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Spreadsheet Applications for Control
System Modelling and Analysis

C.J. FRASER
Department of Mechanical Engineering, University of A bertay Dundee, Bell Street, Dundee DDI 1HG,
Scotland
The paper describes a number of dynamic control system modelling applications using a
commercial spreadsheet software package. Finite difference formulations of the state variable
equations are developed in order to solve some typical control system models. To illustrate the
potential of the spreadsheet as a mathematical tool, these systems include a voliage-controlled
DC servo-motor using a full PID control strategy, a discretely sampled data control system and a
generalized system model with a selectable input range of non-linear control elements. The paper
also describes how the spreadsheet can be adapied for stability analyses-in the frequency domain
by generation of the usual Bode and Nyquist plots for any arbitrary control system transfer
functions.
NOTATION Most users generally associate spreadsheets with
commercial business functions, financial account-
C controller transfer function ing and other similar database management tech-
E error niques. However, since spreadsheets are well
G process transfer function structured to handle data in a highly organized
G’ pulse transfer function manner, then they also lend themselves well to
K controller gain general applications in the physical and engineer-
M modulus of amplitude ratio ing sciences. In particular the solution of finite
M’ overall modulus of amplitude ratio difference equations are eminently well suited for
SP set point solution by a spreadsheet routine. Fraser and
T sampling time interval Thorpe [1], illustrate the application of spread-
T, controller integral time constant (sec) sheets for the solution of two-dimensional Laplace
T, controller derivative time constant (sec) and Poisson type problems by finite difference
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INTRODUCTION

SPREADSHEET software packages have been
readily available for some considerable time, with
Lotus 1-2-3 being perhaps the most commonly
known spreadsheet used in industrial practice.

* Paper accepted 23 April 1995.

approximation. Modern texts, for example Krall
[2], do not, however, exploit this vast potential for
numerical simulation offered in the form of the
spreadsheet software package.

For applications in control engineering there are
in fact a number of customized software packages
available which can accept any input transfer
function, continuous or discrete, and produce out-
put responses in the time domain, frequency
domain and also root locus, or z-plots. The
CODAS package developed by Golten and
Verwer [3], is fairly typical and has proven to be
very popular with its users. Program CC, by
Thompson [4], provides another alternative soft-
ware package for control system design and simu-
lation. Both of these packages are specific to
applications in control engineering, but a more
recent development has been the use of the gener-
alized mathematical software packages including
MATLAB or MATHCAD, for the analysis of
dynamic control systems (see, for example, Ogata
[5]). While the benefits and convenience of specific
control software packages are apparent, student
users at an early stage in their learning curve do not
really gain any insight on how the dynamic systems
are actually modelled. This is an essential aspect in
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the teaching of control engineering and students
need to have a sound understanding of the mathe-
matical or numerical techniques used in dynamic
system modelling. The use of MATLAB, or any
popular spreadsheet, requires a basic level of
mathematical ability and these software packages
can be used as suitable vehicles to develop the finer
details of the modelling aspects as applied to
control engineering. The main advantages in the
use of these packages is the ease with which fairly
complex relationships can be defined and
accounted for. The mathematical or spreadsheet
packages therefore represent viable engineering
tools and they offer much quicker alternatives to
writing a specific computer program. They also
offer full flexibility in examining an entire range of
‘what-if’ scenarios.

The examples described in this paper were
developed using Microsoft’s Excel spreadsheet,
version 3.0. The files generated were also copied
directly to the Quattro-Pro spreadsheet and run
successfully without modification. Equivalent
macros, however, had to be created within each
spreadsheet as these do not appear to be directly
transferable.

SECOND-ORDER SYSTEM WITH A PID
CONTROLLER

As a first example a generalized second-order
system which is to be controlled using a full PID
strategy is considered. The system is represented
by equation (1):

G(5)= k(w))/[s* + 28 w,s + w;] (1)

The system parameters, k, @, and &, are related to
the load and motor inertia, the drive friction and
the inductance and Ohmic resistance of the arma-
ture coils. These parameters were obtained from
measurements of the open-loop response of the
motor and drive system to a step input voltage.
The transfer function for the PID controller is:

C(s)=K[1 + (1/T;s) + T,s] )

For a system with unity feedback, the closed loop
transfer function becomes:

PV(s) _
SP(s)
ko, 'K{(1/ T) +s+T,s*)
[s* + @,(28 + ko, KT,)s* + w,*(1+ kK)s + ko, ’K / T ]

3

Defining the terms A = kwlK, B = w, (2§ +
kw,KT,) and C = w’(1 + kK), equation (3) may
be written in the more compact form:

PV(s)/SP(s) = A{Tys*+s +

(1/T))/[s* + Bs?
+Cs+ A/T] (4)

Equation (4) shows that the closed-loop system
is third order and does not therefore lend itself
amenable to solution by analytical techniques. The
state variable method, however (see Fraser and
Milne [6]), can be employed to write the governing
relationship as a system of three first-order state
equations which are:

X1=Xx2 (5)
X2=Xx3 (6)
X3=d}PV)de=

(A/T)SP + ASP+ AT,SP — BX3—
CX2—(A/T)X1 (7

where X1 = PV = the load speed in rad/sec, X2 =
PVand X3 = PV.

Using a simple Euler finite difference approxi-
mation, equations (5)-(7) can be written in the
discrete forms:

X'lj+]=Xl,-+At|X2j| (8)
X2}-+,=X2,+A![X3}] 9)
X3, =X3,+ At|(A/T)SP + ASP
+ AT, SP— BX3,— CX2;
—(AT)X1] (10)
where j denotes the time intervals.
The first and second time derivatives of SP can

also be approximated by suitable finite difference
equations, i.e.

3P = [SPy, — SP._,}/(241) (1)
and
SP=[SP,_, — 25P, + SP,,,})/(4¢)} (12)

In using such basic numerical approximations, the
finite time step, A, must necessarily be kept very
small in order to ensure reasonable accuracy in the
computed results.

For a step input, SP, = 0.3 rad/sec at time equal
to zero, equations (11) and (12) return finite
values, but these both become equal to zero at any
time after the step input. A ramp input can be simu-
lated by making SP = Qt, where Q is some suitable
constant. A sinusoidal input may also be simulated
but the analysis of sinusoidal inputs is more
appropriately dealt with in the frequency domain.

Figure 1 shows the modelled system layout on
the spreadsheet, where the system parameters are
allocated to convenient cells for user friendliness.
The initial values of zero are assigned to all para-
meters at time levels (0 — A¢) and (0 — 24¢). The
solution is implemented by writing equations (8)-
(12) in the appropriate cells at time level 7 = 0.
These equations are then copied as a block and
pasted to as many cells along the spreadsheet as is
necessary to cover the transient time period. In
writing the finite difference equations, specific cells
containing the system parameters are referred to in
the equation in the form, for example, SCS9. All
other parameters held in adjacent cells are relative
to the cell where the equation is written and these
are referenced without the ‘S’ signs. The relation-
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The Controller uses a PID control strategy, ie. C(s) = K(1 + (1/7i.8) + (Td)s)

Spreadsheet Simulation of a "PID" control strategy for a DC Servo-motor

The Servo-motor is modelled as :- G(s) = k(wn)*2/(s*2 + 2z(wn)s + (wn)"2)

.... Input Controller Params
system gain, k ~0.1059 Gain, K ~100]
Natural frequency, wn 2.0075) integral time, Ti -0
Damping factor, z 1.3406 Deriv time, Td 0.05
Enter time increment 0.1 )erived Parameters
A= 42.6783
B= 7.516424
C= 46.70835
Timam 1. D02 @ 00F°  0F '
SP 0 of 0.3
d(SP) 0 of 15|
d2(SP) 0 0 =30 o e
X1 0 o) o  0]0.021339
X2 0 o] 0] 0.213391] 0.266389|
X3 0 o] 2.133915| 0.529974| 0.738847
i
Output Speed Response State Space Trajectory 4
0.35 04 +
0.3 + 035+ g™ " m
34 =
0.25 + Lt "
- 0.25 + -
O X N el "
Wil X 015+ .
0 0] + ..
0.05 - 0.05 + »
O : 0 + } ﬂ—4
4 1 1121 31 415161718191 0056 01 02 0% 04
S (time increments) %

Fig. 1. Second-order system response with PID controller.
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ships are automatically adjusted when pasting a
copied function to any other cell and this feature
provides a very efficient means of assigning the
correct formulae to all consecutive cells which
represent the solution being marched forward in
time.

The system output, PV, or any other parameter
of interest, can be selected and plotted as shown in
Fig. 1.1n this instance the output speed response in
the time domain is shown, as is the state space
trajectory. Since the system is third order, the state
space trajectory should ideally show the variation
of the three state variables in a three-dimensional
plot. This cannot be done effectively in the spread-
sheet; however, the plot of X2 against X1 still gives
a useful indication of the system stability.

With a little experience, the complete simulation
on the spreadsheet can be set up very quickly and
then used to investigate the effect, for example, of
varying the integral time constant. This is done by
simply assigning a new value to the cell where the
integral time constant is allocated. The spreadsheet
will then automatically recalculate the new solution
and update the data and the graphical displays.

DIGITAL CONTROL SYSTEMS

Digital control systems are characterized by the
use of a computer which performs the dual func-
tions of comparator and controller in the equiva-
lent continuous counterpart. The application of
digital control techniques, however, always invokes
an additional time delay which can have serious
implications on the stability of the system. Such
systems are often referred to as sampled data
systems since the system parameters exist within
the computer environment in the form of a discrete
pulse train. For the example considered, the pro-
cess is represented as a simple first-order system
having a gain, k, and a characteristic time constant,
7. The process is to be controlled using a digitally
based P + I controller and the equivalent digital
system is completed with the addition of a zero-
order hold between the controller and the con-
trolled system.

For the system considered, Fraser and Milne [6]
show that the pulse transfer function takes the
form:

GZy=jz— 1)/2][ iz l)][k(l i 4
(e V) =k(l—e T/
Gre™ (13)

Defining theterms C, = k(1 —e "")and C,= ¢~ 7"
gives G'(Z2)=Cy(z— C.).

The controller transfer function, in terms of the
z-transform, is:

C(z)=U@)E(z)=K[1 +
(/T)|Tz/(z = 1) (14)

The system closed-loop transfer function
becomes:

PV(z) _ C(2)G'(2)

SP(z) 1+ C(2)G'(2)
K[1+ 1/ T){Tz/(z=-D}IC, / (z- C,)]

1+ KN+ T){Tz/ (2= DG, / (z=Cy)]
(15)

Muluplymg the top and bottom by (z — C,)(z —
1)z72 gives, after some manipulation,

PV(z2) s

SP(z)
KC1+(T/T)™ -KCz™?
1+[KC(1+T/T)=(C, +D]z™ +(C, - KC,)z*
(16)
Defining the terms a = KC\[1 + T/T],b=KC,, ¢
=(C+1)—KC,(1+T/T))andd= KC,— C,, the
closed-loop transfer function may be written as:
PV(z)/SP(z)=(az™' — bz™})/[1 — ez — dz7¥
Hence
PYel =t =
or
PY(z)= SP(z)Laz‘
i

dz™?| = SP(z)[az™' — bz7?]

— bz + PV(2)|cz™!
(17)
Writing equation (17) as an equivalent finite time
sequence gives:
PV,=aSP,_, — bSP,_, + cPV,_, +
dPV,_, (18)
where j denotes the sampling time interval.
For the continuous system, Fraser and Milne [6]

show that the closed-loop transfer function can be
written in the form:

PV(s) _ (kK / TT)[1+ T;s]
SP(s)  s*+[(1/T)+ (kK /T))s+ (kK / 1T))

(19)

The governing equation can also be written in
differential form as:

d’PV/de? = (kK/tT)SP + (kK/7)5P — |(1/7)
+ (kK/T)|dPV/dt
— (kK/tT)PV (20)

A finite difference approximation similar to that
shown for equation (4) can be set up and a solution
generated from the spreadsheet.

Figure 2 shows the solution of equation (18) set
up as a spreadsheet application. For small sampling
intervals the digital control system behaves much
like its continuous counterpart, which is also calcu-
lated in the spreadsheet using a finite difference
approximation to equation (20). The sampled data
system, however, shows a slight lag in its response
which is consistent with the additional time delay
associated with the sampling process. It should be
noted that the sampling interval of 0.01 sec for the
digital system is also used as the finite time interval
in the approximation of equation (20). This time
interval is small enough to provide reasonable
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Spreadsheet simulation of a digital control system

Process is represented as a first order system, ie. G(s) = k/(1+tau.s)

Controller uses a proportional + Integral strategy, ie. C(s) = K(1+1/Ti.s)

Input system and control parameters | jderived parameters i
system gain, k = HEN Ci=] 0.00995
time constant,tau= | = 1 g 0 bl
,,,,,,, Cz=] 099005
sampling time, T = ~ 0.01) et
= a=| 0.02189 =
Controller gain, K = IR b= 0.0199)
A4 c=11.968159
Integral time, Ti = 0.1 d=] -0.97015
[Finite difference solution - . t=0-dt |t=0 t=t+dt —> [t=t+dt — [t=t+dt —
e SP 0 1 1 1 1 1
Sampled data control vV 0 0 0] 0.00199] 0.005907] 0.011685
jtime -0.01 0 0.01 0.02 0.03 0.04
& dsprat 0 1 0 0 0 0
Continuous control PV 0 0] 0.0022] 0.006334] 0.01234] 0.020152
dPV/at 0 0.22] 0.4134] 0.600558] 0.781274] 0.955368
Output response NE
s B e
124
dnd 1 ...... %
= 08 : ::". e S e
B st ) - . 2
o6t §
B oaf |
. (Tl

=) 1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

time intervals

Fig. 2. Sampled data control system with P + 1 controller.
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accuracy in the solution of the continuous system
parameters. For higher values of the calculation
time interval, the accuracy of the predicted con-
tinuous control system variables would be reduced.
Increasing the time interval, however, does have
relevance to the behaviour of the digital control
system. The effect is similar to an increase in the
time associated with the zero-order hold and its
influence on the digital control system can be stud-
ied independently from the continuous system. If,
for example, the sampling interval is increased to
0.36 sec then the sampled data system becomes
marginally stable and this is clearly illustrated in the
plots of the output response against time.

NON-LINEAR CONTROL SYSTEMS

For control systems which incorporate some
form of non-linear element, the analysis of the
system stability can be performed using the error
and its rate of change as suitable characteristic state
variables. For second-order systems, the plot of the
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two state variables are often referred to in the
literature as the phase plane. Typical non-linear-
ities are depicted in Fig. 3 and all can be described
in terms of three, or fewer, variables. These are A,
B and C as shown. The process under control is
described as a second-order system having the
general form:

G(s)=k/|as* + bs +‘ c| (21)

A typical control system including a non-linear
element is shown in Fig. 4. The governing relation-
ship is: ‘

PV(s)= kU(s)/|as* + bs + c| (22)
or
kU(s)= PV(s)|as*+ bs + c|
Since PV(s)=[SP(s) — E(s)], then:
kU(s)=SP(s) — E(s)||as* + bs + ¢]
ie

kU = ad*SP/dt* + bdSP/dt + cSP

— ad?E/d® — bdE/dt — cE (23)

U

v

Amplifier with saturation

U
A
Perfect relay
U
A
E
<
B

Relay with deadband

Fig. 3. Non-linear control system elements.
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nonlinear
controller Peicd
U
SP(s) E(s) UE) k PV(s)\
e as? +bhs+¢ &

ol

-

Unity feedback

Fig. 4. Schematic representation of a non-linear control system,

If the system is subjected to a step input, then the
first and second derivatives of SP can be approxi-
mated using equations (11) and (12).

It is perfectly reasonable to consider the step
input only, since any system which is stable to a step
input will also be stable to any other form of input.
Hence:

d*E/de* = d*’SP/d¢* + (b/a)dSP/dt + (¢/a)SP
— (k/a)U — (b/a)dE/dt
—(c/a)E (24)

Equation (24) may be solved using the state
variable representation in discrete form, where X1
= E and X2 = dE/dt. This results in:

X1, = X1,+ A1]X2] (25)

X2, =X2,+ At[SP + (b/a)3P + (c/a)SP,
— (k/a)U,—(b/a)X2,— (c/a)X1]) (26)

The output, U, from the non-linear elements is
dependent on the error, E, and these outputs can
be handled in a logical expression. The usual logical
expressions are all available within the spreadsheet
in the forms of ‘IF’, ‘AND’, ‘OR’, etc. and these
expressions can be nested as appropriate to simu-
late the non-linear element. The simplest non-
linear element is the perfect relay which switches
between a constant negative output to a constant
positive output when the error changes from
negative to positive, or vice versa. The general form
of an IF conditional statement is:

IF(logical test, value if true, value if false) (27)

To simulate the perfect relay, therefore, the rele-
vant expression is:

IF(E>0, A,—A) (28)

More complex relationships can be simulated by
nesting suitable IF or AND arguments as appropri-
ate. The present expressions used to simulate the
non-linear elements are given in Table 1.

The solution of equations (25) and (26) are
shown as a spreadsheet application in Fig. 5. The
particular system parameters are entered in the
normal way, but the selection of any particular non-
linear element is performed by clicking on the rele-
vant function button. These function buttons are
assigned to short macros which copy the logical
expression which is held in column ‘H’ and then
paste the expression to all cells located on the row
which represents the controller output, U, starting
from cell reference F31.

Figures 6-8 show respectively the non-linear
responses for an amplifier with saturation and a
deadband, a relay with hysteresis, and a relay with
both hysteresis and a deadband. The limit cycles
associated with the two non-linear elements having
a hysteresis characteristic are well represented in
the phase plane plots.

STABILITY ANALYSIS IN THE FREQUENCY
DOMAIN

The stability of a continuous control system is
commonly analysed in terms of the frequency

Table 1. Simulation of control system non-linearities

Non-linear element

Logical simulation

Amplifier with deadband
Amplifier with saturation

Amplifier with deadband
and saturation

Relay with hysteresis
Relay with deadband

Relay with hysteresis
and deadband

IF(E>B,E*A/(C—B)JF(E<B.E*A/(C—B).0))
IF(E>B,A IF(E<—B,—A,E*A/B))
IF(E>C,AJF(E<—C.—A JF(AND(E<B,E>—B).0,E*A/(C=D))))

IF(E>B,AJF(E<—B.~AIF(E, — E,_ >0.~A,A)))
IF(E>B,A JF(E<—B,—A0))

IF(E>C,A JF(E<—C,—A IJF(AND(E<B.E>—B),0,
IF(AND(E>0,ABS(E,) — ABS(E,_,)<0.A,

IF(AND(E<0,ABS(E,) — ABS(E,_,)<0,~A.0)))))
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selected by clicking on the relevant button

Amplifier with saturation characienstlc

Amplifier with deadband and saturation

Perfect relay

Practical relay with hysterasus

Relay with deadband

Relay with deadband and h. steresis

Input process parameters - :

Input nonlinear characteristics -

|system gain. k = 20 A= 0.5
a = | 1 B = 0.1
b = 2 C= 0.2
c= 0
time increment = 0.02
Set point = 1
Finite difference solution :- |time (s) -0.02 0 0.02 0.04 0.06
SP 0 1 1 1 1
dSP 0 25 0 0 0
d2SP 0] -2500 0 0 0
X1=E 0 1 1 0.996| 0.98816
U 0
X2=dE/df 0 0 -0.2] -0.392| -0.5763

Fig. 5. Spreadsheet layout for non-linear control systems.

response and represented graphically as Bode or
Nyquist plots. In general terms the transfer func-
tion will contain a variety of elements which could
include an overall gain, K, a simple integration
term or any combination of first- or second-order
terms in either the numerator or the denominator.
Second-order terms can be represented in the form
given as equation (1), with kK = 1. The modulus of
the amplitude ratio of any second-order term is
given as:

M=1/[1-(/0,)) +Qw/0,)’] (29

The phase angle is given as:
¢ =—tan™'[2w/w,)/(1 — (w/w,))] (30)

Any second-order term may also be denoted in
the form given as equation (21) with suitable values
assigned to the parameters a, b, ¢ and the gain, k =
1. For the general second-order term, ¢ will have a
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Spreadsheet Simulation of Nonlinear Control Systems
Process is represented in the form G(s) = k/[a.s*2 + b.s + c]
Nonlinearities :- selected by clicking on the relevant button | ‘y
(4 |Amplifier with deadband ! ! 0
2 Amplifier with saturation characteristic | 0
L 2 _j émplifier with deadband and saturation 0
o5 4 | Perfect relay i , -2
| & _|Practical relay with hysteresis -2
(e Relay with deadband -2
( 7 _|Relay with deadband and hysteresis | 0
Input process parameters :- 7 Input nonlinear characteristics :-
system gain, k= 100 A= 2
a= } 1 B= 0.3
b= 3 C= 2.3
c= 0
time increment = 0.01
Set point =
{c/a) = 0}(k/a) = 100](b/a) = 3]
Finite difference solution :- time (s) -0.01 0 0.01 0.02 0.03
SP 0 1 1 1 1
dSP 0 50 0 0 0
d2SP 0 -10000 0 0 0
X1=E 0 1 1 0.99 0.9704
u 0 1 1 0.99 0.9704
[X2=dE/at 0 0 ] 1.96] -2.8716
- ,' i | e
- i R .
e i Phase Plane (dE/dt) P s
|

Fig. 6. Control system amplifier with saturation and deadband characteristics.
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Spreadsheet Simulation of Nonlinear Control Systems ] ]

Process is represented in the form G(s) = k/[a.s"2 + b.s + C] | [

Nonlinearities :- selected by clicking on the relevant button | |

(4 [Ampiifier with deadband [ 0
(O - ”‘jAmpliﬁer with saturation characteristic 0
(2 )Amplifier with deadband and saturation 0
( A Perfect relay | 0.5
" & |Practical relay with hysteresis 0.5
" & )Relay with deadband 0.5
R 'Relay with deadband and hysteresis 0.5
Input process parameters :- Input nonlinear characteristics :-
system gain, k = 20 A= 0.5
a= 1 B= 0.1
b= 2 C= 0
c= 0
time increment = 0.02
Set point = 1
(cla) = 0](k/a) = 20](b/a) = 2]
Finite difference solution :- Jtime (s) -0.02 [1]| 0.02 0.04 0.06
SP 0 1 1 1 1
dSP 0 25 0 0 0
d2SP 0 -2500 0 0 0
X1=E 0 1 1 0.996] 0.98816
[U 0 0.5 0.5 0.5 0.5
|X2=dE/dt 0 0 0.2] -0.392] -0.57632

A eEr sl EEEEE—— SRS

Fig. 7. Control system relay with hysteresis characteristic.
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Spreadsheet Simulation of Nonlinear Control Systems | [

[Process is represented in the form G(s) = k/[a.s"2 + b.s + C] | ]

Nonlinearities :- selected by clicking on the relevant button | |
[}ﬁ 1 Ampliﬁer with deadband | | 0
'k o )Amplifier with saturation characteristic | 0
1 a Amplifier with_deadband and saturation 0
(a  )Perfect relay ] 0.5
(= Practical relay with hysteresis 05
(e )Relay with deadband 0.5
LAy Relay with deadband and hysteresis -0.5
Input process parameters :- Input nonlinear characteristics :-
system gain, k = 20 A= 0.5
a= 1 B= 0.1
b= 2 C= 0.2
c= 0
time increment = 0.02
Set point = 1
{c/a) = 0}(k/a) = 20)(bla) = 2]
Finite difference solution :- time (s) -0.02 o] 0.02 0.04 0.06
i 0 1 1 1 1
dSP 0 25 0 0} 0
d2SP 0 -2500 0 0 0
X1= 0 1 1 0.996] 0.98816
U 0 0.5 0.5 0.5 0.5
X2=dE/dt 0 0 -0.2 -0.392] -0.57632
—1—— 1 Phase Plane (dE/dt) S e
: v 05 j =
Bl I, o = ==
Il..l...-.- = ik AURR
— i

Fig. 8. Control system relay with hysteresis and deadband characteristics.




76 C. J. Fraser

numerical value of unity while @ = 1/w? and b =
2¢/w,. The expression for the modulus of the
amplitude ratio then becomes:

M =1/[(c-aw®)* +(bw)’] (31)

and
¢ =—tan"'[(bw)/(c — (aw?)| (32)

If the parameter a is set equal to zero, while c =1
and b is assigned some finite value, then the general
expression becomes equivalent to a first-order
term. The modulus of the amplitude ratio and the
phase angle become respectively:

M =1/4[(1+(bw)*] (33)

and
= —tan™"'[(bw)| (34)

Equations (33) and (34) therefore reduce to the
correct forms for any first-order term.

If @ and ¢ are set equal to zero, while b is set
equal to unity, then the general function describes a
simple integrator. The modulus of the amplitude
ration becomes 1/w, which is correct. The phase
angle, however, reduces to the form ¢ = —tan™'[w],
which is not correct. Since a simple integrator
always imposes a phase lag of —90°, irrespective of
the frequency, then a check must be made for the
input conditions, a = ¢ = 0 and b = 1. The phase
angle is then simply assigned the correct value of
—90°, irrespective of the input signal frequency.

It is possible that the numerator of the transfer
function could also contain both first- and second-
order terms, although in practice this is relatively
uncommon. However, allowance is made in the
spreadsheet layout for the transfer function to
contain one first-order term in the numerator. This
would be representative of a phase advance circuit,
used perhaps to improve the stability of the system
without compromising the overall gain. The
simplest phase advance circuit has the transfer
function (1 + ds). The modulus of the amplitude
ratio and the phase angle associated with this
function are:

M = [1+(dw)*] (35)

and
¢ =+tan'[dw] (36)

The modulus of the amplitude ratio for the com-
plete system is given as:

M=KXMXM,XM,X...XZ, (37)

where K is the overall system gain, M,, M,, etc., are
the modulus of the amplitude ratios for each of the
individual denominator terms in the transfer func-
tion, and Z, represents the modulus of the ampli-
tude ratio for the single first-order term appearing
in the numerator. The phase angle for the complete
system is:

=g tg+g:+... (38)
where ¢, ¢,, etc., are the phase angles of the indi-
vidual elements which make up the system.

To plot the Nyquist diagram on the spreadsheet,
the polar representation (M'¢°) has to be con-
verted into an equivalent Cartesian representation.
This is done through the transformations x = M’
cos(¢”) and y = M’ sin(¢").

The same data can also be represented as a Bode
diagram, where the gain, expressed in decibels, and
the phase angle are plotted against the frequency
on a logarithmic scale. These parameters are duly
calculated in the spreadsheet which is laid out as
shown in Fig. 9. Other inputs consist of the fre-
quency range and the number of calculation points
required. This allows for control of the resolution
and range in the graphical displays. The transfer
function considered in the example is:

C(s)G(s) = K(1 +0.15)/[s(1 +0.2s)(1 +
0.35)(1 + 0.055 + 0.0025?)]

with K =17.5.

The graphical output is shown in Fig. 10, where
it can be seen, particularly in the Nyquist plot, that
the system is stable. Removal of the first-order term
in the numerator, by setting d = 0, renders the
system unstable, as evidenced in the graphical out-
put shown in Fig. 11.

CONCLUSIONS

The spreadsheet represents a valuable additional
tool for modelling and analysis applications in
control engineering. The educational benefits in
using a spreadsheet, as opposed to a customized
control system package, are that the principles of
the modelling techniques can be fully highlighted.
This is an essential factor in the complete educa-
tional development of the trainee engineer studying
industrial control systems. Continuous and samp-
led data systems are easily simulated and non-
linear controllers can also be effectively modelled.
Stability analyses in the frequency domain can be
accommodated, and it is evident that the spread-
sheet has the potential for applications to much
more complex control systems. The spreadsheet
therefore presents a very powerful alternative to
writing a specific computer program to perform the
modelling and analysis functions normally associ-
ated with control system design. The spreadsheet in
addition also provides the convenient facility of
reasonably accurate graphical presentations. The
spreadsheet should not, however, be regarded as a
complete alternative to packages such as MAT-
LAB, but as an additional and convenient tool for
simulation purposes in dynamic system modelling.
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File Edit Formula Format Data Options Macro Window Help
Normal

C21

Spreadsheet Simulation of Nyquist and Bode Plots for Arbitrary Transfer Functions

Numerator Denominator Functions - as"2 + bs + ¢
Examples c b a
Gain, K 7.5 1st pole |s 0 1 0
Phase Advance
Circuit -> Function 2nd pole|1+0.2s 1 0.2 0
iven asi(l + d.s)
d= 0.1 3rd pole|1+0.3s 1 0.3 0
4th pole |[1+0.055+0.002s"2 1 0.05 0.002
5th pole 0 0 0 0
6th pole 0 0 0 0
Frequency Range. (rad/s) = 3 to 13
Enter Number of Calculation points - 100 dw =| 0.1
Calculation Procedures - |N = 1 2 3 4 5
w (rad/s) 3 31 3.2 33 34
M1= 0.33333: 0.32258: 0.3125: 0.30303: 0.29412: O
M2 = 0.85749: 0.8499: 0.84227: 0.83461: 0.82693: 0
M3 = 0.74329: 0.73227: 0.72139: 0.71065: 0.70007: 0
M4 = 1.00665: 1.0071: 1.00756: 1.00803; 1.00851: 1
M5 = 1 1 1 1 1
M6 = 1 1 1 1 1
Z1 = 1.04403: 1.04695; 1.04995; 1.05304: 1.05622 1
Nyquist Amplitude Ratio M' = 1.67465: 1.58759: 1.5065: 1.43089: 1.36027: 1
fl = -90 -90 -90 -90 -90
f2 = -30.964: -31.799; -32.619: -33.425  -34.216. -
3 = -41.987 -42.923: -43.831: -44.712; -45.567
f4 = -8.5815: -8.8648: -9.1478: -9.4305: -9.7128: -
f5 = 0 0 0 0 0
f6 = 0 0 0 0 0
7 = 16.6992: 17.2234: 17.7447: 18.2629; 18.778
Phase Angle -> | f' = -154.83| -156.36: -157.85 -159.3 -160.72: -
Nyquist Plot —> X = -1.5157 -1.4544 -1.3954: -1.3386. -1.284: -
= -0.7122 -0.6365; -0.5679; -0.5057; -0.4492: -
Bode Plot —> log10(w)| 0.47712 0.49136: 0.50515: 0.51851 0.53148: 0
{(db) 447849 401475: 35594: 3.1121; 2.67252: 2
log10(w)| 0.47712| 0.49136: 0.50515  0.51851 0.53148 0
f' -154.83 -156.36: -157.85: -159.3: -160.72: -

Fig. 9. Spreadsheet layout for analysis in the frequency domain.
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