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A Note on Pseudo-inverse*
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Undergraduate engineering mathematical courses oftentimes emphasize algorithms leading to
solutions of particular problems. One such algorithm that is implemented aims to obtain solutions
for a linear system of equations. The mathematical background addressing properly constrained,
under-constrained and over-constrained conditions may not be studied in depth with respect to how
these situations effect their respective solutions. As an example we consider the solutions of non-
homogeneous systems where the number of equations can exceed or equal or is less than the number
of unknowns. The three cases will be discussed in detail for the homogeneous and non-homogeneous
systems. The pseudo-inverse for a matrix will be introduced and implemented extensively to solve
the non-homogeneous system. Two principle applications of the pseudo-inverse will be developed.
First, we will compute the conversion matrix for Euler operators implemented in geometric

maodelling; secondly, will be an alternate proof for the least square error property,

AUTHOR QUESTIONNAIRE

1. The paper discusses materials for a course
in:

Engineering Mathematics, Geometric Mod-
elling (Euler operator section), and Machine
Vision (least square error section).

2. Students of the following departments are
taught in this course:

General engineering discipline (mechanical,
industrial, electrical, electronic, civil and
structural).

3. Level of the course (year):

First year undergraduate and master.

Mode of presentation:

Lecture.

5. Is the material presented in a regular or
elective course:

Regular for undergraduate engineering mathe-
matics, elective for master courses (Geometric
modelling & machine vision).

6. Class or hours required to cover the material:
1-2 hours. This depends on the subject
lecturer.

7. Student homework or revision hours required
for the materials:

Nil. This depends on the subject lecturer.

8. Description of the novel aspects presented in
your paper:

Give a complete picture of solving systems of
linear equation with pseudo-inverse.

9. The standard text recommended in the course,
in addition to author’s notes:

E. Kreyszig, Advanced Engineering Mathe-
matics, 7/e, John Wiley & Sons 1993.

10. The material is/is not covered in the text.
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The material in the paper is not covered in the
text.

INTRODUCTION

SYSTEMS of linear equations play an important
role in engineering problem solving. This is
because non-linear models of the physical world
are usually solved by approximate linear models,
and the system characteristics are usually described
by more than one variable. Examples include:
solving multiple-input—multiple-output systems in
modern control; finding optimal solutions; data
fitting for reverse engineering; and calibrating
cameras for machine vision, etc. In the under-
graduate engineering mathematics courses, skills
needed to solve a system of linear equations are
taught under the linear algebra topic and usually
stress techniques such as the Gaussian elimi-
nation method. The inter-relation between the
properly constrained, under-constrained and
over-constrained situations may not be covered
in sufficient detail to allow the students to have
an overall view. For example, solution of non-
homogeneous systems with different numbers of
equations and unknowns is sometimes avoided.
This paper discusses how to obtain a complete
range of the skills needed for solving a system of
linear equations, including: homogeneous and
non-homogeneous cases, and equal and different
numbers of equations and unknowns. Two parti-
cular cases of applying the pseudo-inverse to solve
non-homogeneous systems with different numbers
of equations and unknowns are then explained in
detail. The first case demonstrates how to obtain
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the conversion matrix for Euler operators in
geometric modelling. A more natural solution
based on the pseudo-inverse can be derived. A
system of linear equations may be purposely
over-constrained in practice, say in minimizing
measurement errors by taking more than enough
data. The second case gives an alternate proof of
the least-squares error property of the pseudo-
inverse. This proof, however, does not require the
students to have a rich knowledge of linear algebra.

COMPLETE PICTURE OF SOLVING
SYSTEM OF LINEAR EQUATIONS

A system of linear equations can be represented
in matrix form,

o R L S LN ) X by
2 Gpn v dn X2 b,

AX = = : o ba
ml Gm2 "' Omp Xn bm

where A is an m x n rectangular matrix, x is an
m x 1 column vector and b is an m x 1 column
vector. When A is square, i.e. m = n, vectors x and
b will have the same number of rows, i.e. m x 1. In
addition, one can consider m as the number of
linear equations (which may not be independent),
and »n the number of unknowns.

In finding a solution for the system of linear
Eq. (1), iie. x =7, the system is conveniently
classified as homogeneous or non-homogeneous
depending whether or not b is the zero vector.
That is to say:

system of linear equations (Ax = b)
|
i : i

homogeneous non—homogeneous
(Ax = 0) (Ax =b #0)

Homogeneous systems always have a trivial
solution. Whether the trivial solution is unique
or not depends on the rank of the matrix 4. We
recall the rank of a matrix A4, denoted rank (A), is
defined to be the maximum number of linearly
independent row vectors of the matrix A. (The
rank of zero matrix is defined to be zero.) An
immediate property is that the rank of any matrix
A cannot be greater than the number of rows, i.e.
rank (4) < m. Thus, we use rank (4), the maxi-
mum number of linearly independent equations,
rather than m, to differentiate the properly or
over- and under-constraint cases. It can be
proved that rank (4) = rank (A7) where 47 is
the transpose of 4 [2: p. 158, Problem 10]. Since
rank (A7) < n, it follows that rank (4) < n. As a
result, the over-constraint case with more
independent equations than unknowns has no
solution as rank (4) > n is impossible.

homogeneous
(Ax = 0)
trivial solution exist
(x=0)
|
+ - T
| |
rank (4) > n rank (4d) =n rank (4) <n
l | |
over- properly under-
constraint constrained constrant
l |
impossible unique non-trivial
trivial solution
solution exists,
infinitely
many

In the above diagram, matrix A is not classified
as square or rectangular, as the solution method is
determined by its rank. In the case when A4 is
square, one can use its mathematical determinant
to establish whether its inverse exists or not.

In solving non-homogeneous system, we need to
form the augmented matrix, B, as

an a -+ a;m b

ay axn - ay b
B=]. R ; 3

Gl Oy 1o et Dy

Thus, the solution can be depicted as follows:
non-homogeneous
(Ax =b #0)
|

+

4

rank (4) :I‘ rank (B)

rank (A)i—-mnk{B}

i
1

rank (4) L rank (B)

solution does solution impossible
not exist elests
i i i
|
rank (4) > n rank (d) =n rank (4) <n
|
over-constraint properly under-constraint
(A = rectangular) constrained (A = rectangular)
impossible unique infinitely many
constrained solutions
v - +
| | |
n>m n=m n<m
(A = rectangular) (A = square) (A = rectangular)
impossible x=A""b x=A*b

When rank (A4) = n, it is clear that the case m < n
is impossible since rank (4) < m in all situations.
Moreover, as in the homogeneous system, there is
no solution for the over-constrained case.

As shown in the previous diagram, the properly
constrained case will have a unique solution. When
A is a square matrix, the solution is x = A4"'b
where A~'b is the inverse matrix.

When A4 is a rectangular matrix an alternate
method can be implemented by introducing the



A Note on Pseudo-Inverse 311

pseudo-inverse matrix or sometimes termed to be
the generalized inverse. The pseudo-inverse is
defined tobe A* = (AT A)~' AT and it is immediate
that x = (A7A) ' ATb = A*D.

It can be verified by multiplying both sides of
x = A*b with (447)"' 44T A4 to obtain Ax =b.
The pseudo-inverse exists if the inverse (474)~"
exists or if rank (47 4) = n (or the determinant of
AT A is non-zero). It can be proved that [2: pp. 158,
484, Problem 11] rank (A7) = n = rank (474) =
n. Since rank (4) = rank (A7), rank (4) is used in
the check for both the square and rectangular
matrix cases. Note that the solution with the gen-
eralized pseudo-inverse can be found in references
on applied linear algebra [2, 3].

CONVERSION MATRIX FOR EULER
OPERATORS

In computer-aided design and manufacturing,
boundary representation is one popular scheme
used to represent solid models of physical objects.
The topological information of the boundary
model is represented by shells which are a compo-
site of faces that bound a volume, faces, rings
which are a composite of edges that bound a
hole-area on faces, edges, vertices and through-
holes or handles. The total number of these
topological entities in a solid are denoted by S,
F, R, E, V and H respectively and are found to
obey the Euler—Poincaré equation: V —E +
F-R=2(S—H) [4. During a geometric
modelling session, a valid topology is created or
destroyed by performing Euler operations that are
based on the Euler—Poincaré equation.

The Euler—Poincaré equation can be regarded as
an equation of a hyperplane in a six-dimensional
space. In the hyperspace, the coordinate tuple of
any point is P=(V,E,F,R,S,G). The hyper-
plane can be seen to pass through the origin O.
Let f(P)=V—-E+F—-R—-28+2H=0 and
the normal of the hyperplane is Vf, then

CVITE 17

E -1

F 1
V—-—E+F—-R-25+42H =

R -1

S -1

LREY L

=(P-0)-Vf=PVf =0.

Since only integral coordinates are possible, the
hyperplane and hyperspace used are discrete grid
and lattice, respectively.

To obtain the transition for creating or destroy-
ing a valid object, one needs to differentiate or take
variation on the Euler equation, i.e.

AV — AE + AF — AR -2A8 +2AH

[AV]"[ 1]
AE | | -1
AF 1
- = AP . VIf = 0.
AR | | -1
AS | | -2
(aH| | 2]

The transition in a topological entity, AP, is
restricted to the shortest displacement involving a
null transition, unit increment or unit decrement
along each axis, i.e. A =—1,0,1.

As a 6-D hyperspace will have a 5-D hyperplane,
five span vectors are needed to span the hyper-
plane. In other words, five primitive Euler opera-
tions are required to maintain the validity of the
Euler—Poincaré equation.

Let A be a matrix of transition per Euler
operation, n the vector representing the number
of Euler operators being applied, and t the total
resulted transition. Then, we have

by,
AE;
5 AF]
An:J; AR, n;
AS;
| AH; |
rAY, Aw ‘Aav AV iAKY.
AE, AE, AE, AE, AE||™
AF, AR, AF; AFy AF ||
“LTAR AR, ARy AR AT
AS; ASy - Ky VAR K
CAR . A Ally Al s Olsd it
of 3
AE
AF
- AR =1
AS
_AH_;

Thus n = (474)"'47t as A is rectangular where
(ATA) ' AT is the pseudo-inverse.

Traditionally, people add the Euler—Poincaré
equation to the last column of the transition
matrix 4 to make it square. In this case, n=
A~'t where A7 is the inverse. We then have
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[AV, AV, AVs AVe AVs 1]
AE; “AE; ABy A AR =1
AF, AF, AF; AF, AFs 1
AR, AR, ARs ARy ARs -1
A5y A% ASy AS TAS -3
| AH, AH; AHy AH; AHs 2

An =

nj [ A V}
ny AE
n3 AF
X = =%
n4 AR
ns AS
| 0] LAH]

For instance, if the set of Euler operators used is
{MVFS, MVE, MEF, MEKR, MFKRH} [5]
where M, K stands for makes (+1) and neutralized
by (—1) respectively, then the transition matrix 4
can be written as

RS 355070
o o Rl SO
i o R G
A‘000—1—1
80 1..0.0
0 0 0 -1 O]
or
B o R sl R e
¥ 170 -0  oal
Bl et
A_000—1—1—1
g, (98 Dt Bk  REE
0@ 0-=1 "0 2|

Note that rectangular 4 is properly constrained,
ie, m=6,n=>5and rank (4) = 5.

The pseudo-inverse and the inverse matrix are
found to be

(AT AT =2 |y T g g

and
9 "3 -3 3 6 6]
=8t wnh = A R =R D
g “i vl A e e BT

Yu

As an example, to create a tetrahedron from
null, the transition required is
47

After substitution, the number of Euler operators
to be applied is

3 &
3 3
1
n= 1 or n=
0
0
0
0
L0

That is, one application of MVFS, and three
applications of MVE and MEF will construct the
three-dimensional simplex.

Note that the addition of the Euler—Poincaré
formula to matrix A is artificial. The calculations
from square A4 or rectangular A are the same. In
the former case, one needs to ensure that ng =0
and then find the inverse of a 6 x 6 matrix. In the
latter case, the formulation of the pseudo-inverse
requires inverse of 5 x 5 square matrix only.

LEAST-SQUARE ERROR PROPERTY OF
PSEUDO-INVERSE

In fitting observations b of order m x 1 by some
linear model of an n x 1 parameters x, the predic-
tion is that the linear model will approximate the
actual data. Then

n
b,-=Za,—,-xj+e,-, i=1.m
Jj=1

or
b=Ax+e

where e; are errors and e is the m x 1 error vector.

In [3: p. 155], two geometric interpretations are
used to show that the square error is the minimum
one.

The vectors perpendicular to the column space
lie in the left nullspace. Thus, the error vector
b — Ax must be in the nullspace of A7, which is
to say:

AT (b — Ax) = 0.
The error vector must be perpendicular to every

column of 4 (4 =[a; a a,]) which is to
say:

al(b— Ax) =0
al(b—Ax) =0
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or
af
: | (b— Ax) = AT(b— Ax) = 0.
H
Since the magnitude of the error, ||e|| = ||b — Ax||,

is the distance from b to the point Ax in the column
space, the square of the perpendicular distance
or the square error e = (b— Ax)r(b — Ax) is
minimum.

The above proof is a geometrical one. However,
it requires knowledge of vector spaces and in
particular geometric interpretations of nullspace,
column spaces, etc. An alternative is proposed
and explained in detail in this section. Note that
this new proof requires knowledge of elementary
calculus and matrix algebra only.

First expand the square error equation

m
o
=]

2 = eTe

bl

= (b— 4x)" (b — Ax)
= (b7 —xTAT)(b — Ax)
=bTb — xTATb — bT Ax + xTAT Ax.

Next, differentiate with respect to x both sides of
the square error equation to obtain

a
ax
VieTe)=| : |(eTe)
a
0x,

= 5 (Te
_d T
= bb
d T d T 4T

—ab Ax+(—i;x A" Ax

=0b—IATb — 04x + IAT Ax

d

& epop
dxxAb

=—-ATb+ AT 4Ax

where 0 is an #n x m zero matrix and Iisan n x n
identity matrix.

The least-square error will be the minimum
turning point. That is,

d r
-6‘;}‘3 e=0

%ere>0, Yi=1.n
X%
J

Setting the gradient of eTe = 0 (n x 1 zero vector)
implies x = A*b = (47 A) ' ATb, where A* is the
pseudo-inverse of 4. To check that the pseudo-
inverse will give the least-square error, the second

differentiation with respect to x is taken. Now we
have

d T
(& (eTe)) =-—bTA+xT4T4

and therefore

T
ix (g (eTe)) o b7 4 + < x7ATA

dx dx dx
=—04+1474
=ATA

or
et S
% dx) Dxy
: (eTe)
Ll dactd
dx, 0x; ax2

;s o
oY anai
i=]

m
E Aindj
L i=1

By comparing the diagonal terms, one can see that
they are all non-negative. Since none of the column
vectors of matrix A is the zero vector, the diagonal
terms can only be positive. Hence, the square
errors will be the minimum ones.

m
i=1

a,
]

CONCLUSIONS

The paper explains in detail how to obtain a
complete picture of the solution of a system of
linear equations. The decision-tree-like schematic
diagrams are simple and easy to understand by
first-year engineering students. Solution of a
system of linear equations is usually taught in
first-year engineering mathematics. Two cases to
elaborate on the application and property of
pseudo-inverses are also given. The first case
illustrates the technique for solving a rectangular
matrix system without the need to add any dummy
column to make the matrix square. The second
case provides an alternate proof of the impor-
tant least-square error property of the pseudo-
inverse. The proof assumes the students to have
knowledge of elementary calculus rather than
having undertaken a comprehensive linear algebra
course.
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