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A Non-Traditional Numerical Solution to
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This paper presents a new non-traditional approach to computing the numerical solutions of the
heat conduction problem of a rectangular prism with and without heat sources or heat sinks subject
to Dirichlet and Neumann boundary conditions. The new approach employs a three-dimensional
spreadsheet which does not require programming whereas the traditional approach often employs a
high-level programming language. The results of the present approach are compared with the
analytical results. The advantages and disadvantages are discussed. It is found that the present
approach provides some unique and useful features which are not normally achievable by the

traditional approach.

INTRODUCTION

IT IS well-known that the heat conduction prob-
lem for a rectangular prism with heat sources or
heat sinks is governed [1] by the three-dimensional
Poisson equation:
VZT(x,y,z) =f(X,y,z);
0<x<L 0<y<H 0<z<D (1)
where V2 = 8%/0x2 + 8%/0y* + 8%/02%; T(x,y,2)
is the temperature distribution; f(x,y,z) is the
source term; L, H and D are the dimensions of
the prism; x, y and z are the spatial coordinates.
Analytical solution of the governing equation is
possible only for very simple boundary conditions.
Traditionally, when the governing equation is to
be solved numerically, one usually develops a
computer program using a high-level language
such as FORTRAN which must be tested and
debugged before results can be obtained. Due to
the three-dimensionality of the governing equa-
tion, these programs invariably use a three-
dimensional array to store the solution, regardless
of the numerical methods on which they are
based. Therefore, the outputs of these programs
are difficult to visualise, as they do not contain
explicit geometrical information. These programs
normally do not have a built-in graphical inter-
face to generate results in graphical form. As such,
the graphing is done separately in which either
special graphing routines are developed or, as is
more often done, the numerical results are
exported to an external graphics package for
graphing. Careful rearranging and formatting of
the numerical results are required before they
can be used in an external graphics package.
Instead of developing a computer program, some
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commercially available computational package or
scientific computation libraries can also be used.
These packages or libraries, together with a suit-
able graphics post-possessor, can generate the
results in impressive graphical forms. However,
programming in dedicated languages of these
packages is still unavoidable in using them.

By using the spreadsheet, on the other hand,
offers some unique features which the traditional
approach does not provide. This is even more so
for the present case because most recent spread-
sheet packages offer a host of advanced three-
dimensional features well suited for applications
in three-dimensional problems. The cell structure
of the spreadsheet naturally provides the physical
geometrical locations of the grid points, thus
making interpretation of the numerical results
easier. The spreadsheet approach is also self-
contained in the sense that all necessary tasks can
be performed within it including result graphing
due to its built-in graphics capability. The spread-
sheet is also easier to learn and to use as compared
to specialised packages and no programming is
necessary.

The applications of spreadsheet in engineering
computation is not new. A variety of scientific
and engineering problems have been solved by
spreadsheets [2—15]. The educational applications
ranging from problem simulations [2, 3, 5, 9-12,
15] to course administration [6] have been
reported. However, all these applications per-
tained to at most two-dimensional space and they
employed two-dimensional spreadsheets. Recently,
Lam [9-11] utilised the spreadsheet to numerically
solve the three basic types of second-order partial
differential equations in two independent variables
using a variety of finite-difference methods and
the method of characteristics. For the elliptical
equation, only the Laplace equation was solved.
Due to the proven educational advantages of these
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Fig. 1. Discretisation of the rectangular prism.

spreadsheets, they were incorporated into a text-
book [1]. Again, only two-dimensional spread-
sheets were used for those two-dimensional
problems. This paper explores the use of the
advanced three-dimensional spreadsheet in solving
the three-dimensional heat conduction problem
of a rectangular prism with and without heat
sources or heat sinks subject to Dirichlet and
Neumann boundary conditions. For clear illustra-
tion purpose, simple forms of heat sources and
boundary conditions are considered.

NUMERICAL PROCEDURE

The governing equation (1) is an elliptic equa-
tion. To solve it by a finite-difference method, the
prism is discretised by a rectangular grid system
with constant grid sizes Ax, Ay and Az as shown
in Fig. 1.

Using central differences [1] to replace the

derivative terms in equation (1) and rearranging
the resulting equation yields: '

Turgk + Tirjk + (Bx/Ay)
Tij+1,e+ Tij1,k)
_ +(Ax/A2)X (T j k1 + Tijokr) — (Ax) %k
2[1 + (Ax/Ay)* + (Ax/Az)?]

i),

(2)

where the subscripts denote the positions of the
grid points as depicted in Fig. 1.

The difference equation (2) relates the tempera-
ture T at an interior grid point to the values at its
six adjacent grid points and the corresponding
source term. When it is used to obtain the numeri-
cal solution of equation (1), the three-dimensional
spreadsheet has an obvious advantage that the
spreadsheet structure closely resembles the rectan-
gular grid system shown in Fig. 1. In the present
work, the popular three-dimensional spreadsheet
package Lotus 1-2-3 Release 3.4a is used.

Figure 2 shows the structure of a three-
dimensional spreadsheet in which the location
of a spreadsheet cell is defined when its column-
wise, row-wise and sheet-wise locations are known.
A typical cell on column D and row 5 of sheet B
(i.e. at B:D5 in 1-2-3’s terminology [16]) is high-
lighted in Fig. 2 as an example. Therefore, if the
column-wise, row-wise and sheet-wise directions
represent the x-, y- and z-axis respectively, each
cell can be regarded as a grid point in the three-
dimensional rectangular grid system. This three-
dimensional geometrical information embedded
in the three-dimensional spreadsheet structure
makes it extremely convenient to assign equation
(2) to the cells of a spreadsheet that correspond to
the interior grid points of the prism. In fact, the
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Fig. 2. The structure of a three-dimensional spreadsheet.
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Fig. 3. The screen displays of the numerical results for Dirichlet conditions without heat source.

assignment of equation (2) needs to be done only
once to an interior grid point and it can be ‘copied’
to all interior grid points by using the Copy com-
mand. After the appropriate boundary conditions
are specified, the 1-2-3’s function key F9 can be used
repeatedly to recalculate and update the values of
T at all interior grid points until convergence.

SAMPLE COMPUTATIONS

To demonstrate the ease of use of the present
approach, numerical solutions are obtained for
different cases as follows:

Case A

Consider the heat conduction of a rectangular
prism of size L = 1 m, H = 1 m and D = 1 m with-
out heat sources subject to the Dirichlet condi-
tions on its six faces T'(0,y,z) =1, T(L,y,z) = 2,
T(x,0,z)=3, T(x,H,z) =4, T(x,y,0) =5 and
T(x,y,D)=6 in an appropriate temperature
unit. This corresponds to f(x, y,z) = 0 in equation
(1) which reduces to the three-dimensional Laplace
equation.

The spreadsheet and the numerical results for
this problem are shown in Fig. 3 in which the
numbers of x-, y- and z-intervals are taken to be 5,
8 and 5 respectively. After the dimensions L, H and
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Fig. 3. (Continued).

D and the number of intervals are specified in
the ranges of cells A:Bl1..A:B3 and A:D1..A:D3
respectively, the three Cartesian axis are con-
structed. The six Dirichlet boundary conditions
T(OsJ’oZ), T(L,y,z), 7(-"’0,2), T(x:ff:z): T(x,y,O)
and T(x,y,D) are entered with the help of the
Copy command respectively in the ranges of cells
B:C9..E:C15, B:H9..E:H15, B:D8..E:G8, B:DI16..
E:G16, A:D9..A:G15 and F:D9..F:G15 that corre-
spond to the correct geometrical locations of the
respective grid points on the faces of the prism.
The difference equation (2) with f = 0 is then
specified in the cell B:D9 and copied to the range
of cell B:D9..E:G15 that correspond to all interior
grid points of the prism. Using the function key

F9, the solution is iterated and the solution con-
verged to four decimal places as displayed on the
screen is shown in Fig. 3. It is clear that the
numerical results in Fig. 3 can be visualised
easily, as the geometrical locations of all cells or
grid points are revealed. Unlike the traditional
approach, programming is not required and gra-
phics capability is readily available since it is a
standard built-in feature of all spreadsheet
packages. Using 1-2-3’s graphics commands, the
results are plotted easily as shown in Fig. 4.

The spreadsheet can be modified easily to
obtain solutions for different sets of boundary
conditions. For example, if the new boundary
conditions are T(0,y,z)=0, T(L,y,z)=15,
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Fig. 4. The graphical displays of the spreadsheet solution.
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Fig. 5. The screen displays of the results for modified Dirichlet conditions without heat sources.

T(x,0,z)=0, T(x,H,z) =0, T(x,y,0) =0 and
T(x,y,D) =0, only the corresponding cells which
store the boundary conditions identified earlier
need to be changed accordingly.

The screen displays of the converged results are
shown in Fig. 5. The treatment is the same when the
new boundary conditions are not constants. The
results for the modified boundary conditions at
four preselected grid points are compared in Table
1 with the analytical results obtained by the
method of separation of variables. Also included
in Table 1 are the results for the same problem
when the grid sizes Ax, Ay and Az are halved. The
agreement verifies that the spreadsheet approach is

reliable, as expected. This is further supported by
the fact that the converged spreadsheet solutions
are found identical to the results of the traditional
approach using a FORTRAN program with the
successive over-relaxation method.

Case B

When heat sources are present f(x,y,z) #0
and the Poisson equation (1) must be solved. For
illustration, f(x,y,z) is taken to be 1 and the
spreadsheet is modified accordingly. This is done
easily by editing the difference equation in any
one interior grid point following equation (2) with
f =1 and copying it to all interior grid points. The
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Fig. 5. (Continued).

Table 1. Comparison of spreadsheet and analytical solutions

Spreadsheet
Ax=0.2, Ay = 0.125, Ax =0.1, Ay = 0.0625,
Ax=02 Az=0.1 Analytical
7(0.2,0.125,0.2) 0.1499 0.1369 0.1326
7(0.4,0.25,0.4) 1.1756 1.1280 1.1097
T(0.6,0.375, 0.6) 3.4686 3.4606 3.4591
T(0.8,0.5,0.8) 6.1308 6.1741 6.1926
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Fig. 6. The screen displays of the results for

converged solution as displayed on the screen is
shown in Fig. 6.

Case C

The Neumann boundary conditions can also be
treated easily. Assuming the boundary conditions
are T(0,y,2z) =0, 8T(L,y,2z)/0x =5, T(x,0,z) =
0, T(x,H,z) =0, T(x,y,0) =0and T'(x,y,D) =0
with heat sources such that f(x,y,z) = 1. Here a
Neumann condition is specified at x = L. Using
the concept of fictitious grid point [1], the govern-
ing equation is applied on the face x = L of the
prism and therefore the difference equation (2) is

E

Dirichlet conditions with heat source.

copied from any interior grid point to the bound-
ary grid points in the cell range B:H9..E:H15
corresponding to i = 5 on x = L. Using central dif-
ference, the Neumann condition 8T(L, y,z)/0x =
OTs,jk/0x = 5 is written as:

T6,j,k = Td,j,k + 5 x 2Ax

Ts,jx are the temperatures at the fictitious grid
points in the cell range B:I9..E:I15 corresponding
to x = L + Ax outside the prism. This equation is
entered at one fictitious grid point and copied to all
fictitious grid points. Again, iteration is carried out
by using the F9 function key and the converged
solution is shown in Fig. 7.
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Fig. 6. (Continued).

Therefore, in the present approach, the main
task in getting numerical solutions for the various
cases considered is to assign appropriate mathe-
matical expressions at the correct cell addresses
corresponding to the grid system. This is straight
forward because the cell structure resembles the
three-dimensional grid system. The treatment of
Neumann boundary conditions, which is much
more troublesome as compared to Dirichlet con-
ditions when the traditional approach is adopted,
is basically as straightforward as that of the
Dirichlet condition with the additional assignment
of mathematical expressions at the fictitious grid
points.
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9 6.6834 15
5 7.5632 15
7 7.8078 15
5 7.5632 15
9 6.6834 15
4.6198 15
0
LIRG
CONCLUDING REMARKS

A simple, non-traditional approach to the
numerical solution of heat conduction problem
of a rectangular prism governed by the three-
dimensional Poisson equation is presented. While
the Dirichlet boundary conditions can be treated in
a straightforward manner, the Neumann condition
can also be easily imposed using the concept of
fictitious grid points which offers second-order
accurate results. The present approach utilises the
built-in features of a three-dimensional spread-
sheet. It is only required to set up the computa-
tional grid system, to specify the boundary
conditions and the relations between the cell
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Fig. 7. The screen displays of the results with Dirichlet and Neumann conditions and heat source.

values. Upon iterating the cell values by pressing a which does not normally show the successive
function key, the converged numerical results can iterates. Due to the limitation of the spreadsheet
be obtained. The spreadsheet results are displayed package used, the maximum number of curves that
at their respective geometrical locations which can can be graphed is six which is sufficient for
be visualised easily. They can also be readily educational applications.
graphed by the built-in graphics capability. The spreadsheet approach is valuable since
One iteration is done when the function key F9 programming, compilation and debugging are
is pressed once. This can in some cases be a little not required which can often be frustrating.
troublesome especially when the number of grid Spreadsheet packages are easily accessible to

points is large for which convergence is slow. engineering students. Most students nowadays
However, this allows the convergence characteris- also have spreadsheet packages installed in their
tics of the solution to be studied as the successive home personal computers and may have ade-

iterates can be observed after each iteration. For quate spreadsheet knowledge to carry out the
educational purposes, this can be another advan- numerical computation. The spreadsheet approach
tage over the traditional approach of writing a thus provides a simpler, faster and yet powerful
computer program using a high-level language alternative to the traditional approach.
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Fig. 7. (Continued).
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