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Constant Keplerian Orbit with
Non-Central Force Field
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Simple mathematical derivations are presented to show the conditions under which motion with
variable angular momentum can result in a constant Keplerian orbit. Derivation of the invariant
associated with the differential equation describing the motion is also given in the case of variable
angular momentum. The interest of the result is that it shows how to generate periodic solutions of
differential equations when friction forces are taken into account,

AUTHOR QUESTIONNAIRE

1. The paper discusses materials/software for a
course in:
Space engineering, dynamics.
Students of the following departments are
taught in this course:
Engineering/Science, Mechanical Engineering.
3. Level of the course (year):

3rd year and 4th year.
. Mode of presentation:

Blackboard.
5. Is the material presented in a regular or
elective course:
Regular.
Class or hours required to cover the material:
One-semester course.
Student homework or revision hours required
for the materials:
3 to 4 hours per week.
8. Description of the novel aspects present in
your paper:
Periodic elliptical orbits with non-central force
field.
The standard text recommended in the course,
in addition to author’s notes:
J. M. A. Dandy: Fundamentals of Celestial
Mechanics, 2nd edition, (Willmann-Bell 1988)
The material is/is not covered in the text:
Is not covered in the text.

10.

INTRODUCTION

THE importance of Kepler’s laws in celestial
mechanics is well known. Kepler’s laws, to be
discussed later on, are essentially based on a
central force field assumption and consequently
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constant angular momentum. In a recent study [1],
two famous problems were proved in a simple
manner:

1. That planets pursuing Keplerian elliptical tra-
jectories have accelerations which conform to
Newton’s central 1/r* equation (central force
field);

. conversely, that planetary orbits must be
Keplerian if Newton’s central 1/r’ equation
holds true.

The present study also shows in a simple manner,
how a constant Keplerian orbit with variable
angular momentum (non-central force field) can
result from a motion with friction force and
described by a different equation.

F+fr+gr=0. (1)
S and g are scalar functions of the variables.
Equation (1) was used to describe closed orbits
that are conical sections [2-5]. An invariant asso-
ciated with the one dimensional form of equation
(1) was also derived by utilizing a time-dependent
canonical transformation [6, 7]. In the present
study we discuss the following;

1. The condition of coplanarity of the motion

described by equation (1) with variable angular

momentum. This second section is added for
the sake of completeness and parallels the work

given in [4].

A simple way to derive the invariant associated

with equation (1) in case of variable angular

momentum (third section).

. A simple way to derive the constant Keplerian
orbit equation associated with equation (1) in
case of variable angular momentum (non-
central force field) (fourth section).

Since motion in nature is usually accompanied
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with friction, more attention should be given by
experimentalists to include the friction force factor
f #0 in equation (1) in their studies of periodic
orbits.

PLANAR MOTION

As in [4], the vector product of r with equation
(1) is formed. Noting that the angular momentum
L =r x r, equation (1) yields

L+fL=0. (2)
The vector product of equation (2) with L gives
LxL=0. (3)

Equation (3) indicates that for planar motion the
vector L =/L is in the direction of the unit
vector L with
-1
=— 4
f=7 @)
L is perpendicular to the plane of motion, / is the

magnitude of the angular momentum L.
Equation (1) then takes the form

i‘—;i'+gr=0 (5a)

THE S

It is at this point that we shall depart from the
derivation given in [4].

or

INVARIANT OF PLANAR MOTION

Note that in the following derivation, the ampli-
tude of the angular momentum / is not assumed
constant. From the equations

d =
a-i(cos f) = —6@sind (6a)
. (sin ) = fcos (6b)
dr i
y
b q
a o a -

Fig. 1. General arrangement of an ellipse with equation
r = q — ex, ¢ = semi-latus rectum, ¢ = eccentricity. The origin
of the coordinates is at the right focus, Cartesian coordinates
are x = rcosf and y = rsin#.

one gets directly by using polar coordinates
x=rcosf, y = rsinf (see Fig. 1)

d Ix ! e -
e ) e e Y 2 e e 7
Clt(r) = Ll i L (7a)
d oy ! T
a—t(;)=;3x:;—ﬁr. (7b)

Compare equations (7) with equations (13) and
(15) of [1]. Equation (7) give (by noting that
PP = =¥/

« o2 2
X r X
(rT—x?>+r—2=1 (8a)
y VP
(rf— -i) +r—2= X (8b)

If ] is constant, one gets the invariant derived in [6]
and [7].

ORBIT EQUATION

The condition for equation (5b) to represent a
constant Keplerian orbit in case of variable angu-
lar momentum will now be derived. For this
purpose we note that equation (5b) is equivalent to

-+ =

@ [py roay

< (7) - %, (9b)
which can be combined to give the differential
equation of motion in the radial direction

d(/\ -g_, 6

On the other hand, the equation of a Keplerian
conic is given by
q

=— 11
2 1 +ecost {11)

where ¢ = eccentricity of the orbit, g = semi-latus
rectum of the conic section, € and g are constant.
From equation (11), one can easily derive

d /7 € .
= (?) =§8c056. (12)

Comparison of equations (10) and (12) and by
making use of equation (11) we get

g0
Ir_q (13)
or
2 2
gz_q—zﬁl (14)

Equations (13) and (14) give the conditions for
equation (1) to represent a constant Keplerian
orbit described by equation (11), the motion
being planar with variable angular momentum.
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Equation (14) shows that the force factor g in this
case is proportional to the centripetal force ré?, the
proportionality constant being the inverse of the
semi-latus rectum of the conic section. Note that
by writing

] .

f=-7=-ka+3)

~ |~

and g=pur®, one gets equation (2.1) of [5].

Generally from / = r“f, one has
e b
== 2 - = 15
/ r % /] (1)
Equation (8) can be written in the form
b r .
r?_x}—smﬂ (16a)
rX—yf:cosﬂ (16b)
l I
Similarly, equation (11) is equivalent to
r=gq-—ex (17)
F X

Combining equations (16), (17) and (18) together
gives

sinfd (19)

K

~ D, o~
M= Hm

1
= = + < cos . (20)
9 49

Equations (19) and (20) give the radial r and
tangential rf components of the velocity for an
elleptical orbit with variable angular momentum /
and should be compared with the results given in
[8] and [9] for the case where / is constant.

By introducing the Keplerian force factor K, it is
easy to show from equation (14) that we have

g=K/P (21)
K=1%q (22)

where K is variable when / is variable, equation
(22) shows the way the ratio /2/K behaves in order
to obtain a Keplerian orbit with constant semi-
latus rectum g, and a constant eccentricity ¢ given
by

e=V1+2(I2/K)(E/K), (23)
E is not constant, but the ratio E/I? or E/K is
constant according to equation (22). E is given by
E/I* = —(K[I?)/(2a) = §(3/1) — (K/I®)/r. (24)
E is equivalent to the energy when / is constant, s

is the arc length and § is the magnitude of the
velocity, and we have

(3/1)* = (#/1)* + (rB/1)? (25a)

G/1)? = (e/q)* + %ccsf) + 515. (25b)

The period for describing an elliptical orbit is given

by
S, 2
T=j Ezj. d—.g, (26)
0§ 0o 0

where s, is the contour of the ellipse, 6=1 / 2 and /
can be calculated by integration of equation (4) if f
is known.

l=e 1o _ Vrigg. (27)
The area A4 scanned at time ¢ is given by

24 = J 1dt. (28)
0

Kepler’s second law appears as a special case of
equation (28) when / is constant. From equations
(22) and (28) one has

2—\/’; = J; VK dt. (29)

By writing 4, = ma*>V1 — €2, 2a = major axis of
the ellipse A4, =area of the ellipse, and g =
va(l — €2), Kepler’s third law appears as a special
case of equation: (29) when X is constant. Another

approach to the problem discussed in this study
can be found in a recent study given in [10].

DISCUSSION

The conditions under which a periodic motion
along an elliptic orbit can take place when friction
forces are present (f # 0 in equation (1)) have
been discussed. Kepler’s laws appear to correspond
to an ideal case for motion with no friction (f = 0
in equation (1)). Since motion in nature is usually
accompanied with friction, more attention should
be given by experimentalists to the study of peri-
odic orbits with f # 0 in equation (1). Important
engineering applications of the results of this study
can be found in the design of artificial satellite
orbits for instance, as well as in the study of the
motion of planets and comets. In problems of
dynamics, the study of periodic solutions, or devia-
tion from periodic solutions, for differential equa-
tions such as equation (1) is another interesting
aspect of this study.

For example, one can take

-1
f e 1 a

with a > 0 and constant. Integration gives / = e
and from equation (22) one has
1
p
q

Consequently, in the presence of friction f = —a =
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constant, the force factor K increases expo-
nentially with time in order for the orbit to
remain elliptical and periodic. Equation (28)
shows that the area swept 24 = (e —1)/a
varies also exponentially with time in order for
the orbit to remain elliptical.

A more realistic model is to assume a periodic
perturbation in / or in K, for instance one can
take [ = Iy + lycoswt with [} < [y. In this case,
equation (28) gives for the area swept 24 =
Jollo + hcoswt)dt = ot + (I /w) sinwt. If T is the
period, and if wT = 2nm, where n is an integer, one
has

24,

= T = constant.
lo

Equation (29) shows that in this case T2/a’ =
constant, which is Kepler’s third law.

CONCLUSION

The present study gives a simple way to prove
the conditions (equations (4) and (13)) for equa-
tion (1) to represent a planar constant Keplerian
orbit with variable angular orbit, as well as a
simple derivation of the invariant associated with
the differential equation describing such a planar
motion (equation (8)). Note that we have made no
use of Lenz vector or Hamilton vector as in [3]
or [4], and the assumptions on the functions f
and g as given by equations (4) and (13) appear
simple and general. The procedure described in the
present study allows one to develop stable periodic
solutions for planar differential equations of the
form of equation (1) with friction force. Since
motion in nature is usually accompanied with
friction, practical applications of equation (1)
needs further study.
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