0949-149X/91 $3.00+0.00
© 1995 TEMPUS Publications.

Int. J. Engng Ed. Vol. 11, Nos 4 and 5, pp. 284-292, 1995
Printed in Great Britain.

A Laboratory to Improve Undergraduate
Instruction in Artificial Intelligence

R. W. WEBSTER

Intelligent Machines Laboratory,
17551, USA

Department of Computer Science, Millersville University, Millersville, PA

This paper describes a project to improve the quality of instruction of upper-level courses in
compuiter science in artificial intelligence (Al). During this project undergraduate students have
exclusive access to a laboratory of powerful, interconnected workstations and a programming
environment that integrates Al techniques, graphics, windowing systems and object-oriented
programming. With this equipment, students majoring in computer science, compuler engineer-
ing, physics and engineering are able to develop advanced software projects utilizing state-of-the-
art software tools. This Al laboratory has given students who wish to pursue careers in industry
exposure to skills that are in high demand, which is crucial for today’s science and engineering
graduates. The Al laboratory has also provided better preparation Jor students who wish to go on
to graduate school because of the opportunity to engage in advanced software projects with
faculty. The most novel aspect of this project is that undergraduate students are exposed to
sophisticated programming environments that integrate multiple software components such as

graphics, windowing tools, an expert system shell, mouse-driven events and Al tools.

INTRODUCTION

Objectives of the project

ITIS THE belief of the author that artificial intellig-
ence (Al) and symbolic computing will become
integral components of many present day com-
puter applications such as manufacturing automa-
tion systems, robotic systems, computer-aided
design/computer-aided manufacturing (CAD/
CAM) applications, and many real-world scien-
tific, business and engineering applications. Al
techniques will be used in the front-end (natural
language interfaces to database systems) as well as
the back-end (inference engines and rule-based
expert systems) of many of the today’s applications.
This project attempts to give students who wish to
pursue careers in industry exposure to these and
other skills that are in high demand, which is crucial
for today’s science and engineering graduates.
Thus, students are engaged in projects that provide
them with experiences that will make them more
competitive in the marketplace.

A great deal of research being performed in
computer science in graduate programs centers
around Al and its related fields of study. One of the
primary objectives of this project is to boost stu-
dent interest in pursuing more scholarly activities
such as student publications, going on to graduate
school and seeking employment in research-
oriented institutions. The intention is to increase
substantially the percentage of our majors who
choose to go on to graduate school. In order to
strengthen our position of preparing students for
graduate work, it is essential to have a strong Al
component to the curriculum and a state-of-the-art
computer environment to perform experiments.

284

Deficiency addressed by the project

The main problem was that while the curriculum
was strongly aligned with the national IEEE/ACM
standards and the computer equipment was power-
ful enough, i.e. the institution has provided a basic
level of support for the courses we offer, there were
no modern graphical software tools. Our students
are well prepared in the theory of computer
science, the programming languages of the dis-
cipline and the foundations of computer science
(operating systems, software engineering, com-
puter architecture, mathematics). The students are
exposed to editors and compilers (Pascal, C, C++,
LISP, Prolog, Modula-2). The major deficiency in
the program was that the students might never get
to use a highly interactive, graphical, software
environment for Al programming. A logical step at
the time was to build a specialized laboratory and
expose our students to an integrated software
environment such as workstations equipped with
windows, graphics, an expert system shell and Al
compilers such as Common LISP with CLOS and
add-on Al tools, and Quintus Prolog with a built-in
X-window/object- oriented, graphics interface.

EQUIPMENT

At the outset we believed that a network of Sun
SPARC workstations provided the most appropri-
ate environment for this project. Although a case
could be made for a configuration of DEC, HP,
IBM, workstations or any other workstations, the
overriding reason for the Sun system is its powerful
hardware, the sophistication and flexibility of the
software, and fact that Sun workstations appear to

Laboratory to Improve Undergraduate Instruction in Artificial Intelligence 285

be the most popular in the Al/computer science
community. This means that our students would be
most likely to use Sun workstations (or environ-
ments that are very similar) if they go on to gradu-
ate school or do sophisticated Al programming in
industry. Also, the Sun systems appear to provide a
computing platform to support Al technology and
its integration into other conventional computer
technologies. The workstations are networked
together and connected to the university Internet
backbone. The operating system is Unix, which
provides access to a host of quality third-party soft-
ware products. There are many third-party expert
system shells and advanced Al add-on software
components available for the Sun SPARC stations.
Another important consideration was that Sun
offered a high performance/cost ratio.

PROJECT BENEFITS

Most important benefit

In science and engineering the laboratory is the
lifeblood of the discipline. It is usually in the labora-
tory where new ideas and new methods are tried
out. All too often conventional computer labora-
tories are set up and managed so formally and are
so structured that students fight for terminals in
order simply to finish programming assignments.
These laboratories are not designed to make the
students experiment scientifically with the tech-
niques and the technology.

In this project we intentionally set out to build a
laboratory where the students felt they owned it
and ran it, rather than the University Academic
Computing department. The Intelligent Machines
Laboratory (IML), owned by the Computer Sci-
ence Department, is now the central focal point of
the computer science program. It is a large labora-
tory of Sun workstations with access to publica-
tions and technical reports of faculty. There is also
a video cassette recorder and monitor so that stu-
dents can view technical video tapes when not pro-
gramming. This laboratory is designed so that
faculty and students can informally sit around and
discuss various technical topics. Students can come
and go as they please; there is no official ‘sign in’
procedure. The objective was to encourage stu-
dents to experiment, to dig deeper into the know-
ledge of computer science, rather than just perform
simple assignments. Our intent was that the stu-
dents would be an integral part of the educational
process because they are actively involved in the
‘spirit of experimentation’, the ‘spirit of the labora-
tory experience’. The URL of the World Wide Web
server for the IML lab is http://zansiii.millersv.edu.

Immediate Benefits

This Al workstation laboratory has improved
undergraduate instruction in a number of ways.
First, it has enabled students to develop all pro-
grams using windows and graphics; therefore, their
programs can visually or graphically illustrate the

techniques of Al Some sample programming
assignments have involved graphically illustrating
on the monitor the various Al problem-solving
techniques such as min-max, the A* algorithm,
and-or graphs, hill climbing, and tree/graph
searching algorithms such as breadth-first search,
depth-first, best- first search, heuristic search, and
uniform cost. Specific programming projects will
be described such as an Al robotic mail delivery
system, the classic eight- puzzle problem and
heuristic path planning.

This methodology allows the students to see the
actual execution of the Al techniques and then
experiment with them. One novel benefit is that
programs are designed to utilize slider bars and
interfacing (windows/mouse) such that the user
can adjust the heuristics interactively without
having to recompile. Thus, a student can experi-
ment by changing the parameters and heuristics,
and immediately see the results. One of the most
difficult problems in Al is designing heuristics.

Secondly, the use of these tools gives students
hands-on experience with software that is essential
for preparation for graduate school, and is also in
high demand in industry. There are a significant
number of students who work in industry and take
courses towards a degree in computer science. This
Al laboratory has provided the skills that are being
demanded by our student’s employers and thus has
also been beneficial to the co-operative education
program on campus.

With this new Al laboratory we have seen an
increase in undergraduate student involvement in
independent study with faculty members, because
we have provided a more sophisticated software
environment. We have also seen that quality senior
research projects have facilitated student interest
in pursuing more scholarly activities such as
student publications, going on to graduate school,
and seeking employment in research-oriented
institutions.

Most importantly, the students have begun to
build a library of programs that are presently used
as demonstration programs for students in future
semesters. This has improved undergraduate
instruction in Al because faculty members can call
up from the library any number of graphical
demonstration programs to illustrate a particular
Al technique. Also, the students can later run the
same demo program (and other programs), and can
experiment with the concepts by interactively
changing the parameters and heuristics, thus
visualizing the results. The library of graphical Al
demonstration programs is also used for tour
groups and special programs at the university, and
can be run over the World Wide Web.

On a broader scale this project is also part of the
FLAIR (Flexible Learning with an Artificial Intel-
ligence Repository) project at Temple University.
Funded by the National Science Foundation
(NSF), the FLAIR project is a consortium of
Temple University, Drexel University, Villanova
University and Millersville University to establisha

286 R. W. Webster

repository for Al teaching materials [1]. The repos-
itory, to be maintained and supported by Temple
University, will consist of a variety of educational
materials for teaching Al, such as demonstration
software. The repository will be used by students
for software projects and by faculty for classroom
preparation and independent personal study.
Millersville University is currently an active parti-
cipant and a contributor of materials to the reposi-
tory.

In addition, this AI workstation laboratory and
software environment has proven to be the proto-
type for other courses or tracks in the computer
science curriculum. The results of using the labora-
tory appear to be generalizable to other classes in
computer science (e.g. how to structure laboratory
manuals and what software assignments can facil-
itate student publications).

SAMPLE STUDENT ASSIGNMENTS

Heuristic path planning project

This demonstration module, written in the
Common LISP (list processing) programing langu-
age and the Garnet GUI (graphical user interface)

¥} s FLAIR SEARCHMETHODS MODULE

system, graphically illustrates the classic search
methodologies used in Al and discusses the power
and rationale of heuristic search [2]. The module
reinforces the Al concept of state-space problem
solving, i.e. representing the problem as a graph
structure (the state-space) and performing an
intelligent search of the states [3].

The students have been told in lecture that many
practical problems can be formulated or repre-
sented in state-space form. This point is reinforced
in the module using the problem of determining the
best route to drive from city to city. Each city is
represented as a node in the graph and the road to
the next city is represented as an arc. The state-
space is the graph. Each state or node is a city. The
problem postulated to the students is: given a start-
ing city, what is the best method to compute the
route or path to the goal city?

The Search Module screen is shown in Fig. 1. If
the user clicks on the Help button, a fully scrollable
window pops up with many helpful hints and issues
concerning Al search strategies. The References
button pops up a scrollable window with many
references from the Al literature on search strate-
gies. Clicking on the Show Code button will pop up
a scrollable window with the particular search

Search Methods Demonstration Module
UNIFORM COST

Wotten by: Dir. Roger Webster

Artbficial ntelligence Lab
Dept of Computer Saence
Millersyille 1niv exsity = ____~/’&;
21— - EF
e < LELD GLOUCESTER

X

jg’/_/m‘/'
=8 o
¥ C UHCUgL/'

13’5-/ /,,343/, S
o

’.-.
o~

-

FRAMINGHAM

33

OSTON

Messages Area Window

Message Area

total kilometers in solution path: 406
mmber of nodes opened. 14

rumber of nodes in solution path: S

Lol i]

&+ Searchf

Heuristic Search

Fig. 1. Results of uniform-cost search using actual driving distances.

Laboratory to Improve Undergraduate Instruction in Artificial Intelligence 287

strategy code in it. Students can scroll through the
code and look at it or print it off. The Algorithm
button pops up the algorithm instead of the code.

The Toggle GLAT (General List Animation
Tool) button turns on/off the list animation feature,
which graphically shows the execution of the list
manipulation being done in the particular search
strategy chosen (described later in this paper). A
window with all the cities pops up automatically in
which the student can pick which city is the start
node and which city is the goal node (not depicted
in the figure). The Create Data button allows the
user to create his/her own data set and save it or
load in a created data set.

If students click on the Uniform-cost method
button (starting at Maynard and going to Boston)
they see the graphics and results shown in Fig. 1.
The students are told in lecture that the uniform-
cost method is always guaranteed to find the
shortest cost path (optimal path) from start to goal
node. However, by experimentation the students
discover that with large state-spaces the uniform-
cost algorithm (also with depth-first and breadth-
first) can produce combinatorial explosion. With
this particular example, using a heuristic search
algorithm from Nilsson [4, pp. 55-60], the student
sees that the solution path is only 16 km longer than

the optimal solution, and the algorithm checked
only five nodes instead of 14 (Fig. 2).

The students’ experimentations reinforces that
heuristic search tends to guide the search process
toward selecting cities that are closer to the goal
city. Thus, the computation can be significantly
reduced. The FLAIR demonstration module pro-
duces the graphics and outputs the results for heur-
istic search shown in Fig. 2.

Experimenting with the module allows the stu-
dents glean a number of important Al concepts
relating to state-space search, i.e. that heuristic
search:

® can greatly reduce the search effort (the number
of nodes expanded) and computation time;

® isnot guaranteed to find the optimum path to the
goal as with the uniform- cost method;

® is identical to uniform-cost except that the g(N)
evaluation function is an estimate of how close
the node (N) is to the goal node (G);

e has the effect of pulling the search process
towards selecting nodes that appear to move
closer to the goal;

® s also called ordered search because the nodes
are ordered by their respective evaluation func-
tions.

= ' ' FLAIR SEARCHMETHODS MODULE

Search Metheds Demeonstration Module
HEURISTIC SEARCH

Wotten by: Dy Rozer Webister
Artifical ntelligence Lab

Dept of Computer Saence
Milleysville Unoy exsity

200
FRAMINGHAM

WELLESLEY

| GUT Reset |

e e
[©] Messages Area Window
Message Area

total kKilometers in solution path: 422
rnumber of nodes opened: 5

number of nodes in solution path: 5

T IR

. i
IDepthﬂFitﬁtIIBreadth—E'irstlIUnifom Cast' |Heur3

Fig. 2. Results of heuristic search.

288 R. W. Webster

The particular heuristic used in this path plan-
ning example is the Euclidean distance between the
node (N) and the goal node (G). Given the latitudes
and longitudes of the cities, we can derive the
distance from any node to the goal node in Eucli-
dean space or as the crow flies:

g(N)= Euclidean-distance (node[N].latitude,
node[N].longitude, Goal.latitude, Goallongitude)

where: Euclidean-distance = sqrt ((node[N].latitude -
Goal latitude)® + (node[N].longitude -

Goal.longitude)®)

This is reasonable since one would expect that if a
city is closer than all the rest of the choices in Eucli-
dean distance, then probabilistically, that city is
along the shortest path to the goal (but not always!).
The students observe the fundamental techniques
used in Al programming and problem solving
through these graphically illustrated examples and,
more importantly, they experiment with them in
the laboratory. The results of this path-planning
demonstration software are described in additional
detail in [5]. A demonstration of this software
module can be run over the Internet using a World
Wide Web browser such as Netscape or Mosaic at
URL http://zansiii.millersv.edu/cs451.html (click
on either LISP or Prolog demos).

It becomes evident from the experiments that
using a heuristic to compute the routing path can
save as much as one-half the computation time.
Therefore, the students reaffirm the notion
espoused in lecture that if an application mandates
a fast and reasonable solution but does not require
an optimal solution, then using Al and heuristics
can be appropriate. Students may also uncover the
fact that they can transfer these problem-solving
skills. For example, when the students were asked
to program Rubik’s cube to win a race against a
human, they tried to derive a fast, heuristic com-
putation rather than program the optimal solution,
which was prohibitive to compute.

Flexibility—Creating your own data set This soft-
ware demonstration module is not a static demon-
stration, however. Students may want to see how
their own city and street configurations (graphs)
perform under these search methods. During
experimentation, the students can interactively
change the node and arc connections, thus design-
ing their own data sets. They can delete nodes, add
nodes, move nodes around, and change arc con-
nections by simply clicking on the objects and the
add/delete buttons. Different scenarios may be
tried and saved for later experimentation.

If the user clicks the Create Data button on the
original screen, the create-data window pops up
(not shown). If a node is clicked on, all of its
information appears on the screen. The user can
then delete the node, the system then deletes all the
arc connections. The user can add a new node to
the data set by clicking on the Add Node button,
which prompts for node name and then puts the
node on the screen. The user can move the node

around (or any node) by simply selecting and
dragging the node to any location on the screen. All
the arcs automatically move with the node because
they are constraints built in to the node objects via
the Garnet GUI interface for Common LISP.

Arcs can be created by simply selecting a node,
clicking the Create Arc button and then selecting
the node to connect to. Arcs can be deleted the
same way. The user can decide to start afresh by
deleting all of the data set and creating an entirely
new data set. Any modification to the data set can
be saved and later recalled. Numerous data sets can
be stored. The authors are currently working on a
Data Object, such that data sets can be shared
among users of the repository and ported to other
demonstration modules as simple objects.

How does the LISP code work? Students may
also be interested in how the code works. How do
these various search strategies work in LISP ? They
can click on the Show Code button and the code for
any of the search methods will pop up in a scroll-
able window so that they can browse through it. In
addition, they can turn on GLAT, to show how the
list manipulation is done in the code.

GLAT is provided in the Search Methods
demonstration module to help show students how
lists are manipulated while a particular Al search
technique, such as breadth-first, heuristic search or
A* search, is executing. Every time the OPEN or
CLOSED list is updated, the GLAT animates the
list manipulation in the GLAT window (not shown:
it is hard to show the animation in a still photo). The
list objects move, showing the insertion, deletion
and modifications to the lists.

GLAT is designed to be general enough that
students can use the tool package in any Common
LISP program they write. The animation of the list
manipulation in their own programs can be a big
help to them in debugging. Simple GLAT calls such
as: [add front, add back, insert, update, remove
front, remove back, remove member, etc.|, control
the animation.

Al robot mail delivery project

The objective of this programming project was to
graphically illustrate or simulate an Al robot mail
delivery system (Fig. 3). The mail in a corporate
building is to be delivered by a robot. At each mail
stop the robot delivers the mail and picks up any
outgoing mail. Outgoing mail is then categorized as
either: to be delivered external to the corporation
or inter-office mail. The inter-office mail is then
delivered on an ‘as you go’ basis using a heuristic
delivery scheme, i.e. we want the robot to deliver
new mail if it was convenient. If the robot picked up
an inter-office memo to be delivered to a depart-
ment that was already on the routing list, the robot
should deliver the new inter-office memo. This
method can get confusing to the mail robot, as well
as cause a prohibitively long wait for some mail
stops. Therefore, a heuristic was used.

The program begins by placing the robot at the

Laboratory to Improve Undergraduate Instruction in Artificial Intelligence

289

Fate of #Agwng
Eomaay S0y T T 1888
I Percent of Offjcgs fending Mas 1
Mail £8)

WVice Fresident
-—

J 188
-
Purz v
| ——

L 2 Z

)

<« Mariroom

Fig. 3. An Al robot mail delivery simulation.

mailroom with a random amount of mail to be
delivered to the various departments in the build-
ing: Accounting, Marketing, Engineering, Quality
Assurance, Manufacturing, etc. The initial route is
determined by distance, i.e. an original routing list
sorted by the department distances from the mail-
room.

At each mail stop the robot would collect inter-
office mail (randomly adjustable by a window
slider bar), and update the routing list. Just simply
keeping the list in sorted order by distance might
cause the robot continuously to pick up and deliver
mail to only a few local departments and it may get
stuck in this mode. Therefore, ageing was added to
the heuristic evaluation function. The new mail ‘just
picked up’ received a time stamp. The older mail
aged as the robot continued on its path of pick up
and delivery.

The heuristic evaluation function weighted the
distance and age to assign a priority. Thus, new mail
could be delivered to the next stop, but older mail
eventually increased its heuristic value and was
delivered, even if that mail stop was far away (so as
not to keep people waiting). Students could inter-
actively adjust the heuristic weights and ‘see’ the
results.

The program was a great deal of fun to write and
to use; the graphical robot ran furiously around the
building delivering mail to the various depart-
ments. Shown on the monitor were the routing list
and the adjustable heuristic parameters. The stu-
dents learned that instead of just picking up all mail
and then delivering it the next day, some increased
productivity could be gained by using a ‘heuristic’
delivery scheme. A demonstration of this software
module can be run over the Internet using a World
Wide Web browser such as Netscape or Mosaic at
URL http://zansiii.millersv.edu/cs451 . html (click
on either LISP or Prolog demos).

Eight-puzzle program with tree representation

The eight-puzzle problem (see Fig. 4) consists of
eight numbered, movable tiles setin a 3 X 3 frame.
One cell of the frame is always empty, making it
possible to move an adjacent numbered tile into the
empty cell, thus moving the empty cell also. The
problem is to change the initial configuration into a
given goal configuration. A solution to the problem
is an appropriate sequence of moves [6].

The demonstration module begins with the
screen in Fig. 4. Students start the demo by either
clicking on the Shuffle button which randomly

290 R. W. Webster

"EIGHT PUZZLE WITH TREE ANIMATION

Written in Common Lisp with Gamet Gai

FEight Puzzle with Tree Animation

Origally written by:
Karl Schenfelt & David Elwood
Modified by: Roger W. Webster, Ph D.

L3
Heuristics: B’ﬁdﬁim |
= "Click-on" the numbers in sequence
Seque?s}ce Score Q Ry l 3 to :ma sdvaue:megm
i ; Or,
Plags Away Q ¥ “Clck—on” Shuffle
to create a vand, e
{P) +3(S) Q Mwiim&mxm
{Nallson) 8 Then,
(P)+3(S)+Karl {J | S
(Kaxl—see Help) = to solve the carrent puzzle.
Show Tree il i you make a mistake,
of wish 2
Hide Tree () e T ke

_ ; 3 ! |
| sm‘ S |_Help J| Goal |Ehufﬂs||301ve||aeset "QUITI

Fig. 4. Eight-puzzle user window.

shuffles the eight puzzle tiles, or the student can
manually build the initial state to any desired tile
configuration by simply moving the tile objects into
place. Once the initial state is set, the student can
pick any of five heuristics to be used to solve the
puzzle (search the state-space). The five heuristics
include: breadth-first, sequence score only, num-
ber of places away from the goal position, Nilsson’s
classic P(n)+ 38, or P(n) + 38 + Karl (a student-
added heuristic). A facility exists within the module
which allows a student to add his/her own com-
ponent to the heuristic and experiment with it. Nils-
son’s classic P(n) + 3§ computation is the
summation of the number of places away from the
goal position for each tile plus 3 times the sequence
score, which is obtained by checking around the
non-central squares, scoring a 2 for every tile not
followed by its correct successor and scoring a 0 for
every other tile; a piece in the center scores a 1 [4,
pp. 64-69].

Clicking on the Solve button then solves the
puzzle and graphically depicts the search-space tree
with the solution (Fig. 5). The demonstration code
alsodetects unsolvable puzzles as may happen when
the student picks his/her own initial state. Although
it is not possible to test all unsolvable puzzles,

certain tests can easily be implemented. One test for
an unsolvable state is that if any two tiles are
swapped from their goal sequence. A scrollable help
window is available to explain further the Al con-
cepts of the eight-puzzle problem, state-space
search, heuristics, etc. The tree of the state-space
and the solution are graphically displayed as the
program is searching the state- space. Also printed
in the window is the depth of the solution, the
number of nodes in the solution path, the number of
nodes expanded and the number of nodes gener-
ated. The students can also bring up a scrollable
window to show the eight-puzzle LISP code.

Last” semester’s projects included writing an
expert system and Al controller to play the game
Stratego™, a battlefield strategy game. This was a
major challenge, since playing the game is very
intricate and the strategy is not trivial. It also has
given students experience with writing a sophisti-
cated expert system for strategic operations, which
is popular in many military applications. A demon-
stration of this software module can be run over the
Internet using a World Wide Web browser such as
Netscape or Mosaic at URL http://zansiii.miller-
sv.edu/cs451.html (click on either LISP or Prolog
demos).

Fig. 5. Eight-puzzle graphic solution window showing tree of search space.

STIMULATING INTEREST IN
ENGINEERING IN YOUNGER STUDENTS

Demonstrations of the equipment and the pro-
jects are performed regularly in the laboratory.
These presentations to area schools and the com-
munity bring recognition to the university and to
the project, but, most importantly, stimulate inter-
est in science and engineering among young stu-
dents.

The faculty and undergraduate students of the
Al laboratory have given presentations and
demonstrations to many diverse community
groups: high school students, middle school age
children, first graders, a Rural Partnership Pro-
gram for tenth and eleventh graders, and to the
public in various university programs. There is also
a three-week special research project in robotics
and Al with gifted high school students as part of
the university Summer Science Training Program
(SSTP). These young students spend three weeks,
seven hours per day, five days per week with a
university professor engaged in a small research
project. This is a tremendous opportunity for high
school students to prepare for college.

These demonstrations to area schools not only

stimulate interest in science and engineering to
young students, but appear to generate interest in
our own computer science program. These young
students are very impressed with our undergradu-
ate research projects, the equipment, the faculty
involvement, the laboratory, and therefore usually
enquire about admission to the program. In addi-
tion, workshops are being planned in the labora-
tory for the engineering and scientific community.

CONCLUSION

This investigator has been extremely pleased
with the use of the laboratory so far. Students are
very anxious to use the systems and spend many
long hours programming, experimenting and
exploring the techniques of Al

In summary, the benefits of this Al workstation
laboratory are as follows:

e It has enabled many students to develop pro-
grams using windows and graphics; therefore,
their programs can visually or graphically illus-
trate the techniques of Al

e Because software programs graphically illus-
trate the techniques of Al, many students can

292 R. W. Webster

experiment with the heuristics and parameters
interactively by slider bars, etc., without recom-
piling the software.

® Many students gain hands-on experience with
software that is essential for preparation for
graduate school, and also are in high demand in
industry.

® It has increased student involvement in inde-
pendent study with faculty members.

® It has facilitated student interest in pursuing
more scholarly activities such as student
publications, going on to graduate school and
seeking employment in research-oriented insti-
tutions.

® |t has stimulated interest in the co-operative
education program on campus.

® This Al workstation laboratory environment has
proven to be the prototype for other courses or
tracks in the computer science curriculum.

® The results of using the laboratory appear to be
generalizable to other classes in computer
science.

® Many students have begun to build a library of
programs that are used as demonstration pro-
grams for students in future semesters, tour
groups and special programs.

® The software developed in this project will
provide a set of demonstration software
modules to contribute to the NSF’s FLAIR pro-
ject—a repository for Al teaching materials.

® Demonstrations to area schools stimulate inter-
est in science and engineering to young students,

and also appears to generate interest in our own
computer science program.

® Faculty members can call up from the library
any number of graphical demonstration pro-
grams to illustrate a particular technique in Al
Also, the students can later run the same demo
program (and other programs), and can experi-
ment with the concepts by interactively changing
the parameters and heuristics, thus visualizing
the results.

In concert with the objectives of this project, the
university has allocated money for more Sun
workstations. These systems have added more of
the curriculum to the Sun workstation environ-
ment. The laboratory, though originally conceived
of as a facility for Al activity, is now expanded as a
support facility for courses in computer graphics
and virtual reality, operating systems and data
communications. The ready availability of Unix-
based software provides additional breadth of
experience for our undergraduates in these fields.
Acknowledgements—This work was partially funded by the
National Science Foundation under grant nos. USE-9050371
and DUE-9350841 awarded to Millersville University and
NSF grant no. CDA-9115254 awarded to Temple University,
and the Faculty Grants program of Millersville University. The
author would like to thank Dr Giorgio Ingargiola and Dr Robert
Alken of Temple University and the following undergraduate
research students: David Martin, Lisa Gaughran, Karl Schenfelt
and David Elwood. Many thanks go to Dr Albert Hoffman,
Dean, for his continued support of the activities of the Intelligent
Machines Laboratory. Unix is a trade mark of AT&T Bell
Laboratories, Stratego is a trademark of the Milton Bradley
Company.

REFERENCES

I. R. Aiken and G. Ingargiola, FLAIR—flexible learning with an artificial intelligence repository,
National Science Foundation grant September 1991-February 1995, NSF Grant no. CDA-
9115254, Temple University, Philadelphia, PA.

2. A.B.Meyers et al., Garnet Reference Manual Version 2.0, Technical Report CMU-CS-90-117-R2,
Carnegie Mellon University (May 1992). The Garnet GUI system is a powerful object-oriented
software package for Common LISP written by Carnegie Mellon University (available free of charge
from ftp a.gp.cs.cmu.edu).

3. P. Winston, Ariificial Intelligence, Addison-Wesley, Reading, MA, pp. 87-106 (1983).

4. N. Nilsson, Problem Solving Methods in Artificial Intelligence, McGraw- Hill, New York, pp. 55-60
(1971).

5. R. Webster, Useful artificial intelligence tools—a review of heuristic search methods, IEEE Potentials
J., pp. 51-54 (October 1991).

6. 8. Tanimoto, The Elements of Artificial Intelligence, Computer Science Press, Rockville, MD,
pp. 169-178 (1987).

Dr Roger Webster earned a Ph.D. degree (1988) in computer science from the School of Engineering at Temple Uni-
versity in Philadelphia, Pennsylvania. From 1979 to 1982 he worked at the Hewlett-Packard Corporation’s Medical
Systems Division in Waltham, Massachusetts as a software engineer. Since 1983 he has been a Professor of Computer
Science and Director of the Intelligent Machines laboratory at Millersville University in Millersville, Pennsylvania (see
World Wide Web server at http://zansiii.millersv.edu). Dr Webster has been awarded five grants in six years in the area of
robot vision, artificial intelligence and real-time systems. The most recent, a National Science Foundation Grant
equipping his laboratory with Sun SPARCstations, a mobile robot and a virtual reality system. He has published articles in
robot vision and Al and currently serves as a referee for the IEEE Computer journal, Artificial Intelligence journal, and
the IEEE Transactions on Systems, Man, and Cybernetics journal. Dr Webster holds memberships in the IEEE
Computer Society, the Association for Computing Machinery (ACM), the American Association for Artificial Intel-
ligence (AAALI), the Canadian Artificial Intelligence Society (CAIS), and the American Society for Engineering Educa-
tion (ASEE). His research interests are robot vision, real-time systems engineering, artificial intelligence and virtual
reality, especially real-time mobile robot navigation, and virtual world modelling.

