function. The possibility to call a C
routine or an S-Function enables the use of legacy
code. The last implementation relies on the new
LabVIEW RT. The professional system Concur-
rent PowerMAX as well as other embedded solu-
tions are not evaluated in our review.

Plain LabVIEW
In LabVIEW, the execution of the program,

called the Virtual Instrument (VI), is paced by
the data flow. This flow can be slowed down or
interrupted by some external events such as
network accesses, mouse movements, disk opera-
tions or other OS events. The cycle time for a
control loop written in LabVIEW is therefore non-
deterministic and dependent on the time used by
the other VIs running and to the computer's other
activities. This implies that control of the physical
process might be lost when these events occur
(Fig. 8).

To guarantee the correct behaviour of the
system, the user must ensure that the duration of
these events is much smaller than the chosen
sampling period. This can be partially alleviated
by using the multi-threaded functionality of
LabVIEW and by setting appropriate priorities
to the different VIs. The main application is split
into Sub-VIs, each representing a different thread
(Fig. 9).

Higher priority is given to the PID code, which
can be written using the regular LabVIEW func-
tions or by using a formula node. The lowest
priority is given to the user interface update
which corresponds to the supervision task.

The appropriate use of the DAQ board can also
compensate for the varying latency since many of

Table 1. Parameters of the P, PI or PID controller.

Controller KP TI TD

P
U

a L
Ð Ð

PI 0:9
U

aL
3.3 L Ð

PID 1:2
U

aL
2 L 0.5 L

Fig. 8. Unpredictable event occurrence. The LabVIEW execution flow can be interrupted by some external events such as network
accesses, mouse movements, disk operations or other OS events. The cycle time for a control loop written in LabVIEW is therefore

non-deterministic.

Ch. Salzmann et al.260

today's universal acquisition boards have the
required timers and circuits to generate interrupts.
The advantage of using the DAQ board interrupts
is that such signals can also trigger, very accu-
rately, the acquisition and the buffering of the
data, this independently of other computer activi-
ties (Fig. 9). In such a way, the delay separating the
interrupt issuing and the sampling is inexistent.
This is essential to achieve a predictable behaviour
(invariant sampling period) and to conform with
the applicability conditions of the stability criteria.
In this configuration, the latency corresponds to
the delay between the interrupt occurrence and the
effective buffer retrieval by the Read AD sub-VI.
Fortunately, this delay is not critical to the control
loop reliability as long as it does not exceed the
sampling period. If this happens, one or more
samples are not taken into account, which can be
disastrous. To detect such an event, the Read AD
sub-VI must ensure that there is one and only
one sample in the acquisition board buffer. This
means that the next interrupt has not occurred and
that the LabVIEW loop cycle is smaller than the
sampling period (as expected). In this case, the
main loop is running as fast as possible and waits
for a measurement to arrive in the board buffer.

Alternatively, without the use of the DAQ board
timers, the LabVIEW main loop should cadence
the execution of the controller using the Wait
Until Next ms Multiple VI (Fig. 10). In this
case, the AD conversion is triggered at each
execution of the main loop and the controller has
to wait for the data to become available. Since
LabVIEW execution can be interrupted or
delayed, it is not guaranteed that the given cadence
can be followed. Moreover, undesirable jitter in
the sampling time is impossible to avoid.

This jitter of the sampling period is particularly
critical for the computation of the derivative term
in which h appears explicitly. If the desired value of
h is used instead of the real one, huge errors may
occur. To compensate for the sampling period

variations, a timestamp needs to be stored with
each measurement sample. This timestamp will be
used to determine the real sampling period to be
use in the numerical derivation, as well as for the
display and the storage of the data.

LabVIEW with the real-time kernel
To improve the performance of controllers

running within LabVIEW and to reuse the legacy
code (C and S-Function) which may have been
developed and tuned for other applications, a
real-time kernel (RTK) which handles all the
real-time operations has been designed, thus
removing the need for LabVIEW to do this [3].
The RTK is able to execute the user's real-time
task (RTT) repetitively at a fast and accurate
pace. To achieve these requirements, the RTK
relies on interrupts.

The real-time kernel is implemented in C as a
code interface node (CIN, LabVIEW external
code). This kernel allows one or more user
routines, typically a controller routine, to be
called by the OS at interrupt time.

Fig. 9. Multi-threaded implementation. The display loop and the real-time (RT) loop run in different threads. The Display loop has a
lower priority than the RT loop. The CONFIG_BOARD VI sets up the DAQ board for continuous acquisition without buffer. The on-
board timer insures the accurate sampling period. The user is informed of a faulty operation (i.e. more than one sample in the buffer

meaning that the loop was slowed down or interrupted) by the Keeping_RT_? button.

Fig. 10. `Wait Until Next ms Multiple' loop cadencing. The
AD VI adds a Timestamp to the measurement to compensate

the sampling period variation.

Introduction to Real-time Control using LabVIEW with an Application to Distance Learning 261

The RTK should be seen as a standalone back-
ground application, which communicates through
shared memory with the foreground application
(LabVIEW) holding the user interface. The RTK
has two main functions: the first is the communi-
cation with the physical process via acquisition
boards. The second is the management of the
user-defined RTT, which can be any type of real-
time operations such as real-time control, real-time
simulation or for example on-line identification.

The user-defined real-time tasks are called by the
RTK at each sampling period or at a multiple of
the sampling period (sub-sampling). If there is
more than one RTT defined for the same board,
the RTK calls them in a pseudo-parallel fashion.
This simplifies the implementation of parallel or
complex operations. In the example of a single
RTT performing a cascade control with two PIDs,
the RTT can be split into two single PID control-
lers. In the same manner, sub-sampling allows two
different tasks such as filtering and control to be
called at different paces. Instead of having the
controller called at a faster than needed sampling
rate in order to filter the input signal(s), these two
operations are implemented in separate routines:
the filtering operation which is performed at each
sampling period, and the control operation which
is called, for example, every twenty interrupts. The
filtered signal is shared between the filter and
the controller using the buffer. This method
lowers the processor's load and makes the RTT
easier to write.

The input and output data defined by the
user are stored in an internal buffer. This buffer
is updated synchronously with each interrupt.
When called by an interrupt, the RTK puts the
newly acquired values into the buffer and then
retrieves the value for the next outputs from the
same buffer. For display purposes, this buffer can
be partly or completely retrieved asynchronously
by LabVIEW. Besides input and output data,

other information such as timestamps, execution
errors, and virtual channels holding internal states
of a controller (for example the previous integral
values) are stored in the buffer.

A set of VIs allows to control all the required
operations related with the RTK such as con-
figuring the hardware, configuring the RTTs and
starting and stopping controller routine (Fig. 11).
Another VI performs the data exchange from and
to the controller routine. Those VIs are very
similar to the current DAQ VIs.

The RTK allows the user to install one or more
real-time tasks. These tasks are Dynamic Linked
Libraries (DLLs written in C) or S-Function
(written in MATLAB format). To avoid having
to worry about complex compiler environment
issues, the compiler can be controlled directly by
a Real-Time Framework [3]. Currently, only the
MacOS platform is supported. A freeware subset
of this environment is available on-line (http://
iawww.epfl.ch).

MATLAB and Simulink (http://www.math-
works.com) are widely used in the engineering
world. The simulation and the design of controllers
can be conducted using the MATLAB/Simulink
language. Instead of rewriting the code developed
in C or in G, the RTK can reuse the legacy code by
calling, at interrupt time, an interpreter, which
implements a large subset of the MATLAB
syntax. The built-in interpreter has been written
with the primary purpose to be run in real-time.
Due to the extensive computer load resulting from
the interpretation which is carried out at every
sampling period, the achievable cycle time is
larger (by a factor of 10) in that case than in the
one when calling C code.

LabVIEW RT
National Instruments proposes an intelligent

DAQ board containing all of the necessary compo-
nents to develop real-time systems. The board

Fig. 11. The RT-kernel calling a RT-task (written in C or as an S-function). At first the board is configured, then the RTT is initialised
and started. During the loop execution data (parameters and buffer) are exchanged with the RTK via the RT_READ VI. Upon

termination, the RTT is stopped and removed from the memory.

Ch. Salzmann et al.262

consists of two components: a processor board
and a DAQ daughter card. The processor board
includes many of the PC components, but does not
contain hard-drive or other standard I/O devices.
The daughter card is similar to other NI DAQ
products.

A multi-threaded real-time engine (RTE) runs
on the processor board using a real-time operating
system (RTOS). The RTOS ensures that the
scheduler and other operating system services
comply with the real-time requirements.

The RTE executes LabVIEW RT programs
which are exactly the same as the standard
LabVIEW programs but with some limitations.
For example, there are no disk access and no
Ethernet communication capabilities due to the
lack of peripherals on the RT board and due to
the potential RTE performance degradation they
would imply. Attempting to use these unsupported
functions in an embedded LabVIEW RT applica-
tion produces standard LabVIEW error codes.

The development system runs on Windows
(NT/9�). Before being executed, the VIs are
downloaded on the RT board. Once on the
RTE, the VIs run without any outside inter-
ference thus allowing deterministic cycle times.
The VIs running on the RTE will still be running
even if the host computer reboots. For display
and other purposes, the VIs on the RTE
exchange data with the RT development system
via messages or shared memory. The display of
the user interface is performed automatically
without any user programming.

There are no programming differences between
LabVIEW RT and the standard version of
LabVIEW. Having the critical part running on
the dedicated RTE ensures that the embedded
code will not be interrupted by any other outside
event. The PID controller can be cadenced with the
metronome (Wait Until Next ms Multiple) func-
tion (Fig. 12). This function puts the current
thread into sleep and allows other threads to run.
By giving the time critical priority to the embedded
PID VI, it is ensured that the loop execution time is
guaranteed, this provided that the loop time is
smaller than the sampling period. If the time
critical thread consumes most of the processor
time, the others threads, such as the communi-
cation thread, which exchange data with the RT
development system will not have time to execute
resulting in a sluggish user interface update. The
user interface may even look frozen if the time
critical thread consumes all of the processor time.
In that case, the embedded VI is still running, but
has no time to transfer the data to the development
system. This might be suitable for industrial
systems not requiring a user interface, but for
education it is important to interact in real-time
with the controller. Thus, the sampling period
should allow enough time for the user interface
management.

Concurrent PowerMAX real-time LabVIEW
National Instruments has ported LabVIEW to

the Concurrent PowerMax real-time architec-
ture. Concurrent computers develop a real-time

Fig. 12. The local and the embedded VI. The emdedded VI containing the controller code (PID) is downloaded to the LV-RT
board. It exchanges data (parameters and circular buffer) with the local VI containing the user interface by using the RTE_PEEK and

RTE_POKE VIs.

Introduction to Real-time Control using LabVIEW with an Application to Distance Learning 263

multitasking UNIX-based operating system
which can guarantee a given latency and a
deterministic real-time response. This is a scalable,
professional (read expensive for education) system
and therefore outside the scope of this paper.

Discussion
Different solutions have been presented for

implementing a PID controller within LabVIEW.
Depending upon the financial and technical
requirements, different solutions can be selected.
Table 2 summarises the different possibilities.

In education, it is important to consider the
coding simplicity according to the students back-
ground which may vary among engineering
majors. The acquisition and maintenance cost of
the real-time environment are also important. The
part of the budget dedicated to hardware should be
kept as small as possible, limiting the possibility to
use professional hardware solutions. A software-
only solution should be chosen. Moreover, due to
the strong interaction between the hardware
drivers, the OS and the control software, real-
time environment upgrades have to be carefully
planned.

As it will be shown in the next chapter, a
solution without additional hardware is preferred
since distant users do not want to duplicate the
DAQ board or the embedded real-time environ-
ment needed to locally control the remote system.

EXTENSION TO DISTANCE LEARNING

Motivation for remote experimentation
Currently, traditional and virtual universities

propose on-line courses based on electronic
documents and multimedia presentations enriched
with video and audio broadcasting [4]. While the
students can take these classes from a remote
location they still have to come onto the campus
for the laboratory practice. This restriction can be
overcome by allowing students to access the
laboratory facilities from a distant location to
carry out hands-on sessions [5].

The development of remote-experimentation
facilities is also motivated by the fact that the
demand for access to laboratory facilities is

growing rapidly in all engineering colleges. At the
same time, the number of students is increasing
while the allocated laboratory resources do not
keep pace with this change. Being able to make
the laboratory infrastructure accessible as virtual
laboratories, available 24 hours a day and 7 days a
week, goes a long way towards addressing these
difficulties, and would also contribute to lowering
the costs of operating the laboratory in the long
term. Moreover, students are able to carry out
experimentation at the precise stage in their learn-
ing process when they need to compare their
knowledge to reality. This is an additional benefit
of such a new paradigm introduced in distance
learning. The increased availability is obtained by
allowing students to reach the laboratory facilities
via the Internet using a modem, or from other
points of network access, such as computers avail-
able at different campus locations. The Internet
offers many advantages over other technologies,
which makes it the medium of choice. The first
advantage is its price and availability. Nowadays,
almost every household has a telephone line which
makes a potential Internet connection. Current
technologies such as ISDN or 56K modems give
enough capacity to transmit voice and video with
an acceptable quality. In a remote experimenta-
tion, not only the users may be distributed all over
the world, the experiments can also be distributed
among the potential users (such as universities)
thus giving an opportunity to reduce the costs
associated with laboratory facilities by sharing
unique or expensive equipment.

The learning environment is based on a client/
server architecture (Fig. 13). Given its fully com-
puter-based implementation, the laboratory
environment can easily be expanded for remote
manipulation. The main concept in turning the
locally-controlled setup into a remotely-controlled
one consists in moving the user interface away
from the experiment. Two distinctive parts result:
the remote client and the local server.

. The remote client is a computer equipped with
the functionality necessary to observe and to act
on the remote experiment. The client application
is a VI compiled for the target platforms. This
VI provides the user with a complete interface to

Table 2. PID implementation solutions.

Solution Coding Cycle time Platform Interrupt Hardware

Plain LV G 10 ms2 All soft DAQ
Multi-threaded LV G 5 ms2 All3 soft DAQ
RT Kernel calling C G1 & C 0.2 ms2 Mac4 soft/hard DAQ
RT Kernel calling S-Function G1 & Matlab 5 ms2 Mac4 soft/hard DAQ
LabVIEW RT G 1 ms Embedded on PCI, PXI hard RT5 & DAQ
PowerMax G not tested PowerMax hard PM6 & DAQ

1 LabVIEW is used for the supervision task (user interface).
2 Depends on processor performances.
3 Mac version is currently not multi-threaded.
4 Porting the RTK to the PC platform is under evaluation.
5 Require the embedded LV board.
6 Require a PowerMax computer.

Ch. Salzmann et al.264

the real process. It is used to generate excitation
signals and observe corresponding responses.
The main concept of such an interface is to
provide a general view of the physical process
evolutions, and to allow full control of the
operations.

. The local server is the computer located near
the real process and equipped with the hard-
ware interface to the sensors and actuators. The
video camera and microphone can be assimi-
lated to sensors. The server application receives
the client commands and transmits them to the
real process. It also returns the states of the
physical process to the client including an image.

Three modules are necessary to build the client and
the server applications: the GUI module, the RT
module and the COM module (Fig. 14). The
application used locally can be split in two
modules: the real-time controller (RT) and the
user interface (GUI). The client and the server
application can be designed by adding a commun-
ication module to the two existing modules. The
client application is made up of the GUI and the
communication modules. The server application is
made up of the controller and the communication
module. The server may require a basic user inter-
face for supervision of the ongoing operations. The
communication module allows the client and
server applications to exchange information with
other computers distributed in different geographi-
cal locations. This module also takes care of
security issues regarding network management.
For example, it prevents unauthorised access and
schedules logins to avoid conflict.

By isolating carefully these modules in the
development process, it is easy to port a local

solution to a remote one, or port the remote
solution to different physical systems.

Requirements
Distancing the user from the local experiment

while keeping the same amount of benefits as local
experimentation is challenging. Not only the same
degree of interactivity must be maintained, but the
remote solution must also allow the user to `feel'
the real experiment. During local experimentation
students can use their senses of vision and hearing
to perceive the effect of their acts on the control
system. In a remote experimentation mode, this
specification is addressed by providing audio and
video feedback information in addition to the
information given to the remote computer through
the graphical user interface (GUI). Obviously,
such feedback needs to be given in a reasonable
amount of time, minimising the misleading (and
most likely also disturbing) effects of signal-
transport delays. For example, a remote user
will not find acceptable feedback that arrives 30
seconds after an action has been accomplished,
while the local response is achieved in fractions of
a second. Consequently, fast system responsiveness
is a key goal in all developments for remote
experimentation. As might be expected, ideal
instantaneous responses are not possible, but
response times should still be minimised.

In addition to the need to remotely `feel' the
physical system, it is also necessary to remotely
`touch' it. For example, perturbing the system by
hand to observe the reaction of the controller
should be possible. This is achieved by introducing
an additional actuator or by artificially altering

Fig. 13. Architecture for carrying out real experiments in distance learning.

Introduction to Real-time Control using LabVIEW with an Application to Distance Learning 265

some control or measurement signals to mimic the
desired effect.

The interactivity must be adequate, otherwise
the gain induced by remote experimentation will be
minor and the facility will probably not be used.
The objectives for a fast application such as
motion control, where the user should be able to
catch the dynamics of the process, are different
from the objectives of a slow chemical plant where
the user needs mostly to deal with the complexity
of the system. The solution presented here focuses
on fast dynamic systems such as electromechanical
processes. Since they have mobile parts, they can
be monitored remotely by cameras. In the case of
visually static systems such as thermal systems,
remote observation can be enabled by the use of
sensors that modify their appearance according to
the measured state.

Streams and adaptation
Adaptation to the network (i.e. Internet) load is

necessary for using wisely the available bandwidth.
In the future, unfriendly applications, which do
not adapt might be banned from networks if they
do not behave adequately.

Different kinds of information are exchanged
between the server and the clients according to
four different classes:

. the data stream representing the measurements
made on the physical system;

. the audio/video stream acquired by the camera;

. the parameter stream reflects the user actions on
the client side;

. the administrative stream which deals with the
login/logout issues [6].

The adaptation is made by assigning a different
priority to each stream. An algorithm, taken the
network load seen at the client side into account,
determines the server bandwidth usage. Based on
stream priorities and the information coming from
the client, the server optimises the packet size and
packet rate. The server application can adapt the
amount of information transmitted by increasing
the image compression factor and/or by deci-
mating the measurements. This scheme can
adapted in real-time to a wide range of bandwidth
from modem line to LAN connection. A specific
technique is used to recover packets, which are lost
during the transmission.

DISTRIBUTED APPLICATIONS USING
LabVIEW

Different solutions exist for controlling a
computer remotely. Maybe the simplest one is
the sharing of the remote screen and the redirec-
tion of the different local input devices such as the
mouse and the keyboard. The information
exchanged by the screen sharing application, such
as Timbuktu (http://www.netopia.com), is mainly
pixels representing the remote screen. The data
used by the remote experimentation have a more
compact representation and they can be updated/
transmitted more efficiently since conventions exist
between the client and the server. For example
when a new point is added to the measurement
display (1 in Fig. 18), the screen sharing appli-
cation will update and transmit the all display to
the remote computer. A better alternative is to

Fig. 14. The three modules for building the client and server application. The RT module handles the real time operations (video
acquisition and physical setup control). The COM. module located on both ends transfers the data intelligently between the client and

the server. The GUI module displays the incoming data and sends the parameter changes to the server.

Ch. Salzmann et al.266

only transmit the new point, resulting in a much
more efficient use of the bandwidth.

National Instruments provides a fully featured
web server written in LabVIEW. When running
this server, the front panel (FP) of running VIs can
be transmitted to a Web browser and updated at
regular intervals using the server-push/client-pop
technique. The server also support CGIs (common
gate interface) written in LabVIEW such as image
map. The combination of different VIs (FP image,
CGI, and Form) can provide the client with a view
of the remote setup. The user will be able to
interact with the server within the limitation of
current Web technology, i.e. the slow image update
(a few frames per minute), the limited use of the
form format to transmit information to the server
and the rather cumbersome LabVIEW CGI
programming required on the server side.

Nacimiento (http://www.Nacimiento.com) soft-
ware proposes AppletVIEW, a toolkit which
provides users with a complete development en-
vironment for creating Java pallets as front-end
instrumentation panels that communicate with a
LabVIEW server. Web pages may contain knobs,
sliders, switches, and charts that are actual
controls that communicate with the AppletVIEW
VI. This is done without any Java programming.

LabVIEW 5 introduced a new mechanism,
called VI Server, to programmaticaly access
LabVIEW objects and functionalities. The server
relies on TCP to exchange data between VIs (local
and remote). This is done transparently and no
specific knowledge is required. The security is
defined on the server side. Different methods can
be invoked, for example a VI can remotely set a
control value, open a given VI or print the front
panel. Another possibility is to call a remote sub-
VI by invoking a call by reference node. The
principle is similar to a remote procedure call
(RPC) under UNIX. The only difference between
a local or a remote call is the need to define the IP
address and IP port of the remote machine. Prior
to calling the sub-VI, the user needs to establish a
connection with the server. On termination, the
connection needs to be closed. A simple example of

a remote machine transmitting its local time using
the call by reference node is shown in Fig. 15.

Four `call by reference VIs' were used to
remotely control the physical setup. The first VI
transmits the controller parameters from the client
to the server, the second VI sends the measured
values from the server to the client, and the third
and fourth VIs implement watchdogs to detect if
the client or the server are still available. This
method has the advantage of being easy to imple-
ment and the performances are good on a lightly
loaded local area networks (LANs). On the other
hand, this method suffers from the TCP limitation
(TCP slow start) when the network load increases
or when the connection is not reliable implying
packet losses.

LabVIEW UDP tools are used to overcome the
TCP limitation, they allow full control of the
bandwidth usage. This method is well suited for
transmission over the Internet. UDP does not
suffer from the slow start limitation, but this has
a price: the packet delivery is not guaranteed. In
other words UDP is connectionless, which means
that the server has no knowledge of the packet
arrival at the client side. The client application has
the responsibility to inform, if required, that a
packet has been lost and ask for its retransmission
(this is done automatically under TCP).

For some applications, the packets can be
lost without affecting the client application. For
example, when transmitting a movie, a frame can
be lost and the movie is still understandable.
Remote experimentation belongs to this category
and implements an advanced control scheme on
top of UDP.

Figure 16 presents a local time server using
UDP. It has the same functionalities as the
previous example presented. The client application
listens to a given port and waits for a UDP packet
to arrive. The UDP Open and UDP Close VIs are
only used to specify the UDP port to listen to and
to free the port once the program quits. There is
no connection establishment under UDP. It is the
application developer's responsibility to define the
connection protocol. This can be a time consuming

Figure 15. A simple time client-server using CALL_BY_REFERENCE VI. The OPEN_APPLICATION and OPEN_VI VIs open a connection with
the remote LabVIEW running the specified VI (LOCAL_TIME). At each loop iteration, the CALL_BY_REFERENCE VI retrieves the remote

data and displays it. Upon termination the connection is closed.

Introduction to Real-time Control using LabVIEW with an Application to Distance Learning 267

task that requires a good knowledge of commun-
ication technology.

EXAMPLE

The electrical drive
Many mechatronic systemsÐi.e., those that

integrate electrical and mechanical partsÐused in
a control engineering laboratory are attractive to

students because they often yield responses that
are easy to identify visually. Furthermore, experi-
mentation can typically be conducted in a reason-
able amount of time. For example, a complete
laboratory experiment could take between one
and two hours of work, during this period the
student carries out modeling and design studies,
including shorter periods (5 to 15 minutes) of
interaction in real-time mode with the experiment
for measurement and control purposes.

Fig. 16. A simple time client-server application using UDP. The Sender VI continuously sends its local time to the specified IP Address
and IP Port. The Receiver VI listens to a given port for a given time. If a valid packet arrives, the data (remote time) are displayed. If

not, it waits again for a fixed time until the user stops the VI. Upon completion the UDP ports are released.

Fig. 17. Electrical drive. (1) motor, (2) load, (3) magnetic brake, (4) position potentiometer, (5) reference potentiometer.

Ch. Salzmann et al.268

The electrical drive is a typical mechatronic
system (Fig. 17), which is used in many textbooks
to illustrate an automatic control system. The
example considered here is simple and exhibits an
almost linear behaviour. It consists of a 14 W DC
motor (1) equipped with a built-in tachometer. The
motor drives a loadÐin this case a steel disk (2).
An adjustable magnetic brake (3) introduces a
viscous friction effect, allowing thereby a modifi-
cation of the time constant during operations.
Either axle angular position or speed can be
controlled by adjusting the motor voltage.

The angular position is measured by a poten-
tiometer (4) connected to the motor axle through
a reduction device. The reference value can be
generated manually by a similar potentiometer
(5). Both potentiometers are equipped with
enlarged disks, which permit easy visualisation of
the motion, either locally or remotely.

Visual feedback
The visual feedback is provided by the graphical

user interface (GUI). A cockpit-like metaphor [5]
is used to present the different information to the
user (Fig. 18). The GUI is split into four areas. The
scope area (1) enables the user to follow the time
evolution of all signals relevant to the experiment
(for example the internal states of the controller).
The visual area (2) provides the video feedback of
the real process enhanced with the virtual repre-
sentation of the process. The user is allowed to

modify the parameters (3) of the controller as well
as other adjustable characteristics of the experi-
ment, such as the sampling period. The push
button is meant for remotely perturbing the
physical system. The administrative area (4)
manages the different connection stages such as
user login and quitting.

Augmented reality and video grabber VIs
Video feedback is especially well suited for

mechatronic processes. Special attention has been
made to providing the user with not only the video
image of the process but also by superimposing
other information such as the virtual reality
representation of the physical system, resulting a
composite image called augmented reality (Fig. 19).
The virtual image is derived from the measure-
ments made on the real system, whereas the video
image comes from the video camera. Special care is
needed to synchronise these two representations.
This is largely compensated for by the benefits
resulting from their combination.

The virtual image is also useful when the avail-
able bandwidth is small. Instead of using a large
portion of the available bandwidth with the video
image, only a few video images per second (1 or
less) are sent. The missing dynamic of the video is
compensated for by the animation of the virtual
image. When using the highest compression factor,
the smallest size for the video image is about 2
Kilobytes whereas for the `same' information

Fig. 18. Client GUI. (1) Scope area, (2) visual area with enhanced video feedback, (3) Parameters, (4) Administrative area.

Fig 19. Video and virtual reality image. (a) Generally speaking the video image and the virtual view are synchronized. (b) The virtual
view is updated more often than the video image when the transmission channel is loaded. (c) Only the virtual view is displayed when

the transmission channel is heavily loaded.

Introduction to Real-time Control using LabVIEW with an Application to Distance Learning 269

(angle), only 2 Bytes are needed to update the
virtual image. This wide range of possible packet
size gives considerable room for adaptation.

Observe that the video image carried far more
information than the virtual image. Through the
real image, the user can get a feeling for the real
setup. This is essential in remote experimentation.
The video image also gives environmental informa-
tion which is undetectable using the virtual image,
as for example a wire running across the moving
parts of the electrical drive.

A set of VIs was developed to grab images
coming from a video camera. These VIs are
based on QuickTime (QT). They can use any
input source supported by QT provided that the
corresponding vdig (driver) exists. The image is
displayed in a LabVIEW picture indicator.
These images can be compressed in JPEG
format (other formats are possible) before
being sent across the Internet. On the receiver
side the images are first decompressed and then
displayed. If needed, the virtual image
is superimposed to the video image before
being displayed.

Figure 20 presents a simple video grabber with
an augmented view of the real system. The image is
updated 5 times per second.

CONCLUSIONS

One of the major requirements in engineering
education is to provide students with convenient
environments to practice what they have been
taught or what they have learned conceptually.
This is true in traditional education as well as in
distance learning. It should be stressed that local or
remote experimentation on physical systems is an
essential complement to simulation and written

exercises. Compared with experimentation in
virtual reality, real experimentation is easier to
implement and more versatile. In fact, adding or
selecting another physical setup does not involve
the elaboration of complex mathematical models
and graphical representations. In addition, engi-
neering students gain confidence in their ability to
deal with real applications, which is going to be
their career challenge.

When planning to set up an environment for
experimentation in academia, the criteria for
selecting a commercial solution are different from
in the industry. Usually, the need for interactivity
is higher and the overall capabilities are lower. The
scalability and the ease in designing a user
interface provided with LabVIEW, as well as
its multi-platform implementation, make this
package well suited to develop didactic tools.
Moreover, the possibility to compile standalone
virtual instruments, which can be distributed freely
to the students, is a big advantage.

Various ways exist of exploiting LabVIEW for
implementing automatic control solutions accord-
ing with the user requirements in terms of quality
of services and the constraints inherent in the
controlled physical system. The most critical part
is the handling of the real-time operations. The
survey of different solutions given in this paper
enables the selection of the solution most suit-
able for a particular application. Depending on
the curricula into which the practice is inte-
grated, coding the control algorithm in G, C
or MATLAB may be chosen. The required cycle
time is also an important element when selecting
an implementation solution. Finally, when security
is a major concern, embedded solutions have to be
considered.

Programming is usually not the main topic of
automatic control laboratory sessions. Practical
training of the material learned is the main

Fig. 20. Simple QT frame grabber. The video source is selected by using the SETUP_QT VI. The acquired image (QT_GRAB VI) is
converted and displayed 5 times per second in a Picture indicator. The virtual view can be added to the real view of the setup. Upon

completion the video source is released.

Ch. Salzmann et al.270

point. Thus, three different implementation
approaches have been chosen at the Swiss Federal
Institute of Technology. The first one is applied
to engineering students spending only a few hours
in the laboratory concurrently with the basic
control course. They are provided with standalone
VIs which enable them to experiment locally or
remotely the behaviours of the controllers they
have studied in class, such as the PID controller.
In such a case, they use high level VIs, which let
them observe the effect of changing important
tuning parameters. But, they do not change
the underlying control algorithms, so requiring
no programming. These VIs are developed by the
educators using LabVIEW enhanced with the
Real-Time Kernel. The second approach concerns
students involved in advanced automatic control
courses who may want to validate the various
control algorithms they have studied. Since
they usually carried out the design and the
simulation with MATLAB, they are provided
with LabVIEW enhanced with the Real-Time
Kernel and the MATLAB interpreter for imple-
mentation purposes. The last approach is followed
by the students, which conducts a semester or a
diploma project on a didactic or industrial setup.
Here, as the constraints may vary, they under-
took a short introductory course in real-time
implementation and LabVIEW programming

before choosing the most suitable solution to
their application.

For distance learning purposes, the VIs are
developed by a team of educators and computer
scientists. From the server side, a real-time control
loop is implemented with one of the available
implementation solutions. To guarantee the best
possible quality of service and to provide a
versatile client management, the communication
layer is developed using the LabVIEW UDP tools.
To broadcast the view of the real experiment
running remotely, a set of QT video acquisition
VIs have been developed. They provide LabVIEW
with a video image displayed in a picture indicator
properly synchronised with the data display.

Finally, the proposed solutions demonstrate the
feasibility of using LabVIEW for real-time control,
allowing students to carry out experimental studies
either on campus or remotely, as well as tutors to
present live in-class demonstrations. Moreover,
the proposed paradigm for real-time control
implementation is not only limited to education.
In research and industry, its ease of use also
represents an interesting opportunity to meet
the growing needs of scientists for fast proto-
typing. This paradigm enables teachers to imple-
ment real-time control solutions in a really
efficient manner, both from a time and resources
perspective.

REFERENCES

1. D. Gillet, G. F. Franklin, R. Longchamp and D. Bonvin, Introduction to automatic control via an
integrated instruction approach, 3rd IFAC Symp. Advances in Control Education, Tokyo, Japan,
(1994) pp. 83±86.

2. G. F. Franklin, J. D. Powel and M. L. Workman, Digital Control of Dynamic Systems, 3rd Edition,
Addison-Wesley (1997).

3. Ch. Salzmann, D. Gillet, R. Longchamp and D. Bonvin, Framework for fast real-time applications
in automatic control education, 4th IFAC Symp. Advances in Control Education, Istanbul, Turkey
(1997) pp. 345±350.

4. H. A. Latchman, Ch. Salzmann, S. Thottapilly and H. Bouzekri, Hybrid asynchronous and
synchronous learning networks in distance education, Int. Conf. Engineering Education, ICEE 98,
paper 351, Rio de Janeiro, Brazil, 1998.

5. D. Gillet, Ch. Salzmann, R. Longchamp and D. Bonvin, Telepresence: an opportunity to develop
practical experimentation in automatic control education, European Control Conference, ECC 97,
paper 439, Brussels, Belgium (1997).

6. Ch. Salzmann, H. A. Latchman, D. Gillet and O. D. Crisalle, Requirements for real-time
experimentation over the Internet, Int. Conf. Engineering Education, ICEE 98, paper 222, Rio de
Janeiro, Brazil (1998).

Christophe Salzmann received his MS degree in Computer and Information Sciences in 1999
from the University of Florida, Gainesville. He is currently a Ph. D. student at the
Automatic Control Institute at the Swiss Federal Institute of TechnologyÐLausanne
(EPFL). During 1995 he was an invited scientist at National Instruments, Austin, TX,
where he worked on LabVIEW. He is also responsible for the LabVIEW User Group at the
EPFL and for the development of the Real-Time Kernel. His research interests include
real-time computing, telepresence, distance learning, multimedia technologies and
communication networks with an emphasis on bandwidth adaptation.

Denis Gillet received his Diploma in Electrical Engineering in 1988 from the Swiss Federal
Institute of TechnologyÐLausanne (EPFL) and his Ph. D. degree in Control Systems in
1995 from the same university. During 92/93, he worked as a Research Fellow at the
Information Systems Laboratory, Stanford University. In 1996, he was an invited Professor
at the National Polytechnic Institute Grenoble for three months. Currently, he is an

Introduction to Real-time Control using LabVIEW with an Application to Distance Learning 271

Associate Professor (MER) at the EPFL. His research interests include on-line optimization
and control, multimedia technologies, distance learning, telepresence, fast prototyping and
real-time implementation.

Pierre Huguenin received his Diploma in Mechanical Engineering in 1988 from the Swiss
Federal Institute of TechnologyÐLausanne (EPFL). He is currently a Ph. D. student at the
Automatic Control Institute (EPFL). His current research interests include real-time
computing, modelling, non-linear control and intelligent transportation system.

Ch. Salzmann et al.272

