Int. J. Engng Ed. Vol. 11, Nos 4 and 5, pp. 306-313, 1995 0949-149X/91 $3.00+0.00
Printed in Great Britain. © 1995 TEMPUS Publications.

An Undergraduate Data Communications
Laboratory

WAYNE D. SMITH
Department of Computer Science, Mississippi State University, MS 39762, USA

This paper reports on the design, implementation and operation of an undergraduate data
communications laboratory over a four-year period at Mississippi State University. This
laboratory was developed with support from NSF and contains 10 IBM-compatible micro-
computers. Communications are accomplished through the serial ports of the computers using
RS§232 protocols. A series of experiments was designed that give students practice in writing
communications protocols in the Turbo Pascal language. A significant quantity of software was
developed locally to support this laboratory.

AUTHOR QUESTIONNAIRE

1. The paper describes new training tools or labor-

atory concepts/instruments/experiments in:
A first course in data communication and/or
computer networks.

. The paper describes new equipment useful in

the following courses:
The equipment is not really new. Standard
personal computers and the Turbo Pascal
programming environment are used in a new
approach to the teaching of computer data
communications through the use of a planned
sequence of programming assignments
implemented in a data communications
laboratory.

. Level of students involved in the use of the

equipment
Upper-division undergraduate and graduate-
level students are and have been involved
with this equipment in this laboratory.

. What aspects of your contribution are new?

The use of a laboratory to support the teach-

ing of data communications concepts is relat-

ively new. Also, the concept of having the

students actually accomplish the programm-

ing of data communications protocols in data

communications laboratory is new.

. How is the material presented to be incorpor-

ated in engineering teaching?
An instructor reading the paper could pretty
much establish a similar laboratory with little
additional information. However, supporting
materials, including class handouts, pro-
gramming assignments, laboratory protocols
and supporting software, are available from
the author without cost. Using this material
would greatly facilitate the establishment of
such a lab.

6. Which texts or other documentation accom-

pany the presented materials?

306

The two textbooks that I have used to support
this course are:

William Stallings, Data and Computer Com-
munications [1].

Andrew S. Tannenbaum, Computer Net-
works [2].

I am currently using the fourth edition of
the Stallings book. In addition, a number of
class handouts are used to present the details
of the protocols used in the class. These are
available free of charge from the author.

7. Have the concepts presented been tested in the
classroom. What conclusions have been drawn
from the experience?

Yes, I have used this laboratory for four years.
The results have been excellent.

8. Other comments on benefits of your presented
work for engineering education.

Engineering education at almost all levels is
greatly enhanced by the use of laboratory
experiences used to reinforce the materials
learned in the classroom. This laboratory was
established in an effort to provide the stu-
dents with a better education in computer
communications than is possible in any sur-
vey course without a laboratory. A number of
other institutions have requested materials
for use in setting up similar laboratories of
their own.

INTRODUCTION AND HISTORY

IN THE FALL of 1987, the Department of Com-
puter Science in conjunction with the Department
of Electrical Engineering at Mississippi State Uni-
versity introduced an undergraduate course in data
communications and networks that would become
a required course for computer engineering
majors. This course was introduced primarily to
provide computer science and computer engineer-

An Undergraduate Data Communications Laboratory 307

ing graduates with a firm background in data com-
munications.

Based on the conviction that a laboratory to
support this course was essential for a thorough
coverage of the material, a project was initiated in
1987 to develop a laboratory to support the pro-
posed course. Between 1987 and 1989, the
specifics of the requirements for such a laboratory
were developed, along with a basic outline of the
laboratory exercises that would be used in the
course.

As the plans for the laboratory were being
developed, a proposal was submitted to the
National Science Foundation to obtain a matching
grant under the Instrumentation and Laboratory
Improvement (ILI) program. This grant was
approved in March of 1989, and the laboratory
equipment was installed in the Fall of 1989,

THE PHILOSOPHY BEHIND THE
LABORATORY

The major goal of the project was to establish the
undergraduate course in data communications and
to develop the undergraduate data communica-
tions laboratory to support classroom instruction.
The major consideration in structuring the labor-
atory was to provide the students with exposure to
data communications in more depth than at just the
user level. The experiments and laboratory equip-
ment were intended to provide the students with
the practical experience needed to prepare them to
assume a role in computer data communications
systems design and implementation.

Because of the need for this designer-level inter-
action with the network, the idea of using a labor-
atory equipped with any of the many off-the-shelf
networks was rejected early in the design phase. It
was felt that while a laboratory of this type would
provide the student with some facility for using a
computer network, it would not provide the hands-
on experience at the programming level that was
needed for the students in question. Using a com-
mercial network would, in fact, mask the very
features that the data communications course was
being designed to address.

It was also decided that the laboratory experi-
ments should be built on the students’ prior course
experiences and should not require the learning of
new computer languages or operating systems.
Since all computer science, computer engineering
and electrical engineering students at Mississippi
State take a course in Pascal, this language was
chosen as the programming tool for the laboratory.

In designing the laboratory experiments, it was
felt that no single network topology would address
all the issues that needed to be covered in the
course. For this reason, it was decided that the
laboratory should be designed to permit rapid
reconfiguration of the network being used. This
required a collection of machines of very similar
architecture that could be treated as identical

modules when the network topology was being
configured. In addition, facilities would have to be
provided so that very rapid changes in interconnec-
tions would be relatively easy to accomplish.

Finally, it was desirable to keep the cost of the
laboratory to a minimum. This meant that the
number of computers and the cost per machine
should be kept as low as practical.

THE LABORATORY EQUIPMENT
SPECIFICATIONS

Based on the preceding specifications, the
decision was made to equip the laboratory with
IBM-compatible personal computers and to imple-
ment all the data communications operations
through the serial ports of these machines. The
primary attraction of this type of machine is its low
cost. Another advantage of the IBM clones is that
the students are familiar with this type of computer
and its operating system. In addition, the majority
of these machines come with two serial ports, and
additional ports can be added at a relatively low
cost. Further, most of the students taking the
course are familiar with Turbo Pascal, which runs
on these machines.

To facilitate the reconfiguration of the topo-
logies of the networks for different experiments,
modular phone plugs were used. An RS232 to
modular plug adapter was used that permits inter-
connections between the various machines using
four-conductor modular phone cables and plugs. A
modular cable is run from each serial communica-
tion port on each PC to a modular plug patch panel.
From the patch panel, the communications ports
on one PC can be connected to the communica-
tions ports from another PC by using an additional
modular phone cord. The computers purchased for
use in the laboratory include two serial ports. The
use of the patch panels and modular phone cords
permit the establishment of a wide variety of
network topologies that are useful in the labor-
atory. The reader who is unfamiliar with data
communications is referred to the textbook by
Stallings [1] or an equally good text by Tannen-
baum [2] for introductory information. Additional
information is included in the glossary at the end of
this paper.

Figure 1 indicates how a point-to-point topology
is accomplished. This arrangement provides full
duplex communications between the two
machines. If needed, half-duplex operation can be
simulated by having a transmitting machine empty
the receive buffer of any data that arrives during its
transmission period.

A token ring network [3] can be configured as
shown in Figure 2 by successively interconnecting
the communications port 1 on one machine to
communications port 2 on the next machine until a
ring is completed. Each station transmits on one
port and listens on the other port. Hughes [4]
suggests that a bus topology (carrier sense, multiple

308 W. D. Smith
7
conl COA2 conl con2
Fig. 1. Point-to-point topology.
PC e PE
(v (v (v () (e (e

Fig. 2. Ring or bus topology.

access with collision detection—CSMA/CD) [5]
can be simulated by utilizing a structure similar to
the token ring network. Each station transmits on
one port and listens on another. A station initiates a
transmission only after listening to ensure that the
bus is not in use. Any non-transmitting station that
receives traffic on its input port automatically
relays that traffic to its output port.

The transmitting station listens to its receiving
port while it is transmitting. If the received data
does not match the transmitted data, the trans-
mitting station assumes that another station is also
transmitting and that a collision has occurred.
Stations involved in a collision immediately stop
transmitting and use a random backoff algorithm to
establish a time at which to resume transmission.

The serial communications port approach to
data communications is most appropriate to
character-oriented protocols involving asynchron-
ous communications. However, it is not limited to
this type of protocol. By treating the lower-level
procedures as service access points (SAP) for the
higher layers, the details of the asynchronous data
communications are effectively hidden from the
routines written by the student. Therefore, the
system can be thought of as either a synchronous or
an asynchronous system. Implementing a bit-
oriented protocol can also be accomplished
through the serial ports. To accomplish this type of
operation, a full byte is transmitted, but only 1 bit of
the byte is treated as data by the sender and
receiver. This ‘fat bit'" protocol was used by
Margaret M. Reek [6] in a serial input/output-
based data communications laboratory utilizing
SUN workstations.

At Mississippi State, 10 computers are used to
support the communications laboratory. This is an
adequate number to support an enrolment of about
20 students in a laboratory section. This provides
five pairs of computers during point-to-point
experiments. It also allows for two or more ring or
bus topologies, as needed. The microcomputers
have 30 Mbyte hard disks and parallel printers.

After several semesters of trial and error, the
configuration that has evolved is one that contains
three clusters of machines. Two clusters contain
three computers, and the fourth contains four
machines. Each cluster has its own individual patch
panel and a collection of interconnecting wires.
This configuration permits three groups of students
to be at work simultaneously. Three machines pro-
vides for a sender, a receiver and a network
monitor if needed. If larger networks are needed,
longer modular cables can be used to interconnect
the clusters. The laboratory has supported a
network of up to eight machines at one time.

Recently the laboratory equipment has been
augmented with several Sperry portable personal
computers that became available to the department
without cost. These machines are used exclusively
as system monitors, and free up the hard-disk,
80386 machines for programming and data com-
munications experiments. It represents an excellent
way to utilize some equipment that would other-
wise have been discarded.

LABORATORY SOFTWARE FACILITIES

Each computer in the lab is provided with DOS
and a copy of Turbo Pascal. Originally, the labor-
atory used Turbo Pascal version 3.0, but this has
lately been upgraded to version 6.0. On each com-
puter, there are two subdirectories that contain
software that has largely been developed locally for
use by the students.

In one subdirectory is a collection of routines
that can be invoked from within the student’s
Pascal program to provide the basic physical layer
functions required for the data communications
operations. The operations provided by these
routines include configuring the communications
ports, reading a byte from the communications
port, and writing a byte to the communications
port.

Additional software tools that are used to assist

An Undergraduate Data Communications Laboratory 309

the student with programming assignments are
provided in a second directory. These tools are
generally object versions of software that can be
executed, but not read or modified, by the student.
Two examples are the Xmit program used as a
transmitter while the student is writing the receiver
program, and the Monitor program that permits
the student to observe traffic between computers
during testing and debugging.

HOW THE EQUIPMENT IS USED

The equipment in this laboratory is used to
explore various levels of telecommunications
operations through a series of experiments involv-
ing data communications hardware and software.
The students begin by writing a very simple point-
to-point data receiver program that uses a very
simple protocol. Throughout most of the remain-
der of the semester, the student expands and
modifies the program from the preceding experi-
ment in order to provide additional features and
services to the communications protocol. This
point is stressed at the beginning of the semester,
and the students are encouraged to write modular,
structured code that conforms to the general Open
Systems Interconnection (OSI) seven-layer com-
munications model. The students who produce the
better code in the beginning reap the rewards in
later experiments.

About one-half of the semester is devoted to
basic telecommunications experiments. These
experiments utilize pairs of microcomputers con-
nected in a point-to-point configuration. Within
this topology, the students implement a simple half-
duplex character-oriented protocol that approxi-
mates a subset of IBM’'s Binary Synchronous
Communications (BSC) protocol, which we call
Baby BSC or BBSC. During these experiments, the
students generally work in groups of two to
facilitate the operation of two machines at once.

During the first five experiments, the students
are required to build some debugging aids into
their programs. Beginning with assignment 2, the
students use an ‘Alt E’ key routine that is built into
their programs to turn a ‘message echo’ feature on
or off. When the echo mode is on, every character
that is transmitted or received is also displayed on
the screen, using separate windows for transmitted
and received data.

The first laboratory experiment involves the
computation of a simple 2-byte cyclic redundancy
code (CRC) value computed for a text string input.
This experiment gives the student some experience
with logical and arithmetic operations on byte and
bit type variables, and the CRC routines written in
this experiment are later incorporated into the data
link layer in future communications experiments.

In the second experiment, the student is given a
working copy of an object program (Xmit) that will
accept a text message from the keyboard and then
put the message into the BBSC format and transmit

it over the communications port using the full
BBSC protocol. The student is required to write a
receiver that will receive such messages and display
them on the screen of the computer. Text messages
are limited to 80 characters for this experiment. If
the Echo mode is enabled, the student will be able
to view the full exchange of BBSC packets as the
communications take place.

In experiment 3, the students write a BBSC
transmitter procedure and integrate this program
into the receiver from the previous experiment. At
this point, the students have a working communica-
tions protocol that will enable pairs of machines to
exchange messages.

In experiment 4, the students add error detection
and an automatic repeat request (ARQ) error
correction protocol to their receivers. The monitor
program that the students have used in debugging
their earlier programs is used to inject errors into
the transmission stream.

Experiment 5 consists of bidirectional ASCII
text file transfer. The student enters the file name
and the file is transferred as a series of 80 character
blocks. Because of the limited nature of the BBSC
protocol, only ASCII file transfer is supported. The
students demonstrate the correct transfer of a file
by transferring a Turbo Pascal file that must then be
compiled and executed in order to receive credit
for this assignment.

The file transfer program uses block numbers as
a type of sliding window protocol to prevent the
reception of a duplicate data block in the event of a
lost acknowledgement (ACK). The file transfer
program is first tested without errors and then with
errors.

Experiment 6 is one of the more interesting
experiments. Throughout the semester, all students
have been using the same protocol specifications,
but have only tested their program’s communica-
tion capability with another copy of the same
program. In experiment 6, each student group tests
their program for operation with each other
group’s program. A full class period is devoted to
this experiment, and all the students assemble in
the laboratory for the test session. It generally
generates a lot of excitement from the students, and
no small amount of controversy as to the exact
meaning and interpretation of some of the protocol
specifications.

After the first six experiments, the students are
assigned to a larger group of from three to five
students. These groups then work on a single large
programming assignment that repeats most of the
previous experiments, but this time using a more
complex network topology. This assignment is
graded in two or three phases, involving simple
e-mail type text transfer, file transfer and error
recovery. A minimum of three machines must be
used, which imposes addressing considerations in
the network layer.

In the larger project, generally either a ring or a
bus topology is used. Wiring the computers into a
ring topology will support the use of a token ring

310 W. D. Smith

protocol and can also be used to simulate the
operation of a bus or CSMA/CD protocol as
described earlier.

Whichever approach is used will provide the
student with the opportunity to implement some
parts of the network layer of the OSI model. The
protocol implemented will vary, depending on the
medium access protocol chosen [7]. To date, topo-
logies employed in the lab have consisted of token
ring, star and bus networks. Within the token ring
topology, both byte-oriented and ‘fat bit’ tech-
niques have been used.

Unfortunately, it is not possible for each student
to cover all these topics in a single semester. In any
one term, all students cover the basic point-to-
point experiments. The student groups are then
either assigned a topology or allowed to chose one
of particular interest to their group. The group then
works on that one network for the remainder of the
semester. Not all groups always work on the same
network for the project.

The testing and grading of the student programs
has turned out to be something of a challenge. The
programs written by the student are sufficiently
long that just reading the code to determine
correctness is not feasible. Therefore, each student
group’s program must be tested on-line in the
laboratory. This is very time consuming, but has
proven to be the only practical method for deter-
mining correct operation. Specific testing pro-
cedures have been developed for each assignment,
and the monitor program has been very useful
during these grading tests. The students are also
required to turn in a hard copy listing of their
program for examination, but the majority of the
grade is determined from the live test.

DEVELOPING SOFTWARE SUPPORT FOR
THE LABORATORY

When the course was first developed, the
students were supplied with the source code for a
set of Pascal subroutines that would perform most
of the OSI Physical Layer functions of the data
communications protocol that was to be used.
These routines were in the form of files that could
be integrated into the student programs at compile
time. The software included routines that would
initialize a serial port, read a byte from a serial port
and write a byte to a serial port. The code also
included an interrupt-driven data receiver pro-
gram, written primarily in in-line machine code.

After the course was taught the first time, it was
determined that the students would need consider-
ably more support if the laboratory was to be
effective. This would include a modification of the
assignment structure and the provision of addi-
tional software support.

A major improvement in the laboratory pro-
cedure involved breaking the second assignment
into a transmitter and a receiver section, with the
student working on one section at a time. To permit

the student to develop a receiver, however,
requires access to a transmitter program with
which to communicate. To support this approach, a
transmitter program called Xmit was developed
and provided to the students in the form of an
object file. The use of this program and approach
greatly increased the percentage of students who
were able to successfully write the code to develop
the receiver program.

Once the student has a working receiver pro-
gram, the next experiment requires the addition of
a transmitter function to the same program. This
modification to the student’s original program
introduces a measure of uncertainty into the
debugging process. When an error in communica-
tions occurs, the most common indication is that
one or both the computers hangs in some undeter-
mined state, with little or no indication as to what
the problem might be. During the first course, this
situation pointed out the need for a monitor
program.

A monitor program was designed and written so
that a third computer could be inserted into the
physical link between two machines that were
involved in the communications process. The
monitor software permits the third computer to
function essentially as a ‘display and forward’
device. The data that was received on one serial
port was automatically transmitted on the second
port, and vice versa. At the same time, two
windows are used on the terminal screen to display
the data as it is received on the two different
communication ports. The monitor software was
written so as to recognize and respond to the point-
to-point protocol that was in use. That is, the
monitor would print appropriate text strings to
represent the control characters that were used in
the protocol. It was necessary to convert the
control characters to a text string equivalent since
most of the control characters used in the BBSC
protocol cannot be displayed on the terminal
screen.

The initial use of the monitor was limited to
monitoring and displaying the communication
messages that passed through the communications
link. Once the monitor was placed into the com-
munications link, however, it became clear that the
monitor could also be used to intentionally inject
errors into the data stream. This provided the
student with a realistic source of errors to use in
testing error detection and correction procedures.

The monitor uses a random number generator
with a variable parameter that is set by the user in
order to generate errors in some desired propor-
tion of messages. Two different types of errors can
be generated in the monitor. These errors are a
CRC error, which represents one or more bit
errors in a transmitted message, and a missing
acknowledgement error, which represents a lost
message. Either error percentage can be set from
the monitor keyboard at any value between 0 and
100%.

Based on the percentage entered from the key-

An Undergraduate Data Communications Laboratory 311

board and a value obtained from the random
number generator, the monitor periodically
changes the last byte of the CRC to a value of 0x00.
This produces the same results as a corrupted bit in
the data stream, since the CRC value contained in
the frame is no longer appropriate for the text
message that is in that frame. The station receiving
amessage containing an incorrect CRC value sends
a negative acknowledgement (NAK) to the origin-
ator of the message to request that the message be
retransmitted.

The missing acknowledgement process operates
in much the same fashion. The user sets the per-
centage of acknowledgements that are to be lost.
Based on this percentage and a random number,
the monitor will periodically fail to forward a
received acknowledgement. The program that is
expecting this acknowledgement will detect the
missing acknowledgement through the use of a
‘time-out’ timer. If the program does not receive the
expected acknowledgement within 3 sec, the
program must take corrective action.

Both the CRC and ACK errors can be enabled at
the same time. During the evaluation of student
programs, the programs are tested with a simul-
taneous error probabilities of 40% for both the
CRC and ACK errors. This test has been very
effective in demonstrating to the students that data
communication is possible with a simple protocol
with limited error correction capabilities under
adverse physical channel conditions.

In 1991, Turbo Pascal 6.0 became available in
the Department of Computer Science, and a migra-
tion of the laboratory software was initiated to the
new system at that time. The most immediate
improvement in the laboratory software under the
new programming environment was the change in
the communications port handling software. Since
the new version of Pascal permitted access to the
system hardware at a much lower level than had the
earlier system, this permitted the writing of inter-
rupt routines in Turbo Pascal itself, and thus
eliminated the need for the extensive machine
language routines that had been used in the earlier
software. This had the advantage of providing the
students with software that they could read, under-
stand and modify. This software has proven to be
much more robust than the original machine code.

When the transmitter and monitor programs
were converted to Turbo Pascal 6.0, a modification
was also made in the protocol that permitted the
instructor to induce some variation into the frame
format of the basic communication block. This
change in the two programs resulted in giving the
instructor the capability to change the frame format
from semester to semester. This was desirable as a
method for reducing the ‘assignment spillover’
from one semester to the next. The Xmit program
was modified to request the header format, and
then the program uses the header format supplied
by the user. When the monitor was rewritten, it was
redesigned to accept a variety of header formats
without input from the user.

Finally, the conversion to Turbo 6.0 was also
accompanied by the development of a monitor
program for the token ring protocol. The token ring
monitor was written so as to include an error
injection capability. Error injection in the token
ring environment is somewhat more complex than
in the point-to-point case. In any general token ring
with multiple stations, the position of the monitor
in relation to the sender and receiver of a message
cannot be determined in advance. For this reason,
the monitor must inject both a CRC and a NAK
into a single frame to ensure that at least one of
these abnormal conditions returns to the originator
of the message. Since either or both of these
conditions will result in the retransmission of the
original packet, both the sender and receiver have
to deal with retransmission. The probability of an
error can be set on the token ring monitor in a
manner similar to that used with the point-to-point
monitor.

SUMMARY AND RESULTS

The laboratory discussed above was installed at
Mississippi State University in the Fall of 1989.
Some use was made of the laboratory with a
graduate class in the Fall of 1989, and the first
undergraduate class of some 20 students used the
facilities in the Spring of 1990. Since then, the
laboratory has been used every semester, with
graduate and undergraduate data communications
classes offered in alternating semesters.

Student feedback indicates that the laboratory
assignments are challenging, and they report that
the learning experience is quite worthwhile. In
addition, several students have reported that they
found the programming experiences in the labor-
atory to be enjoyable. They have stated that they
found the debugging of the programs to be frustrat-
ing due to the real-time nature of the programs, but
they felt that such programming provided an
excellent learning experience. Several students
have also stated that they have found that the
evolving nature of the programming assignments
have provided a valuable adjunct to their software
engineering studies.

Interest from the academic community has also
been good. To date, approximately 12 institutions,
including one from Poland, have requested addi-
tional details about the course and the laboratory.
Course materials, supporting software and other
information have been provided to those schools.
In addition, the author presented a tutorial on the
features of this laboratory at the Special Interest
Group on Computer Science Education Sym-
posium in March of 1994.

The original software has now been in use for
four years, and the new software has been in use for
two semesters. The results have been excellent. The
percentage of students who get the communica-
tions programs operational by the deadline has
increased steadily, and is currently somewhere

312 W. D. Smith

above 90%. An occasional due-date extension has
been necessary, but the majority of the students
complete the assignments on time. This success
rate is very important in this course, since the
modular nature of the assignments makes it
imperative that experiment n be completed
successfully before experiment n+1 can be under-
taken.

An unanticipated benefit of the modular assign-
ment approach became evident after a couple of
semesters. This is probably the first course where
the students were required to work on a single
assignment through five or six assignment modi-
fications. This approach has resulted in an
increased appreciation of structured programming
on the part of the students. Even with good pro-
gramming style, the final point-to-point program is
usually pretty patched up, and without good tech-
nique, it can be a hopeless mess. Either way, by the
time the last point-to-point assignment is com-
pleted, the students are usually quite anxious to
abandon the point-to-point protocol and begin
work on the token ring network.

Another unexpected discovery in the laboratory
was that the students seem to encounter signi-
ficantly less difficulty in programming the token
ring assignment than they do with the same features
in the point-to-point environment. This is true even
though the token ring involves at least three
stations, and the students have not usually had a
monitor to help with the debugging of the token
ring. The students also usually express more
enthusiasm and interest for this part of the labor-
atory assignments. It is unclear why the students do
better with this assignment. It may be that the
fundamental concepts of a token ring protocol are
intuitively easier to grasp. The instructor would like
to think, however, that the experiences gained in
the point-to-point experiments result in a positive
transfer of concepts that can be applied to the

token ring system. Whatever the reason, the
students are normally able to complete in 2-3
weeks on the token ring the same level of data com-
munications facilities that they completed in 6-8
weeks on the point-to-point experiments.

Overall, the results from the laboratory have
been very encouraging, and the laboratory appears
to meet all expectations. It provides a low-cost
method for providing students with the hands-on
experiences needed to prepare them for employ-
ment in a computer industry where a knowledge of
data communications is becoming increasingly
important. Results have been so good that a second
course in data communications has now been
developed based on the Internet protocol, and was
taught for the first time in the Fall of 1993. Students
are now beginning to ask for a third course in this
area.

Acknowledgemenis—This material is based in part upon work
supported by the National Science Foundation under grant no,
CDA-8852902, and the US Government has certain rights in
this material. This grant provided one-half of the funds required
to equip the laboratory with hardware, and the facilities pro-
vided in this lab would not have been possible without NSF
support. Most of the software used in the laboratory was
developed by students at Mississippi State University. Some of
the initial serial port software came from public domain sources,
with some modifications by the author. The original pro-
gramming environment support software was developed by
John Rutledge, and the first communications port support
software in Turbo Pascal 6.0 was developed by C. Lakey, B,
Williams, S. Canfield and 1. Hudson. The rewrite of the
remainder of the support software in 6.0 was the work of James
Dement. A large measure of thanks is owed to all these people.
Since the software was developed as an means to support the
teaching of computer data communications software, it is
readily available to all who would like to have a copy. Both
source and object files are available for all the software
mentioned above. To obtain this software, contact the author by
the most convenient means, Supporting documentation
including a course syllabus and programming assignments is
also available,

REFERENCES

1. W. Stallings, Data and Computer Communications. 4th edn, Macmillan, New York (1994),

2. A.S.Tannenbaum, Computer Networks, 2nd edn, Prentice Hall, Englewood Cliffs, NJ (1988).

3. IEEE Standards Board, An American National Standard IEEE Standards for Local Area Networks:
Token Ring Access Method and Physical Layer Specifications (1985).

4. L.Hughes, Low cost networks and gateways for teaching data communications, SIGCSE Bull., 21 (1),

-10(1989).

5. IEEE Standards Board, An American National Sta

Layer Specifications (1985).

ndard IEEE Standards for Local Area Networks:

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical

6. M.M. Reek, An undergraduate concentration in networks and distributed systems, SIGCSE Bull., 21,

12—16 (1989).

7. IEEE Standards Board, An American National Standard IEEE Standards for Local Area Networks:

Logical Link Control (1984).

GLOSSARY

ACK (Acknowledgement)—a positive acknow-
ledgement used with an ARQ protocol.

ARQ (Automatic Repeat Request)—a protocol
that uses positive and negative acknowledge-

ments with retransmissions to accomplish reli-
able communications.

BSC (Binary Synchronous Communication)—an
early IBM protocol for transmitting data across a
synchronous communications link.

BBSC—a locally developed subset of BSC proto-

An Undergraduate Data Communications Laboratory 313
col used at Mississippi State University in the OSI (Open System Interconnection)—a set of pro-
data communications laboratory to accomplish tocols specified by the International Organiza-
point-to-point communications. tion for Standards to specify methods for

CRC (Cyclic Redundancy Code)—a technique that interconnecting communications units.
adds additional bits to a transmitted message RS232 (Recommended Standard number 232)—
with the object of detecting errors that may occur an Electronic Industries Association standard
during transmission of the data. for interfacing computers and terminals to the
CSMA/CD (Carrier Sense, Multiple Access with public telephone system for the purpose of data
Collision Detection)—a network access protocol transfer.
where a station with traffic, first determines that SAP (Service Access Point)—the vehicle through
another station is not transmitting and then which one level of a communications protocol
transmits data; if a collision is detected during communicates with the level above and below
the transmission, the station stops transmitting, that level.
and tries again later. Sun—a brand of computer workstation closely
NAK (Negative Acknowledgement)—used with associated with communications networks.

the ARQ protocol to indicate an unsuccessful
data transfer.

A native of Middlesborough, KY, Dr Wayne D. Smith received a BS from Auburn University
in 1969, an MS from Georgia Tech in 1970, and a Ph.D. in computer science from the
University of [llinois in 1976. He is currently a professor in the Computer Science Department
at Mississippi State University. For several years, his educational interests have involved the
design and development of laboratories to support undergraduate education in computer
science and engineering. He has been the recipient of two NSF grants for the establishment of
undergraduate teaching laboratories, one in computer organization, and one in data
communications. He also developed a microcomputer design laboratory that was used in
teaching microcomputer architecture at NASA Johnson Spacecraft Center and at White
Sands Missile Range. His current teaching responsibilities are in data communications and
networks, and his research activities have included contracts with NASA and the US Air
Force.

