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Inverse Kinematics of a Robot Manipulator

on a CAD System*

ZHONGMING LIANG

Purdue University at Fort Wayne, 2101 Coliseum Boulevard East, Fort Wayne, IN 46805-1499, USA

This paper presents a computer-aided graphical approach to the inverse kinematics of serial
manipulators, with a CCC manipulator as an example. The approach provides visualization of
the mechanism under study and leads to solutions that are as accurate as those obtained by

analytical methods.

EDUCATIONAL SUMMARY

1. The paper discusses materials for a course in
computer-aided design of spatial mechanisms
and robots.

2. Students of the mechanical engineering and
industrial engineering departments are taught
in this course.

3. Level of the course (year)
4th year or 5th year

4. The material is presented with transparencies
or computers.

5. The material is presented in a regular course.

6. Atleast 2hr is required to cover the material.

7. Students should do at least 6 hr homework or
revision for the material.

8. The paper describes a new approach to
inverse kinematics of serial robot manipula-
tors.

9. The standard text recommended in the course,
in addition to the author’s notes is G. N. San-
dor and A. G. Erdman, Advanced Mechanism
Design: Analysis and Synthesis, Prentice Hall.

10. The material is partly covered in the text.

INTRODUCTION

INVERSE kinematics of a serial manipulator is a
mathematical transformation of a system from
world coordinates to joint coordinates. The world
coordinates are the coordinates of the position and
the orientations of the end of the manipulator. The
joint coordinates are the magnitudes of the joint
variables, which are directly controlled by the joint
actuators of a robot manipulator [1]. In robot
applications, the world coordinates, often defined
by the user based on the requirements, need to be
converted to the joint coordinates for robot
controls.

Extensive analytical study has been made on the
inverse kinematics of a number of serial robot
manipulators |2, and refs therein]. Two categories
of approaches have been used to study mechan-
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isms: analytical and graphical. Graphical
approaches are well known for many two-
dimensional problems [3]. These approaches have
a major advantage over analytical approaches in
that they allow visualization during the design
process, which means much better understanding
of the problem under study and easier detection of
errors. Instead of dealing with matrices and their
equations extracted from the physical problem,
graphical approaches deal directly with the geom-
etry of the mechanism. Recently, attempts have
been made to apply graphical approaches to the
study of three-dimensional mechanisms on three-
dimensional computer-aided design (CAD)
systems [4, 5]. The accuracy of graphical work per-
formed on the CAD system is supported by the sys-
tem and visualization is much enhanced on the
CAD system as the user is able to define and select
various views.

This paper addresses computer-aided graphical
approaches to inverse kinematics of serial manipu-
lators, with a cylindrical joint-cylindrical joint-
cylindrical joint (CCC) serial manipulator as an
example. Before presenting the graphical proced-
ure, an analytical procedure for inverse kinematics
of the CCC manipulator will be discussed. The
analytical procedure presented in this paper is an
improvement of the one suggested in [2]. The
analytical results of the example problem will be
compared with the results obtained by the graph-
ical method proposed.

CCC SERIAL MANIPULATOR

A kinematic schematic of the CCC manipulator
is shown in Fig. 1, in which

S;and 6, (i 1, 2, 3) the linear displacement
vector and the angular displacement of
the cylindrical joint i These are the six
joint variables of a CCC mechanism.

(i =1, 2) the vector perpendicular to the
vector §; and the vector §;,, and joining
the two vectors. The magnitudes of the
vectors a, and a, are constants of a CCC
mechanism.
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Fig. 1. The CCC manipulator.

(i = 1, 2) the angle from the vector S, to
the vector §;,,. a, and a, are constants
of a CCC mechanism.

as the approach vector of the end effector.
Its magnitude is a constant of a CCC
mechanism. Its direction in space in one
world coordinate of the manipulator.

Sy the normal vector of the end-effector. Its
direction in space is another world co-
ordinate of the manipulator. Since its
magnitude has no significance, it is
normally a unit vector.

a; the angle from S, the axis of the cylindri-
cal joint 3, to §,, the normal to the end-
effector. It is a constant of a CCC
mechanism.

R the position vector of the end point of the

manipulator. It is yet another world

coordinate of a CCC mechanism.

The reference Cartesian coordinate system is set at
the joint 1 with the Z-axis coincident with the axis
of the joint.

In an inverse kinematic problem of a CCC
manipulator, the position vector R of the end point
of the manipulator

R=(F, P, P)" 1)
the unit approach vector a;,
as=(L, L, L,)" (2)
and the unit normal vector §,
Ss=(N,, N, N))" 3

are given to find the angular joint variables 6,, 6,,
0; and the linear variables §,, §,, 5, of the three
cylindrical joints. The fact that a, is a unit vector,

S, is a unit vector, and vectors a, and S, are
perpendicular to each other implies three con-
straint equations:

Li+L3+L§=I (4)
N§+N§+Nf=l (3)
LN,+ LN,+ LN,=0 (6)

The number of independent variables in equations
(1)—(3) is six, which matches the number of the
unknown variables to be found.

AN ANALYTICAL SOLUTION

The analytical kinematic equations of the CCC
manipulator and a procedure of performing
inverse kinematics analytically are shown in the
Appendix. Please note that the procedure sug-
gested in the current paper is simpler than the one
in [2].

1['116 example below shows the analytical solu-
tions of an inverse kinematics problem of a CCC
manipulator. The solutions will be compared with
the results of the graphical approach to be pre-
sented in this paper.

Example
Given the location vector of the end point

R =(3.83664944,—3.63552226, 2.29342276)"

(7)
the unit approach vector
ay, = (0.57697995, —0.20751260,
—0.78995738)" (8)
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and the unit normal vector

S, =(—0.44176922,0.73421025,
—0.51553396)T )

find the values of the joint variables of the CCC
manipulator which has constant parameters

a, = 3.000 (10)

a,=3.600 (11)

a;=2.300 (12)
and

a,=24° (13)

a,=100° (14)

a,=-—34 (15)

Data in |2] were used to construct this example.

Two sets of analytical solutions were obtained as
shown in Table 1, in which the joint coordinates are
listed in the order that they were obtained in the
solution process.

Table 1. The analytical solutions of the inverse kinematics
example problem

0, 78.021087° —78.021087°

6, 95.81429396° 262.07073621°

0, 210.29178512° 258.7070207°

S, 15.37792766 —15.37792766

S, —7.41508406 1.00205055

S —13.16323637 19.83339477
Y

A COMPUTER-AIDED GRAPHICAL
SOLUTION

A computer-aided graphical solution will be
presented here to solve the example problem in the
previous section. The graphical constructions were
performed on a three-dimensional CAD system.
Only the procedure will be presented here. Particu-
lar CAD commands for implementing the pro-
cedure vary from one CAD system to another.

1. Determine graphically the direction of vector a;
(Fig. 2)

(a) It is calculated from the given unit approach
vector a,, (equation 8) that
£ (a3, X)=cos'(0.57697995) = 54.7616"
£(a;, Y)=cos™'(—0.20751260) = 101.977°
£(ay, Z)=cos™(—0.78995738) = 142.181°

(b) Constructacone C, such that its axis is parallel
to the X-axis and its cone angle is equal to
twice the angle £ (a;, X).

(c) Construct, with the vertex coincident with that
of the cone C,, a cone C, such that its axis is
parallel to the Y-axis and its cone angle is equal
to twice the angle £ (a,, Y).

(d) The cone C, and the cone C, have two lines of
intersection. The one whose angle with the Z-
axis equals £ (a;, Z) indicates the direction of
vector a,.

2. Determine graphically the direction of vector

S, (Fig. 3).

Fig. 2. Determining the direction of a,.
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It is computed from the given unit normal
vector S, (equation 9) that

£ (S, X)=cos™' (—0.44176922)=116.217"
£(S,, Y)=cos ! (0.73421025)=47.7594°
£(S,, Z)=cos™! (—0.51553396) = 121.033°
Construct a cone C, such that its axis is parallel
to the X-axis and its cone angle is equal to
twice the angle £ (§,, X).

Construct, with the vertex coincident with that
of the cone C;, a cone C, such that its axis is
parallel to the Y-axis and its cone angle is equal
to twice the angle £ (§,, Y).

The cone C; and the cone C, have two lines of
intersection. The one whose angle with the Z-
axis equals £ (8, Z) indicates the direction of
vector §.

Construct vector §,, vector as, and the line of
vector §, (Fig. 4).

Construct point P based on its given coordin-
ates (equation 7).

At the point P, construct normal vector §, with
the direction found in step 2. The length can be
arbitrary.

From the point P, construct vector a, with the
direction found in step 1 and the length given
in equation (12).

Fig. 4. Locating a, and determining the lineof §,.
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Rotate the vector §, about the vector a, by an
angle equal to the negative of a, which is the
angle from the vector S, to the vector 5, and is
given in equation (15). The resulting vector S5’
indicates the direction of vector §.

Construct, at the other end of vector a5, aline
parallel to vector §". This is the line of vector
S, whose length is to be determined. In Fig. 4,
asin Fig. 1, the Z-axis coincides with the line of
vector §,. The length of the vector is to be
determined. To determine the lengths of vector
S, and vector S, the line of vector S, needs to
be found.

Determine graphically the direction of vector
S,, which forms angle a, given in equation (13)
with vector §, an angle a, given in equation
(14) with vector S, (Fig. 5).

Construct a cone C, such thatits axis is parallel
to the line of vector S, (i.e. the Z-axis) and its
cone angle is equal to 2a,.

Construct, with the vertex coincident with that
of cone Cs, acone C, such that its axis is paral-
lel to the line of vector S, found in step 3 and
whose cone angle is equal to 2a,.

The cone C; and the cone C, have two lines of
intersection S5 and S§?. They are the two valid
solutions for the direction of vector §,. We will
show, step by step, the rest of the work with SV
being the direction of vector §, and show only
the final result with % being the direction of
S,. The constructions in the second case are
very similar to those in the first case.
Construct the line of vector §, (Fig. 6). On the
one hand, vector S, must be in the plane that is

s3

Z,line of s

Fig. 5. Determining the direction of §,.

parallel to vector §,, parallel to the direction of
vector §, found in step 4, and has distance a,
as given in equation (10) from vector §,. On
the other hand, vector §, must be in the plane
that is parallel to vector §,, parallel to the

Z.line of s1

line of s3
P2

Fig. 6. Determining the location of S,.



(@)

Inverse Kinematics of a Robot Manipulator on a CAD System 41

direction of vector §,, and has distance a, as

given in equation (11) from vector §,. The line

of vector S, is then the intersection of the 2

planes.

Construct a plane P,.

— From a point on the line of vector §,,
construct a line a,” perpendicular both to
the line of vector §, and to the vector §°,,
which has the direction of vector .S, found
in step 4. Make the length of the line a,’
equal to the magnitude of vector a, given in
equation (10).

— Through the upper end of line a,’,
construct a plane P, perpendicular to the
line. Note that plane P, is parallel both to
the line of vector §, and to vector §’,. The
normal distance from the line of vector .S,
to plane P,, and hence to any line in plane
P,, is the magnitude of vector a,. The
location of vector a, has not yet been deter-
mined.

(b) Construct a plane P,.

— From a point on the line of vector S,
construct a line a,” perpendicular both to
the line of vector S, and to the vector §°,,
which has the direction of vector §, found
in step 4. Make the length of the line a,’
equal to the magnitude of vector a, given in
equation (11).

— Through the upper end of line a,, construct
a plane P, perpendicular to the line. Note
that plane P, is parallel both to the line of
vector S, and to vector S”,. The normal
distance from the line of vector S, to plane
P,, and hence to any line in plane P,, is the
magnitude of vector a,. The location of
vector a, has not yet been determined.

(©)

(a)

(b)
(©)

(d)

()

(b)
(©)

Construct the intersetion of planes P, and P,.
The line of intersection of the two planes is the
line of vector S, since (i) it has the direction of
vector 5, because both planes P, and P, are
parallel to the direction of the vector; (ii) its
distance to the line of vector §, is a;; and
(iii) its distance to the line of vector S; is a,.
Incidentally, on the CAD system the two
planes need not be shown to meet each other in
order to determine their intersection.
Construct the point of connection of vector a,
and vector S, and determine the length of
vector S, (Fig. 7).

From two points f and K on the line of vector
§,, construct two lines fg and k/ perpendicular
to plane P, and towards the line of vector §,.
Have both fg and k/ equalto a,.

Construct a line through the end points / and g
and extend the line.

Since both line /g and the line of vector §, are
parallel to plane P, and the both have the same
distance a, to the plane, the two lines meet at
point m.

Point m is the point of connection of vector a,
and vector §,. Line om is the length of vector
S,

Construct the point of connection of vector a,
and vector §; and determine the length of
vector S, (Fig. 8).

From two points r and ¢ on the line of vector
S§,, construct two lines rs and tu perpendicular
to plane P, and towards the line of vector §;.
Have both rs and tu equal to a,.

Construct a line through the end points s and u
and extend the line.

Since both line su and the line of vector §; are
parallel to plane P, and the both have the same

s line of s2

z,line of si

Fig. 7. Determining the lengthof §,.
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line of s2

S1

z.line of si

Fig. 8. Determining the length of 5.

Fig. 9. Determining the length of §,.
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distance a, to the plane, the two lines meet at a
point n.

(d) Point n is the point of connection of vector a,
and vector §,. Line An is the length of vector

S

8. Construct vector a, and vector a, (Fig. 9).

(a) From point m on vector §,, the point of con-
nection of vector §, and vector a, found in step
6, construct a line perpendicular to the vector
S, and to the line of vector §,. The line inter-
sects with the line of vector §, at a point w.
Point w is an end point of vector §,. Vector a,;
is also located.

(b) From point n on vector §,, the point of con-
nection of vector §; and vector a, found in step
7, construct a line perpendicular to §; and §,.
The line intersects with the line of vector S, ata
point e. Point e is the other end point of vector
S,. Vector S, is determined. Vector a, is
located.

The constructions are now complete. The kin-
ematic skeleton of the mechanism configuration is
shown in Fig. 9. The values of the joint variables
found on the CAD system are listed below in the
order of the variables in Table 1:

6,=178.021°
6, =95.8142°
6,=210.2918"
§,=15.3779

S5,="7.41506 (negative direction)
8, =13.1632 (negative direction)

which are shown to be accurate as the analytical
results in Table 1, except that fewer significant
digits were used in the CAD constructions.

The second solution of the inverse kinematics
problem, where line §% instead of line SY is
chosen from Fig. 5 for the direction of vector S,, is
shown in Fig. 10.

CONCLUSIONS

A complete procedure of performing inverse
kinematics for a CCC robot manipulator on the
CAD system has been shown. The procedure can
be written into a script file, whose commands are
CAD system-dependent, for automatic execution.
The methods presented were based on basic con-
cepts in spatial geometry. The joint coordinates
obtained on the CAD system, a powerful tool for
spatial construction and visualization, were as
accurate as those obtained by analytical methods
up to the number of significant figures used in the
constructions. The high accuracy is due to the fact
that measurements on the CAD system are the
result of digital computations. Graphical methods
have been generally criticized for their low accu-
racy. This problem should no longer exist with use

Fig. 10. The mechanism configuration with a different line of S,.
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of the CAD system. For various kinematics prob- dimensional mechanism kinematics problem can
lems of spatial mechanisms, graphical methods on be solved on the CAD system in a straightforward
the CAD system appear to be very promising manner. Problems that cannot be solved analy-
supplements to analytical methods. tically without iterations would not be solved easily
It should be noted that not every three- on the CAD system.
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APPENDIX

Analytical approaches for inverse kinematics of the CCC robot manipulator are based on the following
well-known homogeneous transformation equation [1, 2J:

AAA,=T (16)

In the above equation A, (i = 1, 2, 3) is the homogeneous transformation matrix of joint i:

cos(6,) —sin(f)cos(a;)  sin(f)sin(a;) a,cos (6)

i sin(6) cos(f)cos(a;)  —cos(6)sin(a;)  asin(@) 17
| 0 sin(a,) cos(a) S, (7
0 0 0 1

in which §; and 6, are the linear and angular displacements of the joint, @; and a, are the linear and angular
distances from joint i to joint i + 1, as shown in Fig. 1.In equation (16), T'is the end-effector position matrix

Ly My Ny P

L, M, N, B

T= ¥ Y | 4 Y (]8)
L, M, N, P
g0

in which the fourth column is the end point position vector R as defined in equation (1), the first column is
the end-effector unit approach vector a, as defined in equation (2), the third column is the end-effector unit
normal vector S, as defined in equation (3), and the second column vector, called vector O,

0 = (My, My, My)" (19)

is the end-effector unit orientation vector specifying the orientation of the hand from one finger to the other.
Since the vector O is a unit vector and is perpendicular to the unit approach vector and the unit normal
vector, we have

M+ M2+ M? = (20)
M.L,+ML,+ML,=0 1)
M\N,+ MN,+MN,=0 (22)

With the above three equations, the unit orientation vector O can be determined once the unit approach
vector a,, and the unit normal vector S, are known.
For inverse kinematics, equation (16) is rearranged to become

AA;=TAj3 (23)
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After the two 4 X 4 matrices on each side are multiplied by each other, the above equation has the form
‘]XI KX] UXI VX[ JX2 KXZ UXZ V)(Z
‘]Yl KYI Ul’l VYI = JY2 KY2 UY2 VYZ
JZI KZI UZI VZI JZZ K22 UZ2 VZI
0 0 1 0 0 0 1
This matrix equation is equivalent to 12 non-trivial scalar equations, which will be listed below.
J=Jy
or its expansion
cos(@,)cos(0,) — sin(8,)sin(6,)cos(a ) = cos(0;)Ly+ sin(6;)(Nysin(a;) — Mycos(a;))  (25)

24

sin(6,)cos(6,) + cos(8,)cos(a,)sin(6,) = cos(0;)L,+ sin(6;)(Nysin(a;) — Mycos(as))  (26)

sin(a,)sin(8,) = cos(8;)L, + sin(0;)(N,sin(a;) — M cos(a5)) (27)
KH K.\'?
—cos(8,)sin(f,)cos(a,) — sin(6,)cos(8,)cos(a,)cos(a,) + sin(6,)sin(a,)sin(a,)
= sin(60;)Ly + cos (63)(Mycos(a;) — Nysin(a)) (28)
Ky =Ky,
—sin(6,)sin(6,)cos(a,) + cos(0,)cos(8,)cos(a,)cos(a,) — cos(f,)sin(a,)sin(a,)
=sin(6,)Ly+ cos(8;)(Mcos(a;) — Nysin(as)) (29)
Kz =Kz,

cos(6,)sin(a,)cos(a,) + cos(a,)sin(a,)=sin(6,;)L, + cos(0;)(M cos(a;) — N,sin(a;))  (30)
Uy, = Uy,
cos(@,)sin(6,)sin(a,) + sin(6,)cos(8,)cos(a,)sin(a,) + sin(f,)sin(a,)cos(a,)

= M,sin(a;) + Nycos(a;) (31)
Uy, = Uy,
sin(@,)sin(@,)sin(a,) — cos(6,)cos(6,)cos(a,)sin(a,) — cos(f,)sin(a,)cos(a,)
= Mysin(a;) + Nycos(as) (32)
Uz = Uz
—cos(6,)sin(a,)sin(a,) + cos(a,)cos(a,) = M,sin(a;) + Nycos(a,) (33)
Vii=Vx
a,cos(8,)cos(6,) — a,sin(8,)sin(0,)cos(a )+ S,sin(8,)sin(a,) + a,cos(6,)
= —(a;Ly+ S;M,sin(a;)+ S;Nycos(a;)— Fy) (34)
l'/?I V}'Z
a,sin(6,)cos(6,) + a,cos(6,)sin(f,)cos(a,) — S,cos(0,)sin(a,)+ a,sin(6,)
=—(a;Ly+ S;Msin(a;) + §;Nycos(a;) — Py) (35)
Va1 = Va
a,sin(@,)sin(a,)+ S,cos(a,)+ S, =—(a;L,+ S;M,sin(a;) + S;N,cos(a;) — Py) (36)

An inverse kinematics problem is to find the six joint coordinates S; and €, (i = 1, 2, 3) provided that the
end-effector position matrix (equation 18) and the mechanism constants g; and a; (i = 1, 2, 3) are given. In an
inverse kinematics problem, the number of independent equations in the above set of 12 equations is six,
which provides definite solution of the six joint variables. In the following, a procedure is presented for
analytical solutions of the inverse kinematics problem. The procedure, as can be seen, is simpler than the one
in [2].
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Procedure

1. Solve equation (33) for the value of cos(6,), from which two solutions of angle 6, can be obtained.
Equation (33) has been selected to be used first since it contains only one joint variable 6,. In fact, Uy,, the
unexpanded form of the left-hand side of equation (33), is the scalar product of the third row vector of the
matrix A, and the third column vector of the matrix A ,, as can be seen from equations (24), (23)and (17).

For each of the two solutions of 8,, do the following:

2. Solve equations (31) and (32) simultaneously for the values of sin(6,) and cos(#,), and determine the
value of 6,.

3. Solve equations (27) and (30) simultaneously for the values of sin(8;) and cos(6;), and determine the

value of 8,

Solve equations (34) and (35) simultaneously for the values of §, and §,.

. Solve equations (36) for the value of §;.

o



