0949-149X/91 §3.0040.00

Int. J. Engng Ed. Vol. 11, Nos 4 and 5, pp. 329-335, 1995
© 1995 TEMPUS Publications.

Printed in Great Britain.

HIPP: An Honors Program in Parallel
Processing

BOB P. WEEMS
KRISHNA M. KAVI
BEHROOZ SHIRAZI

Department of Computer Science and Engineering, The University of Texas at Arlington, POB 19015,
Arlington, TX 76019, USA

The Honors Program in Parallel Processing (HIPP) was established to provide undergraduate
education in parallel processing. We present the goals of parallel processing education, and
outline the supporting curriculum and laboratories. We emphasize certain courses that include
relevant parallel processing material. The Programming Language Concepts course introduces
parallel languages, while the Algorithms course introduces algorithm analysis concepts needed
for later examination of parallel algorithms. The two semester Computer Systems Architecture
course provides foundation in parallel architectures. The final related course, Parallel Processing,
brings together these foundations in the study of parallel algorithms. In addition, we describe
some recent undergraduate theses (a HIPP graduation requirement) and a NSF Research
Experience for Undergraduates (grant no. CDA-9300252) program. A NSF-1L1I grant (no. CDA-
9052136)has made possible the purchase of the parallel processing equipment for use with the

HIPP program.

THE CURRENT STATE OF PARALLEL
PROCESSING

UNDERGRADUATE honors programs acceler-
ate the learning pace for motivated students and
provide experiences outside the usual curriculum.
The goal of our honors program is to cultivate
parallel processing skills along with a high-quality
computer science and engineering education. An
eight-processor Sequent Symmetry system to sup-
port the honors program has been purchased with
an NSF-ILI grant and UTA matching funds.

The need for increasingly powerful computing
systems has existed ever since computers were
invented. This trend is expected to continue, result-
ing in multiprocessor systems with large numbers
of processing units. The number of people capable
of using parallel systems, however, is still very
small. Even though more parallel processors,
parallel and vectorizing compilers, and debugging
tools are becoming available, we believe that with-
out the scientific base, creative talent, understand-
ing and demanding users, the potential of such
configurations is wasted.

Typical computer science and computer
engineering programs provide few opportunities to
specialize in parallel processing, often only at the
graduate level [1]. Some programs offer courses on
parallel architectures, concurrent programming
languages or senior design projects involving
parallel processing systems. Parallel programming
requires a clear understanding of both the target
machine architecture and the exploitable parallel-
ism within the application. Generating parallel

329

code involves non-trivial operations that have no
analog in code generation for uniprocessor archi-
tectures. These include the partitioning of work
into schedulable units, optimal assignment of the
partitions on the available processors, and the
additional code needed for interprocessor com-
munication and synchronization. The performance
of the code on parallel processors depends signifi-
cantly on these operations.

The curriculum and courses must be designed to
provide the student with a background in parallel
architecture, interconnection networks, memory
systems, parallelization of algorithms, concurrent
programming methods and operating systems,
before experiments and design projects can be con-
ducted. Courses providing necessary foundation in
these areas must be taught early in the program.
Only then can carefully planned and well-designed
capstone projects utilizing parallel systems for the
solution of non-trivial engineering problems be
conducted.

THE HONORS IN PARALLEL PROCESSING
CURRICULUM

Curriculum overview

We believe that the principles of parallel pro-
cessing cannot be taught in a single semester. Nor
can they be mastered in a small number of labora-
tory exercises. They require a carefully planned
introduction to the underlying principles, tech-
niques and mechanisms. Moreover, the foundation
should be laid very early in the program.

330 B. P. Weems, K. M. Kavi and B. Shirazi

The program in the UTA Computer Science
Engineering Department is accredited by ABET
and thus emphasizes the traditional engineering
education. The CSE curriculum provides an exten-
sive background in computer science and com-
puter engineering, including architecture,
operating systems, software engineering, data
structures, algorithms, numerical methods and
microprocessors. Students use elective courses to
concentrate in an area of specialization.

While maintaining the emphasis on traditional
engineering, the HIPP curriculum differs from the
existing undergraduate program by emphasizing
theory and practice of parallel programming at
several levels. First, in selected courses, HIPP
students perform additional activities that emphas-
ize parallel processing. For example, students in
the Algorithms course (CSE 2320) study
approaches to parallel sorting, and students in the
Programming Languages course (CSE 3302) learn
concurrent programming languages such as Ada,
SR [2], Occam [3], Concurrent FORTRAN, Con-
current C and SISAL (a dataflow language).

Secondly, all students in HIPP are required to
take courses on parallel processor architecture
(CSE 4323) and parallel processing (CSE 4351).
These courses provide the theory and practical
relevance to the underlying models of parallel com-
putations. These courses are available to regular
CSE students as technical electives.

Thirdly, the HIPP curriculum requires an indi-
vidual honors thesis. The thesis is initiated by an
Honors Seminar (CSE 4155) taken concurrently
with the Parallel Processing course (CSE 4351).
Students develop project proposals, collect the
relevant literature, and make a presentation to the
HIPP faculty advisers. The project is then imple-
mented during two semesters of honors thesis
(CSE 4356/4357). The thesis sequence replaces
the current Senior Design Project sequence (CSE
4316/4317). The honors projects provide the
HIPP student with depth and experience in explor-
ing parallel solutions to scientific and engineering
problems. These problems challenge the student
with trade-offs related to scalability, maximizing
parallelism, minimizing communication and syn-
chronization overheads, memory configurations,
interconnection topologies and data organizations.
The student must analyze the problem carefully,
study possible parallel implementations (either
existing or new approaches), select an optimal solu-
tion, and evaluate the performance, efficiency and
accuracy of the chosen solution. The thesis report
must document all design decisions, and reflect the
scientific and engineering nature of the experiment.
It is hoped that these projects will encourage stu-
dents to pursue graduate studies in computer
science and engineering. The thesis sequence is
available only to the HIPP students. The courses
directly relevant to HIPP are diagrammed in F 1.1

Another difference between HIPP and the
current curricula is the timing of required courses
(see Appendix A for a suggested course sequence).

We anticipate that many HIPP students will be
exempt from the introductory Pascal course and
Analytic Geometry, to allow for a rapid progres-
sion through the prerequisite courses. Courses
which do not directly impact the parallel process-
ing education are delayed. Even though the HIPP
curriculum is more structured and contains more
required courses than the non-HIPP undergradu-
ate program, it still allows two technical electives.
Students are encouraged to use these electives
during their junior year to gain depth in an applica-
tion area for cultivating parallel processing projects
of the honors thesis.

Supporting courses

The HIPP curriculum is designed to follow the
spirit of the ACM curriculum task force |3] recom-
mendations. The major problem with our previous
CSE curricula stemmed from a programming
emphasis in early courses, without a firm founda-
tion in theory and abstractions. As is common in
CSE (and CS) departments, our students were
required to take Discrete Mathematics in the
Mathematics Department. Typically, students take
this course in their junior year, after they have
already been exposed to some of the material in
freshman and sophomore CSE courses.

Previously, students enter the CSE curriculum
with a two-hour course, Introduction to Comput-
ing (CSE 1241), which teaches elementary algor-
ithm design and the use of computing resources.
Following CSE 1241, students took a Pascal
course (CSE 2304), and then a course in assembler
language and C programming (CSE 2310). Few
students used the option of taking Data Structures
(CSE 3306), concurrent with or before the assem-
bler course. Thus, the students gain three semesters
of programming with little theory. Inevitably, these
programming courses tend to impinge on material
from the data structures course. In addition, a large
number of demanding CSE courses (e.g. Archi-
tecture, Software Engineering, Operating Systems,
Compilers) are pushed into the senior year. These
courses and the Senior Design Project (CSE 4316/
4317) place undue demands on students’ time and
resources. This initial course sequence also did not
consider exceptional freshman who can be exempt
from the first two introductory courses (CSE
1241/2304).

In support of the HIPP curriculum, we have
redesigned the introductory sequence. A suggested
HIPP course sequence, that also reflects these
changes in course content, is included in Appendix
A. The problem of mathematical foundations is
addressed in the first year. Also note that HIPP
students complete courses related to parallel pro-
cessing (e.g. CSE 2441 and CSE 3322) early in the
program. All HIPP students are required to take
courses on parallel processor architecture (CSE
4323), and parallel processing (CSE 4351). We
now elaborate on some courses.

Mathematical Principles (CSE 1442). Given the
widespread use of computers, we can assume that

HIPP: An Honors Program in Parallel Processing 331

Hierarchy in Parallel Processing

Fig. 1. HIPP curriculum structure.

students entering our program will have a modest
background in programming and some experience
with computer-based tools. (A remedial course on
Pascal programming is still available.) This allows a
freshman-level course to introduce the theory and
abstractions that are the foundation of the com-
puter science. Part of this theory is normally taught
in the junior year under the rubric of Discrete
Mathematics. Other aspects of the theory, such as
propositional and predicate calculus, are not
included in most programs. Teaching logic and
encouraging use of formal proofs will make it
possible to teach formal specification and verifica-
tion in other courses.

CSE 1442 is designed with this motivation. This
course introduces the mathematical formalisms
that form a basis for later courses. The use of logic
proofs is encouraged throughout the course. Algo-
rithm design and some data structures are intro-
duced as needed, thus building on their
programming knowledge. Because of the introduc-
tion of these mathematical structures, it is possible

to improve other courses such as CSE 2441
(Digital Logic) and CSE 2320 (Algorithms/Data
Structures). This, in turn, makes it possible to bring
courses on architecture, compilers and operating
systems to the sophomore and junior years of the
curriculum.

Design and Analysis of Algorithms (CSE
2320). Even though introductory courses em-
phasize top-down decomposition of a programm-
ing task, the refinements at lower levels may still
present a simply-described problem for which a
straightforward solution will not provide sufficient
performance. In CSE 2320, such problems are
introduced, analyzed and efficient designs are
examined. CSE 2320 requires a background in the
elementary data structures learned in programm-
ing courses and the mathematical maturity from
CSE 1442. This course introduces complex data
structures through examples. For instance, we
believe that balanced trees and hashing deserve
early attention. Specialized structures, such as self-

332 B. P. Weemns, K. M. Kavi and B. Shirazi

adjusting lists, optimal search trees and perfect
hashing, provide insight into the notions of amort-
ized complexity, dynamic programming and back-
tracking, respectively. Other topics include
algorithm design techniques, lower bounds on
problem complexity, NP-completeness and para-
llel algorithm concepts.

Programming Languages (CSE 3302). The course
on programming languages has been revised to
increase the emphasis on programming language
concepts and implementation issues. Knowing that
students have absorbed much of the basic mathe-
matical formalisms already, we use formal gram-
mars to describe language syntax. Since the
students are comfortable with the mathematical
structures, we do not hesitate to introduce opera-
tional, denotational and axiomatic methods to
describe programming language semantics and to
illustrate the power of such techniques.

Discussion of programming language models of
concurrency are included in all sections of CSE
3302. HIPP sections emphasize concurrency
issues and treat languages designed or extended to
support parallel processing in considerable detail.

Computer Architecture and Systems (CSE 3322 and
CSE 4323). CSE 3322, Computer Architecture I,
is required of all CSE majors. Topics include:
instruction set architecture, hardwired design of
the processor, microprogramming, input/output
and memory units. CSE 4323, Computer Archi-
tecture II, is required for all HIPP students and is
available as an elective to all CSE undergraduates.
Topics include: pipelined control and arithmetic
logic unit designs, parallel processor organizations
(such as SIMD and shared memory MIMD,
message passing MIMD, dataflow processing,
cache memory design and processor-memory
interconnections.

Parallel Processing (CSE 4351). A new course
called Parallel Processing is designed mainly for
HIPP students. Through this course, students
obtain basic knowledge in programming parallel
processors in preparation for their honors theses.
More specifically, the course (i) integrates the con-
cepts and knowledge of parallel processing from
previous courses (i.e. issues related to parallel
architecture covered in CSE 4323, operating sys-
tems including interprocess communication and
synchronization covered in CSE 3320, and pro-
gramming languages and compilers covered in
CSE 3302 and CSE 4305); (ii) teaches parallel
algorithms (e.g. sorting, searching, matrix manipu-
lation and graph algorithms) and analyzes them for
efficiency and speed-up; and (iii) discusses the
issues in utilizing parallel systems for applications.
Both topology-independent algorithms based on
shared memory abstractions (more commonly
called P-RAM algorithms, Parallel Random
Access Memory [5]) and topology-dependent
algorithms [6] are introduced.

Honors Thesis (CSE 4155, 4356, 4357). The
honors thesis provides the HIPP student with
significant depth and experience in exploring para-
llel solutions to non-trivial, realistic scientific and
engineering problems. The HIPP student faces
challenging trade-offs during the meticulous and
cogent development of the project ideas into actual
systems. The student is required to analyze the
problem carefully, study possible parallel imple-
mentations, select an optimal solution, and evalu-
ate the performance, efficiency and accuracy of the
chosen solution.

Some examples of HIPP theses include: parallel
processing techniques with finite-element
methods, design of real-time control systems, main
memory databases and multiprocessor join pro-
cessing, exhaustive query optimization, concurrent
data structures, parallel processing for the analysis
of stochastic Petri nets, simulation of digital cir-
cuits, parallel event-driven simulations, discrete
computational geometry and deadlock-free con-
currency primitives. Students are encouraged to
use the technical electives to gain depth in the
chosen application area.

All HIPP students must attend weekly meetings.
These informal, free-format meetings help the
student with problems related to their courses, and
develop comradery and working relationships
among students so that they can exchange ideas
and explore creative solutions. Senior and graduate
students discuss their research projects and theses.
Seminars by visiting scholars, industrial leaders
and faculty add to the learning process. Discus-
sions on ethical, societal and safety implications of
the computing and engineering professions by
examining case studies are a regular part of these
weekly discussions. The honors students are
encouraged to read popular books (e.g. The Soul of
a New Machine [7], Fumbling the Future |8], The
Cuckoo'’s Nest [9]), along with various texts provid-
ing advanced knowledge not specifically covered in
the courses.

THE RESEARCH EXPERIENCES

Three honors theses have been completed by
undergraduates in the HIPP program. One student
studied the MAISIE environment for developing
distributed simulation [10] software. Another
student implemented and evaluated concurrent
approaches to maintaining a binary search tree [11].
In arecent ambitious project, a student developed a
simulator for the MONSOON dataflow architec-
ture. We anticipate the completion of numerous
theses in the next few years.

The Research Experience for Undergraduates
for Undergraduates in Software Tools for Parallel
Program Development and Assessment project
provides opportunities for highly talented and
motivated women, minority, and disabled under-
graduate students, especially from institutions
lacking research facilities in the Dallas/Fort Worth

HIPP: An Honors Program in Parallel Processing 333

metropolitan area, to participate in on-going
research in the field of parallel processing. The
recruited students not only participate in scientific
research, but also learn the intricacies of teamwork
in a large-scale project. In addition, they are being
trained in literature searching, reading papers,
technical writing, and technical presentations. Cur-
rently we have seven students in our REU program
(two from UTA, two from Texas Weslyan Univer-
sity, one from Dallas Baptist University, one from
Paul Quinn College, and one from Texas Christian
University). There are four females and seven
males in the program, two of which are also minor-
ities.

In this REU program, seven junior/senior
undergraduate students per year investigate prob-
lems related to parallel program development,
debugging, scheduling and performance profiling
under the supervision of the principal investigators
(Shirazi and Kavi) and in collaboration with a num-
ber of graduate students. The students can choose a
research subproject as part of the PARSA
(PARallel program Scheduling and Assessment
tools) project [12]. Examples of projects include:
parallel program design and verification, formal
specification of parallel programs and archi-
tectures, parallel program debugging, static parti-
tioning of programs into tasks, scheduling of tasks
on available processors, distribution of data to
minimize network and memory access delays,
profiling the program performance on the under-
lying parallel architecture, and extending the model
and environment to handle real-time distributed
applications.

CURRENT STATUS, EXPERIENCE AND
THE FUTURE

During the Spring 1991 semester, the Sequent
system was used by the students in CSE 4323
(Architecture of Parallel Processors). Several
simple programming problems were assigned to

introduce the MIMD system (e.g. matrix multipli-
cation, bitonic sort). A few term projects involving
substantial programming in Concurrent C and
Sisal were completed on the Sequent. The feedback
from the students was positive with respect to the
choice of the parallel processing system. The Dynix
operating system, the Concurrent C compiler, and
the software tools (e.g. gprof, pdbx) were easy to
learn and use. The system was also used by students
in two graduate courses, CSE 5350: Computer
Systems Architecture and CSE 6351: Distributed
and Parallel Computing.

InFall 1991, CSE 4351: Parallel Processing was
taught for the first time. Twelve students took the
course. Several programming projects required
students to utilize the concurrent programming
languages (C and FORTRAN) and tools available
with Dynix on the Sequent, and measure the per-
formance of their parallel programs. The book by
Akl [13] was used, but was found to be a bit
theoretical and distant to undergraduates. In Fall
1992, CSE 4351 was offered for the second time,
but using Quinn’s book [14] instead. CSE 4351 will
be offered in Fall 1993, but will take advantage of
the recent release of the SR language [2]. SR allows
programming the Sequent in its usual shared
memory fashion, but also allows for the convenient
simulation of message-based algorithms for hyper-
cubes and other topologies.

The immediate goal of HIPP is to produce well-
prepared computer scientists capable of applying
the state-of-the-art in parallel processing. For the
future, we wish to include many of these capabil-
ities in all of our graduates. The means for accom-
plishing these is a curriculum featuring the early
introduction of the mathematics of computing,
coupled with strengthening the application of these
concepts in a research setting. Besides fine-tuning
the HIPP curriculum, we are anxious to provide
other parallel processing experiences to HIPP
students (e.g. vector processing, message passing
MIMD, functional languages, and distributed pro-
cessing via a network of workstations).

REFERENCES

1. R. Miller, The Status of Parallel Processing Education: 1993, Technical Report, Department of
Computer Science, State University of New York at Buffalo (August 4, 1993). Available by
anonymous ftp from cs.buffalo.edu.

2. G. R. Andrews and R. A. Olsson, The SR Programming Language: Concurrency in Practice,
Benjamin/Cummings, Redwood City, CA (1993).

3. INMOS Limited, Occam Programming Manual, Prentice Hall, Englewood Cliffs, NJ (1984).

4. P.J. Denning et al., Computing as a discipline: final report of the ACM Task Force on the Core of
Computer Science (February 1988).

5. J. H. Reif (ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann, San Mateo, CA (1993).

6. F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kaufmann, San Mateo, CA (1992).

7. Tracy Kidder, The Soul of a New Machine, Little, Brown, Boston, MA (1981).

8. D.K. Smith and R. C. Alexander, Fumbling the Future: How Xerox Invented, then Ignored, the First
Personal Computer, W. Morrow, New York (1988).

9. C. Stoll, The Cuckoo’s Nest: Tracking a Spy through the Maze of Computer Espionage, Doubleday,
New York (1989).

10. D. A. Reed and R. M. Fujimoto, Multicomputer Networks: Message-Based Parallel Processing, MIT
Press, Cambridge, MA (1987).

334 B. P. Weems, K. M. Kavi and B. Shirazi

11. U.Manber and R. E. Ladner, Concurrency control in a dynamic search structure, ACM Trans. Data-

base Syst., 9(3), 439-455 (1984).

12. Behrooz Shirazi, PARSA: A PARallel program Scheduling and Assessment environment, Technical
Report, Department of Computer Science and Engineering, University of Texas at Arlington

(January 1992).

13. S. G. AkKl, The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood Cliffs, NJ

(1989).

14. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New York

(1987).

APPENDIX A: SAMPLE FOUR-YEAR
PROGRAM

Freshman year
Fall 1 (15)
CSE 1442: Computer Science: A Mathematical
Introduction
MATH 1426: Calculus I
PHYS 1443: General Technical Physics I
CHEM 1301: General Chemistry
Spring 1 (18)
CSE 2310: Assembly and C Languages
CSE 2441: Computer Organization
PHYS 1444: General Technical Physics II
MATH 2425: Calculus II
ENGL 1301: Critical Thinking, Reading and
Writing |

Sophomore year
Fall 2 (16)
CE 2312: Statics and Dynamics
EE 2315/2181: Circuit Analysis I/Lab
CSE 2320: Design and Analysis of Algorithms
ENGL 1302: Critical Thinking, Reading and
Writing IT
MATH 2326: Calculus IIT
Spring 2 (15)
CSE 3302: Algorithmic Languages
CSE 3322: Computer Architecture I
MATH 3318: Differential Equations
MATH 3330: Matrix Algebra
ENGL: Literature Elective

Junior year
Fall 3 (18)
EE 2321: Electronics for Engineers
CSE 4323: Computer Architecture 11
CSE 3320: Operating Systems
CSE 4305: Compilers
IE 3301: Engineering Probability
HIST/POL.: History/Political Science Elective

Spring 3 (14)
CSE 3442: Microcomputer Systems Design
CSE 3310: Software Engineering
CSE 4351: Parallel Processing
CSE 4155: Honors Seminar
HIST/POL: History/Political Science Elective

Senior year
Fall 4 (15)
CSE 4356: Honors Thesis I
CSE: Elective
SPCH 3302: Professional and Technical Com-
munication
HIST/POL.: History/Political Science Elective
HUMA: Humanities Elective
Spring 4 (15)
CSE 4357: Honors Thesis I1
CSE: Elective
IE 3312: Engineering Economy
HIST/POL.: History/Political Science Elective
HUMA: Humanities Elective

Total: 126 hours (Analytic Geometry and Pascal
Programming are assumed to be waived via Ad-
vanced Placement Examinations)

APPENDIX B: SUPPORTING HARDWARE

e Sequent S27 Building Block

Four dual processor boards, each with two Intel
80386/80387/MMU/64KB cache

40 MBytes ECC memory

1/4 in. cartridge tape

6250/1600 BPI tape drive

Two 540 MByte disk drives

Two 792 MByte disk drives

Bob P. Weems received the Ph.D. from Northwestern University in 1985. Since that time he
has been with the Department of Computer Science Engineering in the College of Engineering
at the University of Texas at Arlington. He has taught courses on databases, algorithms, data
structures and parallel processing. His research emphasizes topics in these areas, including
databases security, engineering databases, computational geometry and resolution theorem
proving. He has served as an associate undergraduate advisor and currently serves as an
associate graduate advisor. Finally, he has advised student organizations and has coached the

UTA Programming Team since 1986.

Krishna Kavi is currently a professor of Computer Science and Engineering at the University
of Texas at Arlington. His research interests are in dataflow architecture, performance

HIPP: An Honors Program in Parallel Processing

analysis, parallelizing compilers and formal specification of concurrent processing systems.
He is also interested in developing courses and curicula in the area of parallel processing. He
serves as a CSAB visitor, and he is an editor of the IEEE Transactions on Computers. He was
an IEEE CS Distinguished visitor and served as an editor of the IEEE CS Press. He received
his MS and Ph.D. from Southern Methodist University.

Dr Behrooz Shirazi is an associate professor of Computer Science and Engineering at the
University of Texas at Arlington. Dr Shirazi’s research interests include parallel and distri-
buted systems, task partitioning and scheduling, and computer architecture. He has published
over 60 technical papers in these areas. Dr Shirazi’s research has been sponsored by grants
from NSF, DARPA, AFOSR, TI, and the State of Texas ATP. He has been a guest-editor of a
special issue of the Journal of Parallel and Distributed Computing and a track coordinator of
the HICSS '93 Conference, both on ‘Scheduling and Load Balancing Issues’. Dr Shirazi is the
principle founder of the IEEE Symposium on Parallel and Distributed Processing and has
served on the program committee of many international conferences. He is currently an IEEE
Distinguished Visitor as well as an ACM Lecturer.

335

