Int. J. Engng Ed. Vol. 12, No. 6, p. 423427, 1996 0949-149X/91 53.00+0.00
Printed in Great Britain. © 1996 TEMPUS Publications.

Embedding Authoring Support in an
ITS for the Learning of Object-Oriented
Programming

A. ZEKL
IBM Germany, CBT projects, Am Fichtenberg 1, D-71083 Herrenberg, Germany

I. MORSCHEL
Institute for Computer Science, University of Stuttgart, Pfaffenwaldring 47, D-70550 Stuttgart, Germany

Intelligent Tutoring Systems (ITS) are of increasing importance for education in many areas.
Existing authoring systems are no great support for authors of learning material. Authors should
possess knowledge about the subject matter and pedagogical knowledge, and they need to acquire
programmer skills, because most authoring languages are similar to normal programming
languages. We propose a hypertext-based ITS with tools for structuring the subject matter without
programming. Pedagogical knowledge is inherently realized in the system using Al-planning
techniques. The authoring components are embedded in an ITS for the learning of object-oriented
programming. It comprehends tools to support the visualization, animation, critique and testing of
object-oriented programs written in Smalltaik.

INTRODUCTION the learning material is dynamically adapted to the
student’s knowledge state. The exact functions of

INTELLIGENT Tutoring Systems (ITS) are of the different components will be described later.

increasing importance for education in many The authoring tools can be used to develop
areas. However, the development of ITS is very learning material on different topics. The ITS can
time consuming and therefore expensive. ITS then be used to teach these topics. The SmallTutor
will gain widespread use only if they are easy to toqls are developed especially for the learning of
develop and maintain. Normally authors have to object-oriented programming (e.g. Smalltalk-80).
be experts of the subject matter, pedagogical Figure 1 shows the whole system.

experts and software engineers because they need
to program explicitly all parts of the ITS. We

propose an ITS with components for authoring THE ITS

support so that authors only have to be experts in)

the subject matter. In the following, we intro- The heart of our system is a hypertext system.
duce a learning environment called SmallTutor, The system uses planning techniques to adapt
which is being used to master object-oriented the presentation of the learning material to the
programming. student’s needs. The domain knowledge exists in

the form of hypertext documents. We use the
expression hypertext document for one page of
the hypertext network—in contrast to the litera-
ture, where it often means the whole hypertext
network. Its granularity is too fine for constructing
The SmallTutor system consists of three a curriculum. Based on the article of Peachey

THE SMALLTUTOR SYSTEM

separate components: the authoring support and McCalla [1], the learning material is struc-
tools; the ITS _ltself; and tools Whlch. help students tured in concepts. ‘Each concept corresponds to
to develop their own Smalltalk applications. some unit of subject matter which the CAI

Our ITS is hypertext-based, like many of the system might potentially teach to the student...’
existing systems. The great disadvantage of hyper- [1]. For the learning of a concept, they defined
text-based ITS is that they do not adapt the prerequisite knowledge, which states the causal
hypertext structure to the student’s knowledge. relationships between different concepts. This
We overcome such problems by using planning leads to several possible plans to achieve the
techniques which makes our system flexible. The learning goal (plan-generator in Fig. 1). A plan is
hypertext network and therefore the structure of executed (plan-executor in Fig. 1) by presenting
the corresponding learning material to the student.
* Accepted 25 July 1996. If a plan goes wrong, which means that the student

423

424 A. Zekl and I. Morschel

cannot reach a learning goal, the next possible
plan is taken. Learning success is modelled in a
simple student model, which contains a list of
learned concepts or misconceptions. There are
severe restrictions for planning systems which are
based on formal methods. ‘However, while sound
and complete planning algorithms have been pub-
lished, none of them are heuristically adequate
(assuming enough expressiveness to be interesting).
Even for small problems, they are simply not
usable in practice’ [2]. They are mainly not usable
in practice because of performance problems. Such
a planning algorithm is only applicable in small
knowledge domains. The acceptance of the learn-
ing system depends on its performance. Therefore,
we made some extensions to this planning tech-
nique to overcome these problems. Qur basic plan
is the so-called guided tour, which is defined by the
author and leads the student through the whole
hypertext network. Therefore, replanning is only
necessary if a student cannot learn a concept. We
test the learning success with multiple choice
questions. There are two other situations when
replanning takes place. First, if a student does
not follow the guided tour, then the system will
search for the student’s learning goal and supply
a new appropriate order of the hypertext docu-
ments. Second, one great advantage of our system
is that students can mark concepts as known
before the beginning of the learning session. The
remaining hypertext documents are then dynami-
cally reordered, so that the students do not have

to go through all the subjects every time they
search for some information. This will increase
the acceptance of the system. Beginners take the
guided tour through the whole material, while for
experts the system provides exactly the required
information.

As we have seen, replanning only starts under
certain situations, but the performance problem

* still remains; therefore we use heuristics based, for

example, on different learner types. Students can
choose their preferred learning strategy (theory
or examples preferred, explorative learning, etc.)
before beginning the learning session. Some infor-
mation is already in the hypertext network, such as
typed documents and semantical links, which are
also used as constraints for finding the appropriate
plan.

In the following we will look at the tasks of
authors to develop learning material for this
system.

AUTHORING SUPPORT

Introduction

Like simple Computer-based training programs,
ITS normally need to be programmed. Therefore,
the developers of ITS have to be experts in the
subject matter, experts in pedagogical issues and
software engineers. However, we normally only
have experts in the subject matter (the so-called
authors) with little knowledge about software

L L T T T e,

Fig. 1. The SmallTutor system.

Embedding Authoring Support in an ITS 425

engineering. A lot of authoring languages and
authoring systems for the developers of learning
material exist. But authoring languages are not
really different from other programming lan-
guages. Authoring systems give too restricted
possibilities in developing a learning system. Sig-
nificant for both is the lack of support for design
decisions concerning the structuring of the learning
material and pedagogical questions. Our aim is to
support authors in al these questions. Besides this,
authors should not be burdened with program-
ming and pedagogical questions. It is evident that
the methods and tools for authoring support there-
fore depend on the architecture of the underlying
ITS.

The different levels of authoring

Because our system is hypertext-based, authors
are concerned with the inherent problems of
hypertext, including disorientation and cognitive
overhead [3]). There is a limited capacity of the
human mind to grasp information. It is not
possible to process more than about seven pieces
of information at the same time [4]. Hierarchical
structuring seems to be a way to overcome these
problems. ‘The human mind can accommodate
any amount of complexity as long as it is pre-
sented in easy-to-grasp chunks that are structured
together to make the whole... No matter how
these principles are addressed, they always end
up with hierarchic decomposition as being the
heart of good storytelling’ [5]. Therefore, we devel-
oped a graphical editor for hierarchically struc-
turing hypertext [6]. On each level there is a
limited number of possible documents, so the
structures cannot become too vast and incompre-
hensible. The already developed learning units for
our system normally consist of ~300 documents.
with this editor, authors are able to structure
the hypertext, define the guided tour through the
hypertext, type documents and add keywords.
Other aids are different analysis tools, which
examine the developed hypertext structures on
consistency, the lack of links, gaps in the guided
tour and so on. We are still developing a know-
ledge-based adviser which evaluates all the analysis
results and gives concrete design advice.

For the planning techniques which are used in
the system, authors should build concept graphs.
These graphs show the prerequisite relationships
between the concepts. If there are concepts with
the same prerequisites, an author can choose the
order of these concepts in the learning session. This
order is motivated by pedagogical concerns, but
this is the only pedagogical information an
author should implement in the learning material.
All other pedagogical and didactical strategies are
inherently implemented in the heuristics for the
planning. The building of concept graphs is also
supported by a graphical tool, because the prob-
lems, like the complexity of graphs, are the same
as for structuring hypertext.

If the learning material is structured on these
two levels, an author should additionally fill the
hypertext documents with content. Authors are
confronted with a lot of problems. Writing hyper-
text is much different from writing linear texts. For
example, a notable problem is the text cohesion.
We cannot refer to an antecedent proper name by a
personal pronoun if they are not on the same page,
because the order in which students go through
the hypertext documents changes. Nevertheless, the
text which results from the order of the hypertext
documents must remain coherent. These problems
are difficult to analyse automatically. Therefore it
is necessary to have guidelines for authors. In our
system, these guidelines will be implemented as a
passive, knowledge-based adviser.

For examples and more detailed information see

[71.

SMALLTUTOR TOOLS

The ITS and the authoring tools are not bound
to a special subject matter. We use the system to
teach object-oriented programming (OOP) as a
way to evaluate the environment and its meth-
odologies. For this aim, some tools have been
developed to support the learning of OOP. In
the following, the visualization, animation and
critique tools are presented.

We have use Smalltalk-80 [8] as our program-
ming language because of its uniformity and
elegance. The learning of the syntax and the
environment appear to be mastered easily. How-
ever, the learning of the class library and the
correct understanding of the dynamic behavior of
programs seem to be difficult (e.g. the role of
inheritance and polymorphism in the message-
passing mechanism).

The visualization of the program characteristics
is an important factor in its comprehension. We
based our graphical representation on Booch’s
approach [9], which presents classes and respective
objects together with their methods and variables.
We made some simplifications and adaptations,
which turn it into a Smalltalk-like representation
(e.g. classes with their class categories, methods
with their protocols, etc.).

The notation exposes only the part of the
Smalltalk program which appears to be relevant
to the students. For example, the internal informa-
tion of a class/object (like its methods and vari-
ables) and the associations between them (like is-a,
instance and used relationships) are exhibited.
Other irrelevant information is not presented,
because it is not essential for a first glance at a
program and can easily be obtained from the
source code.

We believe that an approximate and intuitive
comprehension can rapidly be obtained from a
graphical visualization. We can quickly recognize
features that are familiar to us and have random

426 A. Zekl and I. Morschel

access to any part of a picture. Text, on the
other hand, is sequentially recognized. We can
easily identify the relationships between the ele-
ments in a picture. With a text, this is much more
difficult.

The algorithm animation, in turn, reveals the
dynamic characteristics of a program. Among
other things we can inspect variables and follow
the control flow of a program. This is important
for the comprehension of its behavior, because
some aspects cannot be easily recognized by the
student, e.g. through inheritance or polymorph-
ism. We believe that in this way the student’s own
experiences in trying different solutions for a
problem could be better supported.

The animation is based on the visualization,
which defines a graphical debugger for Smalltalk
programs. In extension to its browser, one can
trace and investigate both data and control
structures at run time.

Additionally, a learning environment should
provide a feedback about the quality aspects of
the developed programs. Such a facility is not
commonly incorporated into many systems, but
plays a significant role as a mechanism to judge
and to meliorate the learner’s designs.

SmallTutor aims to increase programmer pro-
ductivity by providing a feedback during the
learning phase. This is achieved by:

® evaluating the programmer’s software by
applying object-oriented software metrics;

® giving the programmer feedback concerning
quality aspects of the developed programs.

Embedding a critic module in a learning
environment allows the following:

1. Feedback is given to a learner concerning
the quality of the created programs, since
he/she as a beginner does not have sound
criteria to evaluate a program, or he/she
possesses misconceptions.

2. A good programming style is presented to the
learner, as a good learning environment should
do.

3. The boundaries between a critic module and a
learning environment for programming are
very closely related. When the learner makes
a mistake or does not achieve a good solution,
the system should provide help. This can be
done by presenting learning material with the
reason and an explanation of the errors made.

4. Quality aspects like understandably, reusability
and maintainability of a program should be
guaranteed.

A novice of a programming language and its
environment is confronted with some problems
[10]):

® When is an object-oriented program in a good
style?

® Are there rules one can apply to develop good
object-oriented programs?

e Which metrics should one employ in order to
determine if a program is ‘good’ or not?

The measurement of the size and complexity of a
software system can be used to aid in evaluating
the quality aspects of its implementation and there-
fore be useful as a learning tool for staff members
who are new to this paradigm.

There is much criticism about the use of metrics
in the object-oriented software development
process. One of them is that their objectives are
not well understood and their application in a
development environment requires great effort.
To overcome such problems, we introduce Smail-
Critic, a tool to evaluate and meliorate object-
oriented programs written in Smalltalk. It is
embedded in the environment for the learning of
object-oriented programming [11].

SmallCritic analyses object-oriented programs
by applying construction rules that distinguish
between:

® the static and dynamic structure of a class or an
object;

® the static and dynamic relationships between
classes and/or objects.

For examples and more detailed information see
[12]).

IMPLEMENTATION

The implementation is realized in Smalltalk-80
release 4.1 from ParcPlace [8].

There is a lack of flexible interfaces in com-
mercial hypertext systems, and therefore we devel-
oped our own hypertext system and also our own
expert-system shell. Another reason was to facili-
tate the public use of this Intelligent Tutoring
System and the authoring tools.

The software is available via ftp:

ftp iassnb.ias.uni-stuttgart.de
login: ftp
passwd: your e-mail address

Directory: publlernsys

This directory contains the file readme.text with
information on the SmallTutor project as well as
three subdirectories:

1. The directory authoringsystem contains the
latest version of the ITS with the planning
module but without the SmallTutor tools. There
is a readme file with installation instructions.

2. The directory smalltutor contains the latest
version of the ITS without the planning
module, thus only hypertext-based, but with
all SmallTutor tools. There is a readme file
with installation instructions.

3. The directory papers contains some more
publications on this subject. Read INDEX.txt
for a summary.

Embedding Authoring Support in an ITS 427

For printed documentation (only available in
German) please write to Martin Seidel, IAS,
Pfaffenwaldring 47, D-70550 Stuttgart, Germany.

CONCLUSION

We have shown the architecture of an ITS and
an ‘authoring system’ for this learning system.
Authors of learning material have to be experts
only in the subject matter. Several authors (mainly

students) have already developed learning units
for the ITS using the existing tools and the under-
lying methodology. There has been great accept-
ance and positive reactions. The ITS is already
being used for teaching students object-oriented
programming.

Acknowledgements—We would like to thank the German
Research Society (Deutsche Forschungsgemeinschaft DFG) as
well as the Brazilian Council for Research (CNPq) for their
financial support of this work.

ot s

wn

—

12.

Sew = &

REFERENCES

Peachey and McCalla, Using planning techniques in intelligent tutoring systems. Man-machine
Stud., 24, 77-98 (1986).

E. Wilkins, Practical Planning. Morgan Kaufman Publishers (1988).

Conklin, Hypertext: an introduction and survey. IEEE Comput., September, 17-41 (1987).

G. A Miller, The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychol. Rev., 63, 81-97 (1956).

. T. Ross, Structured analysis (SA): a language for communicating ideas. IEEE Trans. Software

Engng, 16-34 (1977).

Zekl, Authoring support for the development of intelligent tutoring systems. Proceedings of the
EAEEIE 93, Prague, September 1993.

Zek], Rechnerunterstiitzung fiir Autoren bei der Erstellung von Lernprogrammen fiir Intelligente
Tutorielle Systeme, PhD thesis, University of Stuttgart (1995).

. Objectworks\Smalltalk Release 4.1, Users Guide. ParcPlace Systems (1992).

Booch, Object-Oriented Design with Applications. Benjamin Cummings Publishing Co. (1991).
K. Lieberherr and I. Holland, Assuring Good Style for Object-Oriented Programs. IEEE Software
(1989).

. J. Morschel, About methods and tools to master object-oriented programming. Proceedings of

TaTTOO 94, Leicester, UK, January 1994.
1. Morschel, Ein integriertes wissens-basiertes Tutorsystem fiir die Ausbildung in objektorientierter
Programmierung, PhD thesis, University of Stuttgart (1995).

Andreas Zekl is an electrical engineer, graduating in January 1992 from the University of
Stuttgart. He obtained a doctoral degree in 1995 at the University of Stuttgart, Institute for
Automation and Software-Engineering (IAS). He is currently working for IBM Germany,
Education and Training as project manager for the development of Multimedia Computer-
Based Training programs. Since, June 1994 he has been a council member of the European
Association for Education in Electrical and Information Engineering (EAEEIE).

