0949-149X/91 $3.00 + 0.00

Int. J. Engng Ed. Vol. 12, No. 4, p. 257-263, 1996
© 1996 TEMPUS Publications.

Printed in Great Britain.

Effective Courseware Development

JANA DOSPISIL

LIZ KENDALL

ANDREW JENNINGS

Royal Melbourne Institute of Technology, Department of Computer Systems, Melbourne 3001, Australia

The use of hypermedia and multimedia technology is perceived as one of the most efficient ways to
enhance student access to information and improve learning interaction in the undergraduate
computer science course. Such an approach will guarantee high-level quality teaching whilst
permitting significant reduction in lecturer-student contact hours. In this paper we investigate how
some special properties of multimedia data can be handled by conceptual modelling technigues. We
propose a simplified conceptual framework for the development of interactive courseware. In our
proposal, we examine firstly the static structure of the system focusing on the structure of objects
and their relationship to each other while temporarily disregarding the dynamic nature of the
system. To simplify the conceptual model construction we use predefined constructs and topic
descriptors. In a later stage the conceptual model is used to generate the functional prototype. The
dynamic behaviour of the system—flow of control, interactions, sequencing of operations on active
objects—is examined in real time using the functional prototype, corrective member, and the

Sfeedback loop.

1. MOTIVATION

TECHNOLOGY-based learning is one of the
‘hottest” disciplines not only in educational
research but also in computer science research.
Computers and electronic networks are becoming
an inseparable portion of our education systems.
The main component of the enabling technology
has its roots in distributed computing. In higher
education institutions, distributed computing was
applied and gained a wide acceptance predomi-
nantly in computer-oriented disciplines and in
computer science departments with well-estab-
lished research, development facilities and inter-
ests. The major progress so far can be observed at
MIT (Project ATHENA [1]), Brown University
(Project INTERMEDIA [2]), and Carnegie
Mellon University (Project Andrew [3,4]).

There is a significant difference between the
users of multimedia in the entertainment industry
and university students. Three aspects where the
entertainment industry development differs from
courseware development include:

® Market size. If a game is developed and CD-
ROM produced, there is potentially a very large
audience available to recover the development
cost and make some profit. With courseware,
even if we take into account worldwide univer-
sity audiences, the total potential audience is still
quite small.

® Product maintenance. In the entertainment
industry, a final product is not expected to be
maintained on a regular basis. It may be
improved and a new version released but no
ongoing maintenance is planned. Any course-

* Accepted July 5, 1996

257

ware product, on the contrary, is a subject of
constant evolution as a result of changes in a
syllabus or the need to incorporate students’
latest courseware evaluation results.

® Financial position of potential buyers. Typi-
cally, the entertainment products are developed
by vendors with solid commercial development
experience, priced accordingly, and sold to
public in large quantities. The courseware devel-
opment is financed by the educational institu-
tions with very little experience in development
of commercial projects. To appeal to students’
community, the products must be inexpensive.

In summary, money is important aspect in the
development of multimedia products. This factor
will not change much soon. To produce multi-
media-based courseware within university budget,
we have to cut cost of production and introduce
well-defined software engineering practices [5].

The process that plays the critical role in such a
development environment is the concept acquisi-
tion and requirements specification, collectively
called requirements engineering. As we will discuss
later, the hypermedia design and programming
development environment show some peculiarities
that make them different from the commercial
development processes. In this case study, we
assume a typical interactive multimedia develop-
ment process in a teaching environment. The
objective is to simplify the methodology for design-
ing a courseware conceptual model.

2. MULTIMEDIA KEY CHARACTERISTICS

Definitions
Multimedia is a system that combines diverse
media in a coherent system. Multimedia artefacts

258 Jana Dospisil et al.

are presented to the user as continuous stream of
atomic elements (e.g. motion video is a sequence of
frames). A key element of this activity is inter-
activity [6]. Hypermedia provides a mechanism to
store and retrieve unstructured, related informa-
tion in a meaningful way [7]. It is an information
handling model in which separate units (objects) of
information are linked in a structured network.

Time-dependent multimedia data

An important aspect of multimedia information
is its temporal nature. It consists of sequences of
atomic units that have to be manipulated with a
predefined data rate. For example, motion video is
a sequence of frames which are played at a data
rate of 30 frames/s (NTSC format of playback). A
composite media object may then involve elabo-
rate synchronization of audio and motion video
frames and sequences. The tolerance of data to
time synchronization during playback varies
widely. Audio and video data are tightly bound
with a precision of hundreds of milliseconds. Text
and associated image will tolerate seconds. To
capture unambiguously the user requirements
involving temporal transformations and object
interdependencies of media composite objects
and incorporate internal medium dependencies is
a very complex task. In addition, the tools and
methodologies that would support modelling of
the temporal media relationship are still in the
research stage [8,9] and therefore commercially
unavailable.

Composition mechanism

In multimedia applications, the composition
mechanism and presentation time play crucial
roles. The nature of the multimedia assets enforces
a perception of a set of autonomous units of
motion video, audio or graphical information.
These units must be combined in an integrated
system that conveys information to the user with
minimum redundancy. Such an integration is typi-
cally constrained for example by the hardware
platform, the properties of the authoring tools,
or an access to shared resources (e.g. the number
of video channels is physically limited, or Digital
Video Interactive™ (DVI) supports only nine
simultaneous stills). Again, these constraints are
difficult to capture and model with current model-
ling and programming tools.

Interactive courseware

The main feature of multimedia and hypermedia
systems is their interactivity, which means that the
user is controlling the object behaviour [10]. Inter-
activity requires software control capabilities. The
authoring tools currently available (e.g. AVC™ or
MediaScript for OS/2) lack maturity and provide
only limited interactivity features. For instance,
the lowest level of interactivity is typically per-
ceived as the usage of the ‘stop’ points (sometimes
termed ‘one button’ interface) in which the user is
required to select the next topic (branching). On

the other hand, a high level of interactivity may be
perceived as the capability to browse and annotate
any media object and manipulate embedded
objects (providing the user/author possesses a
required authorization level).

This high level of interaction is so far associated
with a number of technological difficulties. For
example, in the OS/2-based environment, cut/paste
functions applied to as portion of the digitized
motion video frame require the designers to
develop a special ‘video editor’ process. The
other example, embedded video object manipula-
tion, is typically resolved by deploying the
Dynamic Data Exchange mechanism (DDE) in
Windows and Presentation Manager which does
not provide true embedding. If a user requires the
capability of clicking on the digital video
embedded object and editing, then DDE does not
solve the problem and a more sophisticated
approach must be considered. This is possible
only with Andrew Toolkit [11].

Shared resources

Multimedia objects are typically modelled as
‘active objects’ [12,13]. Using active objects
always involves concurrency problems [14,15]. A
general criterion for the design of a concurrent
mechanism is that it should support many different
forms of concurrency: shared memory, multitask-
ing, physical object distribution, distributed
processing, etc. It cannot be expected that there
will be a language that will be capable of support-
ing all the applications. It seems that a mechanism
that is external to the language will have to be
devised. Such a mechanism then will be able to
provide a rich set of constructs and mappings from
the abstract threads of control associated with
active objects to physically available resources
and processes [15].

Hypermedia node-link modelling

Each presentation segment in the hypermedia
system could show interrelationship with the other
segments in the structure. Too few links typically
indicate that the structure is inappropriate; too
many links may be distracting to the learning
[16]. For groups of different learners with different
levels of experience with computers, this require-
ment will remain unclear and will be difficult to
specify regardless of the specification notation.
Furthermore, efficient link management is still in
the research stage [11,16].

3. CURRENT APPROACHES TO
MODELLING MULTIMEDIA TIME-
DEPENDENT OBJECTS

As mentioned above, continuous media such as
digital video, digital audio, or animation introduce
a few different aspects into data modelling tech-
nologies that are foreign to conventional data
models. The aspects that differentiate multimedia

Effective Courseware Development 259

streams from the conventional data include sto-
rage and retrieval of large sequences of binary
data, synchronization of the external and internal
media data streams, and resource sharing with
long processing times. The main research focus is
on two processing fields: functionality of the
database engine for multimedia, and presentation
logic in the presence of real-time constraints (-
dynamic modelling). In this section, we attempt
to provide a brief overview of the current
approaches to continuous media modelling, in
particular synchronization of time-dependent mul-
timedia.

The object-oriented approach taken in [12,17] is
based on active objects (ActiveObject) which pro-
duce/consume multimedia values. Multimedia are
viewed as a collection of ports. A port is deter-
mined by its data type (CDAudio, NTSC, etc.) and
usage type (input or output). Multimedia objects
are divided into three categories: source, sink, and
filter. The multimedia object which cannot be
decomposed forms a multimedia primitive. Com-
posite objects are then a collection of spatially
ordered multimedia primitives. The ActiveObject
provides basic control activities for a multimedia
object. The multimedia object, besides methods
and parameters inherited from the class ActiveOb-
ject, introduces special constructs that support
Timed Streams. (A Timed Stream is a finite
sequence of tuples of the form <element,
start time, duration> [17].)

The methods of multimedia objects can be of the
following three types: temporal transformations,
composition, and synchronization. Temporal
transformations contain a group of methods for
conversion between the two coordinate systems.
Temporal composition focuses on the temporal
relationships between two or more multimedia
primitives. Temporal relationship determines the
synchronization and temporal sequencing of com-
ponents. Configurational relationship indicates the
connections between the input and output ports of
components.

The derivation concept in data modelling [17)
refers to a technique of computing the value of a
specific attribute from the values currently avail-
able in the other attributes or items. The derivation
D of a media object o, from a set of media objects
O is mapping of the form D(O,Pp) — o;, where Pp,
is the set of parameters specific to D. o, is called
the derived object [17]. Derivations can be applied
to the content, timing, or media type. The main
motivation for this concept is to achieve the
capability of representing objects whose para-
meters are calculated in real-time.

The problem of preserving the timing relation-
ship between media and the process of synchroni-
zation was addressed by Little in his proposed
conceptual model for a multimedia object [8]. He
proposes an optimistic interval-based process
approach. The binary and n-ary temporal relations
can be precisely derived from start time, duration,
and delay from the beginning of the first interval.

The model enables establishing the exact playback
times for each media component that are necessary
for real-time scheduling of retrieval. The database
temporal model is then based on two types of
nodes. The first type—terminal node—uses attri-
butes such as media type and pointer to the storage
to identify the physical aspects of the media
artefact. The other type of nodes—non-terminal
nodes—hold temporal information (duration,
forward delay), node type and pointers to chil-
dren. The model can be applied to a relational data
structure and thus the relational model can be used
to maintain temporal relations among multimedia
data.

The Object Model for multimedia programming
presented in [13] deals with the problem of syn-
chronization of active multimedia objects. In this
model, all objects are active objects with their own
thread of control. The active objects exchange
synchronous messages. The internal control over
the message acceptance is managed by a caller
using message sampling or message queuing tech-
niques. Synchronization of different media is con-
sidered with the relationship of reference points in
each media (reference points may be video frame,
audio sequences, etc.). The synchronization among
media objects is modelled using the event synchro-
nization mechanism for concurrent processes. In
addition, the concept of delegation [15] replaces
the inheritance and class mechanism. Objects here
are viewed as prototypes that delegate their beha-
viour to related objects thus eliminating the need
for classes.

4. THE PROPOSED FRAMEWORK

The current approaches to multimedia concep-
tual modelling have one common denominator:
they are somewhat restrictive in their capability
to capture the system as a whole. They produce a
well-defined mechanism for programming con-
structs that will capture time dependencies
among multiple multimedia objects, but they lack
a means for conceptual modelling of time depen-
dencies as well as other relationships. In particular,
the fault-tolerant behaviour of the system and
management of shared resources are addressed
insufficiently. We believe that it is necessary to
create a higher-level abstraction which would
promote a simplified modelling approach capable
of handling of a methodology paradigm shift from
the classical approaches of either object-oriented
or information engineering to a creative type of
design that is capable of seamless incorporation
and management of original artwork within a
software engineering environment.

We define a hypothetical hypermedia system. The
system is composed of a number of aggregate
topics that form composite objects (termed also
pages)—see Fig. 1. The elementary objects within
a page are connected by the static links. Each page
may contain different media elementary objects

260 Jana Dospisil et al.

STHRL L s e

Personal Computers
y IBMPC 1 Static links
Components . :- X
+ Operating Systems . ' 2
.Olim:-l R h Image object(s)
'
'

] osn i -
Windows NT. _

f -

1 Z

Audio controls

Fig. 1. Aggregate topic composition (page).

and several user interaction controls (buttons,
sliders, etc.). Each elementary object may be asso-
ciated with its own thread of control.

Each aggregate topic represents a ‘template’
(conceptual class definition) for a group of ele-
mentary objects with the same properties and
strong logical relations. Aggregate topics then
form a conceptual domain (also termed informa-
tion segments). Each aggregate topic must be
associated with its own thread of control. Links
within the conceptual domain can be of both
types—static or dynamic (Fig. 2).

|

|

I o sl b
@ IE:[D”] D12 i]:

|

/

i P 5 '

e‘ : | b | / ;
_____ y I / “
e R R) S
a structured collection : | i
of elementary topics : '
' L < . 1 B '

} Conceptual domain of :

aggregale topics (pages)

Fig. 2. Conceptual domain.

Static links are defined as persistent links created
during the design stage. The links among elemen-
tary topics within one aggregate topic are always
static. Dynamic links are links created during run-
time. They are permitted only between two aggre-
gate topics (nodes). In addition, they are dismissed
when one of the nodes is closed (node becomes
inactive). (This will simplify the mechanism for
freeing some shared resources.)

4.1 Modified development lifecycle
We believe that in the hypermedia development

project the prototyping model must offer a con-
sistent method to:

® gain experience with a particular class of appli-
cation;

e climinate the negative impact of a particular
mental model people tend to use when
approaching a problem; and

® solicit and clarify user requirements.

The majority of people who are developing
multimedia software are not computer profes-
sionals and have no great desire to become com-
puter professionals but want to use multimedia in
their applications. In addition, as our evaluations
of a number of authoring tools have indicated,
they tend to a more radical approach, in particular
to the recursive/parallel lifecycle [18], in the devel-
opment process of the hypermedia projects as
dictated by the restricted power of the authoring
software packages and by the technology itself.
This enforces the need to solicit an approval to a
large number of the user requirements by showing
him/her partial results.

The principle of our modified development life-
cycle (see Fig. 3) is the feedback loop and the
corrective member that combines the input from
the user with the feedback on system dynamic
behaviour and produces a new version of the
system requirements specification (SRS). The role
of the corrective member is to evaluate the beha-
viour feedback and the user input, and to distri-
bute the request for change to the appropriate
development class (navigation patterns, assets cre-
ation, presentation logic). In each of these classes
the formal specification of the requirements is
produced and later used to generate the functional
prototype for testing. The system derived model is
produced from the functional prototype and used
as the basis for implementation.

4.2 Properties of the conceptual model

Our approach is based on defining the structural
aspects and semantic relationships of the domain
concepts that are now transformed into classes. We
have observed that the semantic relationships
typically follow two structural patterns: topics

DESIGN G TET [mplemegtatio

lpeuﬁclnon(?] D ED

' MODEL

Fig. 3. Modified development lifecycle.

Effective Courseware Development 261

\

) (somn)
| T

l SOUND l Gnugel) (Image?.)

Sequential Pattern

IMAGE (V'IDEO

Tree Pattern

Fig. 4. Sequential and tree structures.

are linked in a sequential, or hierarchical manner
(see Fig. 4). The two main components of the
conceptual class are the class content and the
class structural pattern. Similarly, the two main
components of a conceptual domain are a collec-
tion of aggregate topics and a domain structural
pattern. This approach allows for the explicit
definition of two categories of superclasses:
sequential pattern based classes and aggregate
classes with hierarchically linked subclasses.

The framework for specifying inter-topic depen-
dencies and navigation patterns is based on two
aspects: a formal model of the inter-topic depen-
dency specification (Topic Descriptor, TD) and
requirements specification language(s) for provid-
ing a description of each component.

The TD is a construct similar to a class descrip-
tor [14): TD = [0, C, P, R, B] where:

® (O (owner) is the pointer to the owner element in
an aggregate topic. The owner element also acts
as a reference topic (origin) for establishing
static links among the aggregate topics.

® (C (child) is a dependent topic(s) element within
an aggregate topic.

® P denotes the structural pattern within the
aggregate class (static links pattern).

® R s a Boolean-valued predicate which specifies
the relationship between subclass and origin. It
evaluates to TRUE if all the relationship condi-
tions are satisfied. A FALSE result indicates
exceptions in navigation, presentation patterns,
resource dependency constraints, or the presence
of temporal dependencies.

® Bis a collection of presentation patterns.

P, R, and B are three main components of a Topic
Descriptor (see Fig. 5). The Topic Descriptors
form an Intertopic Schema (IS). In other words,
all IS is a collection of all Topic Descriptors to be
enforced in the hypermedia system for managing
navigation and topic presentation within a page.
This approach enables the design of thie aggregate
classes (which in turn depict the aggregate topics).

Aggregate topics (conceptual classes)

Conceptual classes enable the designer to create
complex concept domains through an assembly of
different structural patterns. These concept
domains can be either homogeneous or heteroge-

.................

] | D
(om J(omm) (_omm)

Fig. 5. Major components of a Topic Descriptor.

neous. The homogeneous concept domains repre-
sent a group of topics that are logically related.
The inclusion of the heterogeneous concept
domains enables the designer to ‘walk across’ to
the logically distant topics. The structural pattern
that connects conceptual domains is typically a
tree. Each aggregate class must have an owner
element (page root) and each concept domain
must have an owner aggregate topic.

Static structural primitives (structural superclass)
Segments of information within a concept
domain are connected via connection primitives
(links), which are defined by structural primitives.
Since we are dealing with two predictable struc-
tural patterns (tree and sequence of elements), we
can define a set of connection primitives within the
class ‘connections’ and use multiple inheritance
principles to incorporate the structural patterns
into a class. This approach of using regular con-
nection structures will reduce the designer’s effort
needed to specify static links. At the conceptual
level, the designer has to identify the owner—child
topic relationship and use the predefined link
pattern to connect the owner topic to the child
topic(s). The expression may be as follows:

Link {link_name) := = {owner) (direction) { child) |
(owner) CURRENT ¢ point-within-the-aggregate-
class

The direction in the first part of the expression
denotes the movement type within the aggregate
class using static links. The second part of the
expression represents a dynamically created link
within the conceptual domain (an interleaf jump
dynamically created between two aggregate
classes). At this point, dynamic links to elements
outside the conceptual domain are not permissible.

The issues associated with this concept are more
complex. Dynamic link creation or static link
invocation is associated with concurrency and
synchronization among elementary or aggregate
object instances. For example, video and audio
can be played simultaneously and they have to

262 Jana Dospisil et al.

maintain their mutual temporal relationship. The
process (link process) which handles the link cre-
ation must be aware of the status and temporal
behaviour of the owner topic as well as the child
topic. The link process is an ACTOR [14] type of
object that uses predicate R to determine the
presence of constraints and temporal relations
between the owner and child topic. A detailed
conceptual solution to this problem is outside the
scope of this paper.

Presentation

The presentation logic describes how the mate-
rial is presented to a reader: media used (text,
graphics, motion video, etc.), layout aspects, and
predefined time-related aspects of the presentation.
The presentation logic primitives form the presen-
tation superclass. An atomic unit of presented
information is a page. The designer can combine
a number of presentation media into one presenta-
tion page. For example, a presentation page can
contain text, still images and graphics (see Fig. 1).
An instance of the aggregate topic (conceptual
class) can use a number of presentation pages to
display information but it is always associated with
one default presentation page (composition tem-
plate). A simple page description is defined below:

Page(page_name) e (topic t'denn'ﬁer)(compas-
ition_template) | {topic_identifier){{ composition_de-
scriptor)},

The composition descriptor is a composite struc-
ture that uniquely identifies the attributes of the
media, its coordinates on the screen, predicted
temporal properties (motion video playback rate)
and behaviour.

Information segment manipulation methods

The information segment manipulation methods
are formed by a group of the manipulation primi-
tives. The manipulation primitives are derived for
each elementary object or media type: text can be
copied, cut, or pasted; motion video can be started,
stopped, resumed, or a frame can be turned into a
still image. In addition, some of the tree manipula-
tion methods are also included among manipula-
tion primitives. The multiple inheritance principle
is used to associate the segment manipulation
methods with the conceptual class.

To summarize, the conceptual model is a collec-
tion of conceptual constructs (classes), link pat-
terns, presentation logic, and segment
manipulation methods. A concept class is denoted
by the concept (aggregate topic), and by the
structural pattern as an ordered group of connec-
tion primitives. The concept presentation logic
determines the ways the information is presented
to the learner. Segment manipulation methods

denote the operations that can be performed on
each of the media within one presentation page.

5. WHAT IS IT WE WANT TO ACHIEVE?

In summary, the issues that we believe are not
particularly well addressed include the dynamic
model for the concurrency control of a large
number of active multimedia objects with shared
resources and constraints, and a high level of a user
interactivity. We believe that behaviour of an ideal
hypermedia system should comply with the follow-
ing requirements:

1. All elementary objects within a page can be
presented to the user without delay or conflict
in resource requests.

2. Any presented page of the system is always
complete and all objects within the page are
synchronized, properly spatially placed, and
scaled.

3. Any presented aggregate topic (page) can be
dynamically connected to any other aggregate
topic which will be subsequently presented.

4. Any link within a domain can be either static
(permanent, defined in the design stage) or
dynamic (created at run-time).

In real life situations, these requirements will be
difficult to meet. Presentation logic (page com-
position and media synchronization) may be
affected by system delays (e.g. artefact retrieval
delays, network delays), availability of a given
operating system resources, and other physical
limitations. As per definition, multimedia objects
are presented to the user as continuous stream of
atomic elements (e.g. motion video is a sequence
of frames) but they may be stored and retrieved
in chunks. The system must guarantee uninter-
rupted retrieval and presentation of all elements
of the multimedia composite object and its full
synchronization with the other object(s).

Our approach is to simplify the conceptual
model by using predefined constructs (structural
patterns, presentation patterns and a set of manip-
ulation methods). In the first stage, we built a static
model that enables capturing of the content and
structures of its objects. The conceptual model is
used for generation of a functional prototype. The
functional prototype is in turn used to test
dynamic behaviour. In this stage, we examine
systematically all aspects of flow of control
(events, user interaction, sequencing of operations
on active objects). The feedback loop and the
corrective member (see Fig. 3) collect and classify
events and interactions. These data are then used
as input to the conceptual model and subsequent
generation of the new version of courseware.

1

15

15.
16.

Effective Courseware Development

REFERENCES

. G. A. Champine, D. E. Greer Jr and W. N. Ruh, Project ATHENA as a distributed computer

system, Computer 23(9), 40-51 (1990).

B. J. Haan, P. Kahn, V. A_ Riley, J. H. Coombs and N. K. Meyrowitz, IRIS hypermedia services,

Commun. ACM, 35, 36-51 (1992).

. M. Sherman, W. J. Hansen, M. MclInerny, and T. Neuendorffer, Building hypertext on a
multimedia toolkit: an overview of Andrew Toolkit hypermedia facilities, Proc. First European
Conference on Hypertext, pp. 13-24 (1990).

. D. McConnell, Computers, electronic networking and education: some American experiences, Ed.
Train. Technol. Int., 28, 171-187 (1991).

. J. Dospisil and T. Polgar, Application of software process assessment to hypermedia development
environment, Proc. 2nd International Interactive Multimedia Symposium, Perth (1994).

. J. A. Waterworth (ed.), Multimedia: Technology and Applications, Ellis Horwood, Chichester
(1991).

. R. K. Mahapatra and J. Courtney, Research issues in hypertext and hypermedia for business
applications, Database, Fall, 12-19 (1992).

. T. D. C. Little and A. Ghafoor, Interval-based conceptual models for time-dependent multimedia
data, IEEE Trans. Knowledge Data Engng, 5, 551-563 (1993).

. R. G. Herrtwich, Time capsules: an abstraction for access to continuous-media data, Proc. 11th
Real-Time Systems Symposium, Lake Buena Vista, FL, pp. 11-20 (1990).

. R. C. Schank, Learning via multimedia computers, Commun. ACM, 36, 54-56 (1993).

. A. J. Palay, Towards an ‘operating system’ for user interface components, in M. M. Blattner and
R. Dannenberg (eds), Multimedia Interface Design, ACM Press (1992).

- 8. Gibbs, L. Dami and D. Tsichritzis, An object oriented framework for multimedia composition
and synchronisation, MULTIMEDIA Systems, Interaction and Applications (ed. L. Kejelldah), 1st
Eurographics Workshop, Stockholm, pp. 97-112 (1991).

. F. Arbab, I. Herman and G. J. Reynolds, An object oriented model for multimedia programming,
Proc. of Eurographics 93, Vol. 12, No. 3, pp. C101-C113 (1993).

. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Modelling and

Design, Prentice Hall, Englewood Cliffs, NJ (1991).

G. Booch, Object Oriented Design with Applications, Benjamin/Cummings, Menlo Park, CA

(1991).

B. Meyer, Systematic concurrent object-oriented programming, Commun. ACM, 36, 5680 (1993).

B. Schneiderman, Designing the User Interface: Strategies for Effective Human-Computer Inter-

action, 2nd Edition, Addison-Wesley, Reading, MA (1992).

. 8. Gibbs, Ch. Breiteneden and D. Tsichritzis, Data modelling of time-based media, Visual Objects
(ed. D. Tsichritzis), University of Geneva, pp. 1-21 (1993).

- E. V. Berard, Essays on Object-Oriented Software Engineering, Vol. 1, Prentice-Hall, Englewood
Cliffs, NJ (1993).

263

