Int. J. Engng Ed. Vol. 11, Nos 4 and 5, pp. 390-398, 1995
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 1995 TEMPUS Publications.

Computer Literacy for Non-Majors:
Design and Implementation Issues for

Depth and Breadth

JERRY WAXMAN

CUNY, Department of Computer Science, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, USA

THERESA AUSTIN

School of Education, University of Massachusetts, Amherst, MA 01003, USA

Over the past few years, computer literacy courses have become mandatory at many colleges and
universities, involving more and more departments across different disciplines. At Queens
College, with the support of the National Science Foundation (NSF) and Funds for the
Improvement of Post Secondary Education (FIPSE), we have been developing and implementing
a new laboratory-based approach to this type of course. Three ideas—teaching students how to
learn software; imparting computational ideas to non-computer science majors; and learning in a
hands-on-integrated laboratory—form the basis of the new curriculum. This paper outlines our
approach—its philosophy, its implementation, and our experience with it over the past two years.

EDUCATIONAL SUMMARY

1. The paper describes new laboratory concepts
and curricular design for the instruction of
computer sciences to non-majors.

. The paper describes new equipment useful in
providing individual, small group and whole
class instruction. It also presents a combination
of approaches that help make instruction more
meaningful to students, e.g. hands-on instruc-
tion, laboratory exercise book with a variety of
question types, individual projects to apply the
concepts learned to new software, and lecture-
demonstrations.

. The course is conceived as a breadth course for
undergraduate non-majors.
The idea that students should learn how to
approach software on their own and the notion
of discerning the underlying metaphors in given
software packages are two concepts which
promote greater learner autonomy and critical
use, rather than blind consumerism.

. Engineers are called upon to master many

different computational environments during

their careers. By incorporating the principles in

(4) above, the course in computing for

engineers would be much more useful than

current courses which just teach a specific
programming language.

A list of references accompanies the text.

All concepts have been tested in the classroom.

Preliminary experience with this approach has

indicated significant improvement over more

standard approaches both in terms of the depth

390

and the breadth of the material learned. As the
project develops, we are gathering data on how
various types of student populations progress in
our new curriculum and laboratory. With these
data, we expect not only to be able to determine
the impact of the curriculum but also ‘how much
for whom'. The results will allow us to help
make our instruction more learner-centered
and may develop a framework that can be
profitably adopted at other similar institutions.
The undergraduate engineering major will
benefit from instruction which shows how to
use new software by understanding the models
which underlie these applications.

INTRODUCTION

IN THIS paper we present the motivation for, and
some interim results of, a project aimed at develop-
ing a new approach to teaching the computer
literacy/software tools course to non-computer
science majors. This approach depends both on a
laboratory facility, which was funded by the
National Science Foundation (NSF) Instrumenta-
tion and Laboratory Improvement Program and
the development of a new curriculum, which is
being sponsored by Funds for the Improvement of
Post Secondary Education (FIPSE). We are now at
the end of our second year of a three-year project.
Since computational skills are becoming neces-
sary in more and more disciplines, computer
literacy courses have become mandatory at many
colleges and universities over the past few years.

Computer Literacy for Non-Majors 391

Given the perceived centrality of the skills being
taught, it is surprising that not much public discus-
sion has been focused on determining an appropri-
ate set of topics to be covered. Consequently, the
courses that are typically offered suffer some basic
limitations.

One problem is that in many of these courses for
non-majors, the focus has been on the introduction
of low-level computer skills, primarily software
applications. However, new software is being intro-
duced at an ever-increasing rate, and any course
that concentrates solely on teaching the mastery of
specific packages will not provide the skills needed
to master future software that students will surely
encounter.

Furthermore, since these literacy courses are
conceived as ‘service’ courses, the content rarely
involves concepts basic to computing. Before the
advent of the microcomputer, non-majors who
wished to learn about computing either took the
introductory course for computer science majors,
or were offered special sections of computer
courses which emphasized such topics as algorithm
development, programming and system design. As
evidenced by a quick scan of the texts used for the
non-major courses, these topics have, for the most
part, been excluded. These are important topics
even for those students who do not intend to major
in computer science. Mastery of these concepts is
important to the non-computer science student for
pragmatic reasons; it allows them to be much more
sophisticated and effective users of software tools.
In addition, though, an understanding of these
ideas has become an important component of a
general broad education; computational ‘models’
are becoming pervasive. The ‘tools course’, or
course that teaches specific computer software, as
currently constituted does not provide the neces-
sary level of content generalizeability to help
students transfer and apply their understanding to
other applications not introduced in the class.

In addition, since students learn more effectively
when practice is integrated with theory, it is impor-
tant that there be a laboratory component tightly
coupled to the concepts presented in the course.

The course that we are developing has been
designed to deal with the three limitations outlined
above. Three ideas—teaching students how to learn
software; imparting computational ideas to non-
computer science majors; and using a hands-on-
integrated laboratory component—formed the
basis of the new curriculum that we have developed
and are currently implementing.

This paper reports on our experiences with our
approach over the past two years. The next section
will briefly review the underlying principles upon
which our approach is based. For a fuller treatment
of the first year’s activities, please refer to Waxman

[1].

BACKGROUND

Former approaches

The approach that will be described in the
following paragraphs developed after a series of
trials with other curricular designs. These consisted
of lecture formats coupled with specialized sec-
tions for the physical and social sciences applica-
tions, a small programming component using
Basic, then Pascal, and a ‘problem-solving’ recita-
tion section.

We found that, while many students who com-
pleted this course had developed a rudimentary
understanding of the issues involved in computa-
tion, this understanding was not very deep. The
primary cause of this phenomenon was the paucity
of meaningful hands-on experience. The course
was severely limited by the fact that only 15 out of
the given 45 contact hours for the course could be
devoted to actual computer instruction. Addition-
ally, it became apparent that, even had they learned
more Pascal, their need for practical computer
skills would not have been met. The students were
non-majors who, generally, would have neither the
opportunity nor the need to write Pascal programs.
Considering the vagaries of the operating system,
the general unpreparedness of the students and the
small percentage of class time devoted to pro-
gramming, many students did not profit optimally
from this exposure to programming.

After experimenting with a number of different
course formats, we began to offer a ‘software tools’
oriented course similar in content and level to
those offered at other institutions around the
country. We switched the format of our introduc-
tory non-majors course to one presenting ‘software
tools’ on an experimental basis in the fall of 1988.

Although our course provided practical tools for
non-majors, as we experienced teaching the course,
we realized that there were a number of areas that
needed to be addressed to make it more academ-
ically sound and at the same time more relevant for
the non-major’s actual needs. Again, one of these
was the issue of ‘depth’. A significant number of
four-year schools have resisted implementing
similar courses precisely because of this problem.
They have felt that, as the course is currently
conceived, and as is evidenced by the texts
currently available for it, it lacks sufficient acad-
emic rigor. Consequently, many have either rele-
gated it to their continuing education programs or
have refused to offer it at all. It was our view that
this approach was mistaken. The course covered
important material relevant to the students in their
own areas of endeavor and could impact how they
approached their jobs once the students joined the
workforce. In addition, this course at Queens
College is used to fulfil a college breadth require-
ment in ‘scientific methodology and quantitative
reasoning’. Rather than throwing the proverbial
baby out with the bathwater, we felt that the course
should be taught but that it needed to be redesigned
and upgraded. The question was, in essence, what

392 J. Waxman and T. Austin

could be done about the lack of depth in the course
as it was then constituted.

Planning for change

As we began to search for options, we had to
keep in mind the particular logistical constraints of
our institution. The first had to do with the size of
the student population and the pool of available
personnel.

Since a large number of students enrol in this
course, we did not have sufficient staff to teach the
course in small sections. Consequently, it was
taught in a large lecture (250-300 students) linked
to a small recitation format (about 30 students).
The students were required to attend two lectures
and one recitation a week. The propose of the
recitation class was to clarify and provide practice
with the concepts taught in the lecture.

Quite often the instructors for these recitation
sections are graduate students in computer science
and the quality of their teaching varies widely.
Some are excellent and quite professional; others
are not quite as good. In addition, since many of our
graduate students are foreign born, the quality of
their oral communication sometimes leaves much
to be desired. This is not a situation unique to us at
Queens College. Many colleges and universities
find themselves in a similar situation. Due to these
contextual features we found that the recitation
class was not as effective as it might be.

Another constraint was the availability of space
and hardware. Since the college’s microcomputer
lab is not exclusively set aside for use by the
computer science department butis available to the
general college population, the recitation sections
were offered in regular classrooms with no compu-
tational facilities available. This turned out to be a
major problem given our special population of the
non-computer science majors. Their lack of famili-
arity with computers and the problems in the lab
setting were major impediments to their effectively
using the facilities and doing the exercises. Even
though all the concepts were fully explained and
illustrated on a computer during the lecture, having
seen the demonstration was not sufficiently helpful
when it came to actually doing the assignments in
the laboratory.

Finally, it became increasingly clear that the
students needed considerable ‘hand holding’ while
they worked on their lab assignments. In the
lecture, they saw demonstrations of the concepts
and various features of the packages and in the
recitation classes these topics were reinforced. But
when they were actually at the machines, many of
them were at a loss. Due to budgetary and staff
problems, however, we were limited in the number
of tutors we could make available during the free
laboratory hours.

Our efforts were thus directed towards address-
ing four areas of concern in an integrated manner:
redesigning and upgrading the curriculum; improv-
ing the quality of the recitation; upgrading the

laboratory facilities; and providing the support that
novice learners clearly required.

Changes to curriculum and instruction

In our redesigned course, we introduced pro-
gramming concepts within the context of the tools
that the students were using. In addition, the nature
and function of the recitation has been completely
transformed. It is no longer merely a review of the
material presented in the lecture but rather pro-
vides an environment where the students work out
specific exercises under the guidance of the recita-
tion instructor. The laboratory facility that we con-
structed is what make the new arrangements
possible. The roles of the recitation instructors
have changed from that of lecturer, a role for which
they might not currently be well suited, to that of a
supportive coach or tutor. They gain by being
placed in a situation more closely matched to their
skills and, consequently, their students did as well.
This reorientation is made possible in large
measure by the laboratory facility that we have
installed.

In the next section we describe the lab facility.
Following that, we will describe the changes that we
have made in the curriculum. Finally, we present
some of our preliminary findings as to the efficacy
of our approach.

THE LABORATORY FACILITIES

A proposal was submitted to the NSF Instru-
mentation and Laboratory Improvement Program
in 1989 for the construction of an instructional
laboratory for use by the recitation sections. The
lab and its use has been phased in since the fall
1992 semester.

The computer hardware in the laboratory
consists of 30 networked 486/50 student worksta-
tions, a 486 network server running Novell Adv-
anced Netware, and an instructor’s workstation.
Each student station is a DEC PC with 4 Mbytes of
RAM, an 80 Mbyte hard disk, SVGA monitor and
mouse. Five LaserJet III printers and print spooling
hardware are shared by the stations, six stations to
a printer.

To enhance instruction in the laboratory, a
device called the Tech Commander was installed.
This operates in parallel with the network to link
the instructor’s machine to each student’s station
and to allow the instructor to see and interact with
each student’s machine from the master console.
An interface box at the student’s workstation
connects the computer to the Tech Commander
network. The Commander, manufactured by Tech
Electronics of Atlanta Georgia, is an image and
keyboard switching system and is completely
external to the computer. Because of the Comman-
der’s well-designed architecture/features, no
modifications needed to be made to the existing
hardware nor did the device interface take up any

Computer Literacy for Non-Majors 393

slot on the PC. The instructor can, by entering a
code on the Tech Commander control console,
view any station’s screen and take control of that
station’s keyboard. The instructors can also broad-
cast their screen to an individual student’s station
or to a group of students. Similarly, from the
console any student’s screen can be broadcast to
any group of machines. Another attractive feature
is that the Tech Commander supports two-way
communications via a headset so that the interac-
tion between an individual student and the instruc-
tor can be one-to-one and private without
interfering with the rest of the class activities.

A ceiling-mounted RGB high-resolution projec-
tor is connected to the Tech Commander control.
This can project any workstation screen image
onto a large screen in the front of the lab. The
obvious benefit of this addition is the ability to
facilitate whole class demonstrations and discus-
sion.

Thus, fluid transition between whole group
instruction, small group instruction and individual
instruction are all accommodated when the Tech
commander is used skilfully.

This facility, which has been dedicated to the
course, has been a significant impact on the stu-
dents’ ability to absorb and retain material.
Because of this, we can spend less time in the recita-
tion sessions teaching the mechanics of the tools
and provide more time for actually manipulating
the tools for the individuals’ own interests and
needs. Further discussion of the laboratory facili-
ties is found in [2].

The recitation, however, is only one aspect of the
new course. Equally important is the shift in the
focus of the lectures that form the core of the
curriculum.

THE CURRICULUM

This part of the project has proven to be the most
challenging. The curriculum has undergone a num-
ber of changes from its original conceptionin 1988.
We will discuss each in turn in the following
paragraphs in terms of content, delivery and
impact.

Content
From the beginning, our curriculum has had
three principal components:

e [earning models of computer software
¢ Learning computational models
e Learning principles of programming

We set out to teach these concepts through
examination of particular details of several selected
packages. Many students, for example, will need to
know how to use computerized spreadsheets in
their own areas, be it economic analysis, account-
ing or management. All students will need some
type of wordprocessor to help in the preparation of

their written assignments. Consequently, the
following material was selected:

® An operating system command environment
(e.g. Microsoft DOS, Windows)

A wordprocessing system

A spreadsheet package and model building

A database package

A graphics package

Various utility programs

While we felt obligated to teach specific
packages for both pragmatic and pedagogic
reasons, we also were obligated to give the students
the computer skills that will prepare them for
careers into the next century. For this reason, in
addition to teaching the students what the package
models and how to work with it, we teach them how
to extend it and ‘customize’ it. We show them how
to use these ‘software tools’ to construct new tools
of their own. For example, when we teach DOS we
teach the students how to code sophisticated batch
files, complete with parameter passing. Similarly,
when we teach a wordprocessor we do it with an
eye to automating and customizing it via macros;
the same with the spreadsheet package. In the
database portion of the course (we currently use
dBASE III Plus), though a help feature is available
(ASSIST), we teach the students to work dBASE
from the dot prompt. After this they are taught how
to program in the dBASE environment. This
provides a natural extension of the other environ-
ments (DOS, wordprocessor and spreadsheet) in
which they will have learned to ‘program’.

Secondly, we concentrate on the idea that the
various software packages that the students are
working with have an underlying ‘model’ that each
implements. For example, underlying a particular
wordprocessing program like WordPerfect is the
‘model’ of a blank page of paper, part of a larger
‘document’ on which the user composes text. One
may define various parameters with respect to the
‘paper’, such as its margins and the orientation of
the text on the page. One may also electronically
‘search’ for text in the ‘document’ in various ways.
Teaching the students to look for the underlying
model in the software they use will ultimately make
it much easier for them to master new software on
their own because it teaches them to anticipate the
functions of a software package. This ties their
previous knowledge of the world, i.e. the model, to
a computer application. In other words, this
generalized concept helps students to use the
knowledge and experiences they already have to
discover ways in which the computer program has
instantiated the model. This will undoubtedly
empower students to confidently explore new
software. What we see students being able to do is
inductively identify a model, generalize the features
that minimally must be present, test out their
hypotheses to find out if indeed these features exist,
and refine what they originally thought in light of
their discovery process. Thus, by both experience
and model building, they ‘learn’ the package. These

394 J. Waxman and T. Austin

are the critical thinking skills that will enable them
to generalize from the software learned in our
course to other courses that they pursue on their
own.

We do not view our role in this course as limited
to teaching the students ‘skills’. A ‘computational
paradigm’ has emerged over the last 40 years in
which computer hardware and/or software is used
as a metaphor for explaining such diverse pheno-
mena as DNA and ‘the mind’. Very simply
explained, this paradigm entails using algorithms to
define relationships and interactions that can
‘model’ real-life phenomena. Knowing the
strengths and weaknesses of these computational
models will help in ‘debugging’ programs or
‘debunking’ untenable predictions. If our students
are to participate intelligently in the emerging
culture, they need to have a clear understanding of
the extension of metaphors based on computa-
tional concepts. This is truly possibly only by
having hands-on experience with computers and
an understanding of the paradigms that are used.

By introducing the concept of ‘models’ as the
focus, this course distinguishes itself from the other
‘applications courses’ offered to non-majors
around the USA. From a pragmatic point of view,
learning the packages from this perspective simply
gives the students much more power to generalize
appropriately. They carry out operations that they
would not have otherwise been able to carry out;
they can solve problems that they would not other-
wise have been able to solve. No matter in which
discipline the students find themselves, their
contribution surely will be that much greater.

INSTRUCTION

We have found by experience that maximal
learning takes place when the lectures were
strongly coupled to a hands-on multimedia lab
experience. As we implement this philosophy, our
approach has become more intensely learner-
centered than in previous years. As we develop the
curriculum, we struggle with designing a variety of
appropriate activities to be carried out by learner.

Learners are presented with a global picture of
the concepts, then work on discrete exercises that
form this picture. It is our belief that working from
both top-down concepts and bottom-up gives
students both an understanding of the whole and its
relation to the parts. This is accomplished through
a guided discovery of the topics in the course. Thus,
students will be enabled, once the course is
completed, to explore on their own in a systematic
and productive way. Our efforts for the past two
years have been to determine just how much
exploration and just how much guidance is needed
for a variety of learning styles.

Aside from a commercially available text detail-
ing the use of the packages, the course material
consists of lecture notes and a laboratory manual.
The lecture notes provide a printed version of the

overhead transparencies used in the lecture. The
lab manual presents a set of 28 ‘experiments’ or
guided explorations that enable the students to gain
experience and confidence in mastering new soft-
ware environments. The laboratory notes have
been twice revised and will be extensively
reworked this summer.

In the following paragraphs, we discuss how the
use of the hardware and evaluation of our efforts
have facilitated more effective instruction.

EVALUATION AND ASSESSMENT

Year 1

Laboratory facilities and logistics. Although the
laboratory facility for the recitation sections was to
have been completed for use during the fall 1991
semester, severe financial constraints at the college
caused us to defer its implementation to the
summer of 1992 for use during the fall 1992
semester. While this set back our schedule by two
semesters, it did have some positive consequences.
As aresult of the delay, we were able to take advan-
tage of technological and price breakthroughs that
were unavailable when funding was initially
granted for the purchase of the hardware.

In the interim, the existing facilities were strained
by the increased numbers of students enrolling into
the course and the budgetary hardships inflicted by
a cut in state financial support. These factors lead
to plans to make a more effective use of the FIPSE-
funded student aides and the NSF-funded labora-
tory. Originally we intended to use the new
laboratory strictly as a classroom for the recitation
sections. However, by confronting our problem
with staffing, we realized that by utilizing the
facility as an ‘open laboratory’ during those times
when classes were not scheduled, we could make
use of its unique architecture to multiply the effec-
tiveness of the student aides.

During the first year the student aides were
deployed in the college PC laboratory and circu-
lated among four rooms to help students on
demand. At times, students were not even aware
that these aides were available, since they were
stationed in a different part of the facility. Assign-
ing the student aides to the new laboratory and
making it an ‘open’ facility for the students to work
on their assignments did help solve this problem.

Curriculum design. Because of the time lag in
equipping the laboratory, in the first year of
implementation, the experimental curriculum was
implemented without the equipment. This meant
that students attended a lecture and recitation
sections and still worked in the computer labora-
tory outside of class. While not the optimum condi-
tions for introducing the new curriculum, it did
allow us to evaluate the initial impact of the new
curriculum independently from the impact of the
laboratory to modify those parts of the curriculum

Computer Literacy for Non-Majors 395

that did not depend on the laboratory, and test for
the effects of those changes separately.

During the first grant year, in collaboration with
the recitation instructors, we mapped out a lecture-
by-lecture syllabus delineating the topics to be
covered in each class and recitation session.

Impact. Ongoing evaluation of the curriculum is
carried out by collecting three sources of data:
classroom observations, student questionnaires
and student achievement on examinations. While
classroom observations by the lecturer, recitation
instructors and laboratory aides provided qualita-
tive data on the effect of the new curriculum from
the instructors’ perspective, the student question-
naires and exam scores completed the picture with
the students’ perspective at two times each
semester—the beginning and end. A number of the
classes were taped (both video and audio) and the
tapes were reviewed for lesson’s depth, breadth
and clarity of presentation.

The questionnaires that we designed provide us
with important information as to the characteristics
of our student population, their background,
reasons for taking the course, prior exposure to
computers, and their reaction to the course and its
contents. These were distributed, collected and
coded twice during each of the two semesters in the
first year.

Finally, the student performance on similar
examinations from semester-to-semester and year-
to-year provide us with evidence of levels of
mastery of the topics in the course.

Though a fuller analysis of these data is
scheduled for this summer, the information that we
have gleaned from the first year significantly
influenced the structure of the second year’s
course. We found, for example, that, as hypothe-
sized, the course has had a positive impact on the
willingness of students to take additional computa-
tionally oriented courses as a result of taking this
course. Of those students for whom this course
represented their first introduction to computers, a
full 25% expressed interest in additional math/
computer science courses directly as a result of this
course. We also found, somewhat to our surprise,
that for those students for whom this course was
their first introduction to computers, the female
students expressed slightly greater confidence in
the material learned than did their male counter-
parts. We say ‘somewhat to our surprise’ since the
prevailing wisdom has it that at college level,
women tend to be less confident about their mathe-
matical ability than men.

Another important result of our ongoing evalua-
tion was the detection of a problem both in
performance and in student confidence in the DOS
segment of the course. As a consequence of the
evaluations in fall 1991, we found that the first
topic covered, DOS, was causing significant
difficulty for the students. This became evident to
us via the multiple measures of exam scores and
student self-reports. The scores on both the

laboratory and final examinations for this topic
were the lowest among all the software topics. In
addition, the self-evaluations of level of confidence
in understanding the material were the lowest for
DOS on surveys administered both at mid and end
semester. These findings were confirmed by the
lecturer while observing some of the students
taking laboratory examinations in the spring 1992
semester, and by noting how the students tried to
solve the exam problems on the computer.
Through these observations it was verified that the
students’ mastery of DOS was, in fact, very shaky.

We hypothesized that there were three probable
factors contributing to this situation. The first
factor seemed to be that DOS was the first ‘sofware’
the students became familiar with, and for many the
first experience on the computer. It was possible
that their lack of performance was due to the new-
ness of the environment and the strangeness of the
concepts. Secondly, DOS does not represent a
particular ‘application’ as is the case with a spread-
sheet or a wordprocessor. Rather, it gives them the
tools for controlling various aspects of the PC
environment—such activities as copying files and
creating directories and subdirectories. The prob-
lem seemed to be that since the students have no
experience with ‘files’ that have been created by
other programs, they have little intuition about how
(or why) these files are to be copied. Thirdly, it
appeared that it is not only the abstractness of the
DOS environment that was causing the problems; it
was the ‘doing’ of the commands as well. Since the
students had not yet internalized a model of DOS,
they did not see the overall picture of how com-
mands were used and interrelated. They had
significantly more difficulty figuring out what to do
with DOS than in other software environments.

We decided to divide the DOS material into
more manageable units; we presented the prelim-
inary topics near the beginning of the course and
moved the more advanced topics, including direc-
tories and batch files, after the coverage of Word-
Perfect. With this change, we noticed a significant
improvement in the student’s understanding. This
will be detailed below.

In addition, we added an additional required
recitation (now supervised laboratory) hour to the
course. This was very positively received by the
students and resulted in notable improvement in
student performance.

Year 2

The laboratory facilities and logistics. The lab-
oratory was operational during the first month of
the fall semester at the beginning of the second
year. We had 30 networked 486 computers with six
students to a printer. The only setback was that the
Tech Commander unit, which would have allowed
the recitation instructor access to the student
station from the instructor’s console, was not
operational until the middle of the semester. This
was caused by scheduling problems of the various
craft unions on campus. We compensated for this,

396 J. Waxman and T. Austin

however, by having the instructors move from
station to station, and having the students in the
laboratory work together in informal ‘cooperative
teams’ to help each other out.

Problems that we experienced during this
second year due to a shortage of student tutors was
partially alleviated by additional funding (both
internal and external sources which are discussed
later). The problem of crowding in the general PC
laboratory was eased by the fact that we added an
additional instructor-led recitation hour, and many
students were able to complete a significant
amount of the work there and hence spent less time
in the general laboratory.

Curriculum design. While the course remains as
a lecture/recitation format, two structural changes
have been made: a sequencing of the DOS lessons
in the fall 1992 and spring 1993 semester cur-
ricula, and an increase in the number of laboratory
hours. In addition, a complete manual of exercises
was created to be used in the laboratory recitation
session. Student performance was monitored for
change.

In the fall 1992 semester, DOS was covered in
four chapters in consecutive laboratory sessions,
three through six. The intent was to determine
whether or not having explicit exercises with the
concepts of DOS would significantly affect student
performance. While we found some improvement—
the students’ laboratory grades went from an
average of 78 to 8 1—their self-confidence levels did
not change.

Though virtually all available textbooks, includ-
ing our current manual, cover the DOS material all
at once, both our experience and observation
indicated that this approach has been only slightly
helpful for the students. For this reason, during the
second semester of this second year, we attempted
further modifications by dividing the presentation
of DOS topics. The more elementary topics were
introduced at the beginning of the course and the
more advanced material was presented after the
students had experience with a software package.
With the new sequence of introducing basic DOS
concepts first, such as the idea of an operating
system, disk and file commands and more
advanced DOS topics such as directories and batch
files after WordPerfect, we found a significant
increase in the students’ DOS laboratory scores.
Whereas in the spring 1992 semester the average
was 78 on the DOS laboratory exam, in spring
1993 the average was 85. Thus, it seems that when
less of the abstract material was presented at the
beginning, the students had time to develop their
internal model in the context of a more ‘concrete’
program such as a wordprocessor.

Another significant issue, that of getting over the
initial ‘doing’ hurdle, was partially alleviated during
the fall 1992 semester when the laboratory became
operational. Since the recitation instructors were
able to offer immediate ‘hands-on help’, students
were able to master the pure ‘technique’ with

greater ease. In additon, we discovered, not much
to our surprise, that many of the poorer students
were spending as little as one hour per week
working on laboratory assignments. This amount
of time was truly insufficient to complete all the
exercises upon which they would be graded. this
was our first red flag that perhaps not all students
were actually completing the exercises; rather some
were copying the material.

Impact. To respond to the inadequate amount of
time, we were able to add an additional hour of
required recitation (laboratory) time to the course.
This has had a significant impact on both the
students’ impression of their mastery of the material
and their actual performance. During the spring
1992 semester (the second semester of the first
year), when the recitations were in a regular
classroom, there was no instructor-supervised
laboratory. The average grade for the first practical
(DOS and WordPerfect) was 79. During the spring
1993 semester, the first semester in which the
laboratory was available for the full course, with
two recitation sessions per week, the average on
that same exam was 85. Both semesters’ exam
assessed the same material and were administered
in the same fashion.

In trying to explain these results, we noted the
changes that have occurred from spring 1991 to
spring 1993, in which a manual was introduced and
extra weekly laboratory session was included. The
additional laboratory session provided students
with more hands-on-computer time working under
supervision instead of the past practice of allowing
students to use this same time to work independ-
ently. Since each laboratory examination dealt with
material that was explicitly covered in a recitation
instructor-lead class, the increase in score is not
attributable to more time being spent on the same
work. We suspect that even though, during fall
1992, the students had been expected to complete
the laboratory work from the manual on their own,
many did not in fact do so. In the spring 1993 sem-
ester, with the obligatory additional laboratory
contact hour, the students were in effect forced to
spend an additional hour, which helped them assi-
milate the concepts and solidify their understand-
ing of the underlying model.

By the end of the first grant year, the course
material consisted of a published student manual
containing about 175 pages of transparencies that
are used in the lecture, and handouts on assign-
ments and projects prepared by the recitation
instructors. Based on the syllabus we have outlined
in the fall of 1991, work was begun in spring 1992
on the design of laboratory manuals which were to
be used in the recitation classes for fall 1992. This
was carried out by Dr Waxman in collaboration
with one of the recitation instructors and with stu-
dents who had completed the course. A prelimi-
nary version of some of the materials was
completed by the end of May 1992 and was used
during a special section of the course (to be more

Computer Literacy for Non-Majors 397

fully described below which was taught by Dr Wax-
man in June 1992.

During the summer semester of 1992, we evalu-
ated the effectiveness of the preliminary laboratory
material. Before the beginning of the fall semester,
the manual was reworked and greatly expanded
into a 150-page laboratory manual with 28 differ-
ent labortory assignments. The model that was
used was that of a laboratory manual in one of the
sciences such as biology or chemistry. An initial
section described the laboratory objectives and the
rest of the laboratory guided the student through a
series of ‘explorations’ of the software and its
capabilities. It would start with simple problems
and gradually involve the student in more complex
problems. The manual did not tell the students
what to expect. It was deliberately designed to be
open-ended.

The manual was used in the fall 1992 semester
and, in a somewhat modified version, during spring
1993. The students’ assignments in the manual
were graded three times during each semester:
once for DOS and WordPerfect, once for Lotus
1-2-3 and, once for dBASE. The recitation instruc-
tors reported that the stronger students responded
quite favourably to the desing of the manual. How-
ever, the weaker ones were put off by its open-end-
edness. Consequently, we plan to revise the manual
and partition each laboratory into two sections.
The first will directly present the elementary mate-
rial. Students will be told what to do and what out-
comes they should expect. The second section will
introduce the more advanced material utilizing the
exploratory model but providing more ‘scaffolding’
to help the weaker student.

In order to collect the student data, we began an
automated data collection process. The protocol
has been programmed in Foxpro (a dBASE dia-
lect) and the students fill in the questinnaire on-
line. This allows much more time for us to code the
open-ended student responses and do data analy-
sis. The questionnaire has now been revised and
distributed for the fourth semester.

ADDITIONAL INFLUENCES

Two outside factors have also influenced our
project’s development. There are the increase in
support staff and the extension of the curriculum to
service a distinct population.

Increased student support

Although it is not easy to assess the extent to
which availability of additional individualized help
has nfluenced the students’ learning, we believe
that it must be acknowledged. While FIPSE is pro-
viding the salaries of a number of laboratory assis-
tants for this tutoring, we sought other funds to
increase the available outside-of-class help and to
broaden the pool of student advisors to include
undergraduates and particularly, minority stu-

dents. This was made possible because Queens
College was recently awarded a Ford Foundation
Multicultural Development Award. The faculty
was invited to present proposals to compete for
funding from this award in the form of semester-
long support for an appropriate project. At that
time, a request for a grant to augment the FIPSE
funds was submitted. These new funds would be
used for hiring laboratory assistants from a spe-
cially selected group of undergraduates to serve as
interns. Fortunately, we were awarded this grant
and were able to fund four additional undergradu-
ate student tutors.

Currently, the interns write accounts of the types
of student problems that surface while doing the
laboratory assignments. They have received orien-
tation and subsequent training to compile their
field notes. These data will be used to analyze pat-
terns of student strengths and weaknesses with the
course materials. In reviewing these data, the
interns discuss alternative ways of handlng the dif-
ficulties that students have in carrying out the
assignments. Hence they are being prepared to take
on supportive instructional roles while they learn
about different student learning styles.

Expansion of the reach of the curriculum

Queens College has an increasing number of
older students returning to complete degrees, and
has a special progrtam, Adult Continuing Educa-
tion (ACE) to accommodate them. One of the
courses offered int his program is a software ‘tools’
course. Last June, the Principal Investigator of the
grant taught this course to see if the curriculum, as
it had evolved thus far, could meet the needs of this
group as well as those of more traditional under-
graduates. Nationally, more and more older adults
are returning to the campus. It was hoped that
teaching ACE course would enable the PI to gain
some perspective on the unique needs of this
group. This course was offered in the summer pre-
ceding the second year of the project.

We found that while we could maintain the same
level of material with the older students, the
amount of both lecture and laboratory time
required for them to learn it increased by about
one-third. This group is an excellent one to work
with from a perspective of curriculum develop-
ment. Due to their maturity and rich life experi-
ences, they are serious and articulate. They are
quite vocal in expressing, in no uncertain terms,
what is working in the course and what is not. The
course was very successful. About 30 students
registered for it. Their response was so positive that
when the ACE program offered it again this sum-
mer, 100 students registered during the first after-
noon. Registration has been closed at slightly over
100.

We have continued to teach the course during
the summer following the second year of the pro-
ject, utilizing the curricular materials developed
over the year. The additional feedback on the utility
of these materials will permit us to compare the

398 J. Waxman and T. Austin

results from two years of teaching this special pop-
ulation.

CONCLUSION

We have described a new approach to teaching
computation to non-computer science majors. It is
based on the ideas of teching students how to mas-
ter new software on their own, that of imparting
computational ideas to non-computer science
majors, and that of incorporating a hands-on-
integrated laboratory component with adequate
support for whole class and individual instruction.
Preliminary experience with this approach has
indicated significant improvement over more stan-
dard approaches both in terms of the depth and the

breadth of the material learned. As the project
develops, we are gathering data on how various
types of student populations progress inour new
curriculum and laboratory. With these data, we
expect not only to be able to determine the impact
of the curriculum but also ‘how much and for
whom'. The results will allow us to help make our
instruction more learner-centered and may
develop a framework that can be profitably
adopted at other similar institutions.

Acknowledgemenis—The authors would like to gratefully
acknowledge the generous support of the National Science
Foundation—Instructional Laboratory Instrumentation Pro-
gram, grant no. USE 905-1014 and the Fund for the Improve-
ment of Post Secondary Education, United States Department
of Education, no. P116-B10157, whose funding made possible
the work reported on in this paper.

REFERENCES

1. J. Waxman, Model-based software instruction. Technical Report 91-007, Queens College,

Department of Computer Science (1991).

2.]. Waxman, An enriched laboratory-based non-majors introduction to computers. Creativity:
Proceedings of the Annual Conference of the American Society for Engineering Education (1992).

