Int, J. Engng Ed. Vol. 11, Nos 4 and 5, pp. 277-283, 1995
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 1995 TEMPUS Publications.

Undergraduate Software Engineering
Laboratory Experiences

WILLIAM LIVELY
MARK LEASE

Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA

Texas A&M University's Undergraduate Laboratory for Software Engineering has been funded by
the National Science Foundation. It has been created to provide computer science and computer
engineering students with hands-on experience with the tools and techniques used in modern
software engineering. This paper will overview the laboratory exercises and projects assigned (0
the students. The successes and failures will be discussed with insights on how to improve such a
software engineering laboratory. Overall we will attempt to partially answer the question: how do
you infuse structure and technology into the teaching of practical software engineering?

EDUCATIONAL SUMMARY

1. The paper describes new training tools or labor-
atory concepts/instrumentation/experiments in
teaching software system design.

. The paper describes new equipment useful inan
upper-level software engineering course.

. The students involved in the use of the equip-

ment are mostly seniors with some graduate stu-

dents.

New aspects include using computer-assisted

software engineering (CASE) tools to teach

conceputal modeling in software engineering.

. How is the material presented to be incorpo-

rated in engineering teaching? The material

serves as an example of how practical, hands-on
experience in software design can be added toa
software engineering course.

The text accompanying the presented materials

is Rumbaugh er al., Object-Oriented Modeling

and Design, Prentice Hall.

. The concepts presented have been tested in the
classroom. The experience gained from the
laboratory made the students more aware of the
problems inherent in designing software.

INTRODUCTION

THE PROBLEM we are attacking is the education
of students that allows them to be able to build
better software systems and be more productive.
Why is this important?

In 1968 at the NATO Conference at the Rome
Air Force Base in New York, a group of software
users/developers met to consider what would later
be called the ‘software crisis’. The problems
addressed were that the software systems being
delivered were of low quality, unreliable, not
usable, not understandable, not maintainable, not

modular and delivered late and over budget. The
term ‘failure gap’ more simply describes the situa-
tion—a failure of delivered software systems to
meet the user’s needs. The magnitude of the prob-
lem can be appreciated when we consider that over
150 billion dollars are spent on software in the US
annually.

How had we arrived at this situation? Third-
generation hardware became so powerful that very
sophisticated large-scale software systems were
now envisioned and being built that were previ-
ously beyond second-generation hardware capab-
ilities. One of the major problems among many was
scale-up. We were moving from programs to large
software systems and the approach used previously
simply did not scale-up. The previous approach
was to simply start programming and finally
through exhaustive testing realize the desired soft-
ware system. This approach was not feasible for
large software systems.

A term was coined at the NATO conference that
would identify the approach to dealing with the
software crisis. This term is ‘software engineering’
and promised to offer a structured engineering
approach to the development of software. Today,
over twenty years later, we are still struggling with
the software crisis/failure gap.

Brooks [1] in his famous paper, known as the
‘Silver Bullet' paper, described why software is
different from many other engineered systems and
consequently why the software crisis persists.
Complexity, conformity, changeability and invis-
ibility are the main culprits. Software cannot be
visualized like bridges and many other hardware
systems. The complexity is enormous because so
many states can be represented in software and
software is malleable—so easily changed. These
problems exacerbate what Brooks calls the essence
of software development—determining the con-
ceptual constructs for the system—the hard part.

278 W. Lively and M. Lease

Brooks considers the implementation to be the
easy part.

APPROACHES TO SOLUTIONS

Over the years a number of efforts have
attempted to address the software crisis problem.
To set the context for the following discussion, we
will briefly define the concepts of software process
model (SPM) and software development metho-
dology (SDM).

A SPM describes the steps/phases to be taken in
developing software and defines the criteria for
beginning and terminating each step. Such a model
is ‘descriptive’ in nature because it describes ‘what’
should be done, not ‘how’ to do it. The most famous
SPM is the waterfall model [2], consisting of the
following steps/phases:

® requirements capture;

® specifications (high-level design/conceptual
modeling);

® design;

¢ implementation (coding/programming) and
testing;

® installation; and

® operation and maintenance.

Other SPMs have been introduced, such as the
spiral model, the fountain model, exploratory, and
incremental. But for our purposes the steps of the
waterfall model describe the types of activities
involved in software development.

A SDM attempts to describe ‘how’ (to be pre-
scriptive) we accomplish various activities that are
necessary to accomplish the task of each phase of a
SPM. What we have seen for many years is that
structured analysis (SA) has become the mode of
choice for many developers for the analysis phase
(an alternative term for the first two phases—
requirements capture and specifications). SA uses
the concepts of dataflow diagrams, data diction-
aries and data structure charts to develop the
specifications for a software system.

Major national efforts have been undertaken by
the US Department of Defense, US industries and
universities to develop software technology to
attack the various problems. The DoD has taken
the lead with the STARS (Software Technology for
Adaptable and Reliable Software) initiative.
STARS takes a two-pronged approach to the soft-
ware crisis: a conventional approach and a non-
conventional approach. The conventional
approach follows our present path of development
(waterfall model) with hopes of improving the
various stages. The non-conventional approach
strives to dramatically enhance productivity with
knowledge-based systems and automatic pro-
gramming, The two-pronged approach requires
heavy investment in the conventional approach
and the long term (15-20 years) to develop a non-
conventional approach. A major thrust of STARS
has been the Software Engineering Institute (SEI)

at Carnegie Mellon University. The thrusts of the
efforts can be stated simply—how can we train
people to be more productive and build higher-
quality software? SEI has concentrated more on
the conventional approach.

In the 1980s MCC (Microelectronics and Com-
puter Corporation), a large consortium of com-
panies trying to deal with major technological
problems, had a Software Technology Program
(STP) attacking the software crisis. Most of the
efforts here were on what they called the ‘up-
stream’ problems—capturing the requirements and
producing specifications (high-level design). The
thrust of the work stemmed from the fact that
errors discovered earlier in the development pro-
cess are much easier to fix than when found during
and after the implementation phase.

The Knowledge Base Software Assistant
(KBSA) effort at Rome Air Force Base attempts to
use knowledge-based/artificial intelligence (Al)
methods to assist developers through automation
of various tasks that occur during software de-
velopment. The thrust here is that productivity can
be enhanced through automation (having the com-
puter perform tasks previously performed by
humans). This effort tends to follow the non-
conventional approach of STARS.

The Software Productivity Consortium (SPC)
has been involved mainly in the Ada effort to
support the development of software through soft-
ware development environments and hence tends
to follow the conventional approach to improve-
ment for software development.

TEXAS A&M’S APPROACH

So the question is: how do we teach our students
to be able to produce higher-quality software and
be more productive? The approach the Texas
A&M Department of Computer Science has taken
follows somewhat the concept of addressing ‘up-
stream’ problems that MCC is attacking. The key
concept here is to obtain the requirements for the
user’s system. Determining the requirements is a
major problem because the users frequently cannot
tell the developer what they want. Either they do
not know what they wants or they cannot com-
municate the requirements to the developer.
English language communication is laddened with
ambiguity and difficult in almost every context. The
terminology in software engineering is not stand-
ardized, and this complicates the problem even
more. The developer’s lack of application domain
knowledge, and the users’ lack of software develop-
ment domain knowledge simply exacerbate the
dilemma.

So we try to find a way to enhance user/deve-
loper communication. Our approach has been to
emphasize conceptual modeling (attacking the
requirements capture and specification phases) as
a means for enhancing user/developer com-
munication. Can the developer with the right com-

Undergraduate Software Engineering Laboratory Experiences 279

bination of graphics, structured text and natural
language really communicate with the user?

The answer is no! What really must be taught
(along with the use of conceptual modeling tools) is
the discovery process. The discovery process deals
with defining exactly what the problem is. We try to
teach the students to become aware of this and a
number of other significant problems. One of the
major ones is the difficulty of the discovery process.
We try to teach students that patience, experience,
and iteration are important aspects of the discovery
process. How do you mine the necessary know-
ledge to determine exactly what the problem is?
We try to teach students an analyst’s approach with
a series of questions that allow convergence to the
true requirements.

MODELING APPROACHES

As stated earlier, SA has become the mode of
choice for many developers to help with con-
ceptual modeling. A major problem with this
approach is that the software architecture is built
around functions. When maintenance occurs,
typically functions are changed or added, and the
software architecture begins to be disrupted. This
hampers future maintenance.

The advent of a new methodology called an
object-oriented (OO) approach offers a possible
solution to software architecture degradation. An
OO approach bases the software architecture on
objects instead of functions, and therefore when
maintenance occurs and the functionality changes,
the basic software architecture determined by the
objects is much less disrupted.

Therefore our approach is to attempt to teach
students how to do conceptual modeling with an
0O flavor. The most promising methodology along
these lines has been the work of Rumbaugh at
General Electric [3]. The technique is called OMT
(object modeling technique) and consists of build-
ing three models: an object model, a functional
model (like SA) and a dynamic model (control and
time-varying properties). Using objects to base the
system on is a very powerful technique. In the real
world systems are made of objects, with attributes,
operations and associations. So the OO modeling
notation maps directly to the real world. The con-
cept of objects carries across the problem space,
solution space and implementation space in a
seamless fashion—the notation of objects remains
constant.

SOFTWARE ENGINEERING LABORATORY

At the beginning of 1991, the Department of
Computer Science at Texas A&M University was
awarded an Instrumentation and Laboratory
Improvement (ILI) grant from the National
Science Foundation for the development of an
undergraduate Software Engineering Laboratory.

The result of this grant has been the creation of a
laboratory containing 20 state-of-the-art work-
stations running the best computer-assisted soft-
ware engineering (CASE) tools available today to
teach our students how to perform conceptual
modeling.

The conceptual modeling effort is most effective
when it can be done in a rapid prototyping mode.
Rapid prototyping allows developers to rapidly
build operational (computer-executable) con-
ceptual models that the users can experiment with.
Such user/developer interaction greatly enhances
communication between the parties. CASE tools
are one way to facilitate rapid prototyping.

The CASE tool we had initially been using is
Interactive Development Environment’s (IDE) StP
(Software through Pictures). The major limitation
of this CASE tool is that it is based upon a SA
approach. StP does have entity-relationship (E-R)
diagrams, dataflow diagrams, state diagrams,
structure chart capability and data structure dia-
gram capability. Therefore we could approach
some of the concepts in an OO paradigm, but the
approach clearly was not seamless.

By that we mean there is not a common notation
that integrates across all models and phases.

In the Spring of 1993 we added the CASE tool
OMTool to the laboratory. This tool was deve-
loped by Rumbaugh and his team at General
Electric. With this addition the students could now
truly begin to perform some integrated OO con-
ceptual modeling.

We hope that the exercises that our students will
perform will begin to give them some real-world
experience. Boehm [4] has stated that the most
important issue in building sophisticated software
systems is the experience of the developers.

LABORATORY EXPERIENCE

The goal of the Software Engineering laboratory
is to provide students with several types of experi-
ence.

‘Real world’ experience

Most of the problem-solving challenges pre-
sented by college courses are oriented to demon-
strating very limited principles, such as the features
of a particular programming language or the pro-
perties of a specific algorithm. Therefore a major
goal of the Software Engineering Laboratory
assignments is to give the students experience in
solving the types of problems which might be pre-
sented to them by future employers.

Exposure to a CASE tool

To catch errors as early in the system-develop-
ment process as possible, modern software
engineering is placing a greater emphasis on the ‘up
stream’ of the process, the initial development of
the requirements and specifications for the system.
CASE is widely perceived to be a useful tool for

280 W. Lively and M. Lease

capturing the specifications for a system. Many
companies in industry are integrating CASE into
their software-development environment. Having
exposure to CASE tools is important to software
professionals entering such an environment.

Experience working in groups

Group projects are not common during the
college experience, but are very common in
industry. Since working in a group requires unique
talents and skills, experience in this area is also
important. We hope to be able to improve the
communication and interpersonal skills of our
students. Again this is an introduction to the dis-
covery process. We are trying to teach the students
scenarios of questions that will allow them to cap-
ture the problem definition:

Who needs the solution?
- What is it that I am doing?
. Why am I doing it?
. What is the scope (context)?
HowdoIdoit?
Where doI go from here?

AAB LN~

We want the student to learn to be in a continual
mode of questioning during software development.

Exposure to state-of-the-art workstations

High-speed, graphical workstations running
Unix are very popular in industry. However most
of our students’ experience has been with personal
computers. Workstation skills learned in the labor-
atory will be invaluable for future software
engineers.

Discussion of alternative designs and
implementations

Another goal of our laboratory assignments is
for our students to learn that the problem of soft-
ware design does not usually have only a single
correct solution. This is different from most prob-
lem-solving courses students are exposed to during
college. We are attempting to teach the students
how to prioritize non-functional software char-
acteristics and then perform trade-off analysis for
the functional requirements and thus look at a
spectrum of alternatives. Trade-off issues involve
cost, effort, feasibility, ethical issues, reliability and
others.

ACHIEVING THE GOALS

To achieve our goals for the course, we use both
individual assignments and a group project. The
individual assignments are used to make sure the
students are well grounded in the principles of soft-
ware design (specifically conceptual model deve-
lopment) so they can contribute effectively to their
group project. The group project is used to demon-
strate how the individual tools within StP and
OMTool work together. Each tool specifies some
facet of the complete software system.

Individual assignments

The first part of the semester is spent learning
OMTool and the individual tools within StP: the
data dictionary and the major diagramming tools.
Each assignment has the student use a tool to
design a small, representative segment of a soft-
ware system. For each tool the student is given a
detailed set of requirements for a software system.
The requirements are not complete so the student
can begin to learn some aspects of the discovery
process. The student has to convert the system
requirements into' a system specification (con-
ceptual model) using the appropriate tool.

Here is a summary of a typical semester’s indi-
vidual assignments:

1. Develop an object class model using OMTool
for a software problem tracking and configura-
tion management system. This exercise begins

_to introduce students to the newer OO tech-
niques and also introduces them to the topic of
configuration management.

2. Using dataflow diagrams, design a system for
sending out the monthly billing for an electric
utility company.

3. Use the data dictionary and data-structure
editor to design the data structures needed to
maintain a library’s on-line card catalog.

4. Design the state-transition diagram for a tape
recorder/player’s motor controller.

5. Convert the dataflow diagram for the utility
billing assignment into a structure chart.

Group project

At the end of the semester, the class is divided
into groups of three or four students for a group
project. The students decide among themselves
who will be in each group.

This past semester, the project was to design a
library information system—including an on-line
card catalog, and inventory and patron information
subsystems. The description of the assignment
included a fairly detailed set of requirements for
the system. Each group was to design the speci-
fications for the system and submit the data
dictionary, data-structure charts, dataflow dia-
grams, and structure charts for the design.

The group project lasted one month. Midway
through the project, each group met with the
instructor for a ‘preliminary design review’. The
purpose of the design review was to make sure each
group was proceeding correctly and making good
progress. At the design review, each group was to
have substantially completed everything but the
structure charts. Such reviews are invaluable in
industry to obtain multiple perspectives on soft-
ware system design. It also provides a means of
emphasizing the importance of developing good
oral communication skills.

E-mail
Electronic mail is used extensively to answer ques-
tions about assignments and to distribute informa-

Undergraduate Software Engineering Laboratory Experiences 281

tion about the course. This then becomes an
important tool of the discovery process. The email
was done to supplement (rather than replace)
Q&A during the laboratory session and the
instructor’s office hours.

At the beginning of the semester, a mailing list
for the entire class is created. When a student has a
question about the course, he/she can send a mail
message to the laboratory instructor. Using the
mailing list, the instructor will reply to the entire
class when appropriate. Anything identifying the
originator of the question is edited out to preserve
the originator’s confidentiality. Using e-mail was
very successful—this past semester over 75 mail
messages were distributed to the class mailing list.
Through the e-mail dialog, many students became
aware of problems that had not even occurred to
them. This just reinforces the importance of the
discovery process.

EMPIRICAL INSIGHT/PROBLEMS

After conducting the course this past semester,
we noticed several problems and gained some
insight in the process.

Lack of domain knowledge

Certainly the most limiting constraint on the type
of assignments which could be used in the labor-
atory was the lack of acommon body of domain (or
application) knowledge shared by all of the
students. Our computer science students are free to
choose their minor area of study from any college
at the University—therefore every class has stu-
dents with interests in business, engineering and
liberal arts. This diversity limits the applications
suitable as the subject of a laboratory assignment to
the most everyday, mundane areas: tape recorders,
libraries, electric utility bills, etc. Even so, there
were many questions about the application in
general (e.g. why should there be multiple ‘loca-
tions’ for a single book title?) and the laboratory
assignment’s system in particular (e.g. why does the
library patron’s record need to be changed when a
book is returned?). On a small scale, this lack of
domain knowledge mirrors what is occurring in
industry on a large scale. This again emphasizes the
importance of the discovery process.

Unfamiliar hardware/operating system

Roughly half of the students start the course
never having used a workstation or Unix before.
These students are at a disadvantage, especially
when something goes wrong and the system starts
generating cryptic error messages (as Unix systems
tend to do). In a distributed environment, a novice
user will often not realize that the problem resides
in the network or with one of the file-servers, and
the user will think they have done something
wrong.

The sum of the learning curves for using new
hardware, a new operating system, and a new

windowing environment (with a laboratory assign-
ment due in 2 weeks) can be quite intimidating to
almost anyone. To get the students started, the
instructor will hold ‘getting started’ classes with 2
6 students at a time outside of the normal labora-
tory period for anyone who feels they want help.
The instructor will make sure that each students’
computer account is correctly setup and will
demonstrate the basics of using the workstation.
For the instructor, an important advantage of these
‘getting started’ classes is that they are an opportun-
ity to meet many of the students early.

The CASE tool we are using operates in the
X-window system. X allows a number of activities
to be operating and visible concurrently—a new
experience to most users only familiar with
personal computers. Other novice users expect the
highly-integrated window and application system
of a Macintosh or Windows text editor. Many users
have found out the hard way that X will allow you
to shut down the window environment without
regard to whether the files currently being edited
have been saved or not.

Group dynamics

In general, students are not used to working in
groups. Many groups have trouble getting organ-
ized initially, and most groups never get the work-
load equitably divided. There never can be too
much emphasis on the importance of communica-
tion between members of the group. We are placing
a greater emphasis on the students becoming aware
of the importance of oral/written communication.
The students can work on these skills during the
project development time and then demonstrate
the development of these skills in the oral and
written presentations at the preliminary design
review and the conclusion of the project.

Scale of the group project

Quite a few students were disturbed by the scale
of the group project. They seemed to lack experi-
ence working with (or even thinking about) multiple
programs interacting through use of common files
or databases. In reality the scale we work on is still
significantly smaller than many projects in industry.
We want the students to be aware of the scale-up
problem. As you try to apply the techniques and
tools we teach to larger problems, they do not scale
up linearly. We want students to be aware of this
problem and realize efforts need to be taken to deal
with increased complexity of development.

Different solutions

During laboratory sessions, we compared and
contrasted different solutions generated by the
students. Many times there was more than one
correct solution to an assignment. However, quite
often the differences in the solutions were due to
differences in how the students perceived or
weighted the design requirements. Quite often the
perceptions were caused by incompleteness or
ambiguity in the system’s requirements. Again

282 W. Lively and M. Lease

attempts are made to demonstrate trade-off
analysis.

Importance of documentation

We attempt to teach our students the importance
of documentation. The need to capture the corpor-
ate history and artifacts that are produced during
the development of software. They need to know
how important the capture of design rationale is for
future development and maintenance efforts. At
this time they are introduced to the concept of a
Life Cycle Artifact Manager (LCAM). The LCAM
is a hypertext-based system for linking the artifacts
and allowing traceability forward and backwards
across the phases of development.

Interest of potential employers

Since software engineering is a senior-level
course, many of the students are interviewing for
jobs as they are taking the course. Several students
have commented on the real interest shown by
company recruiters when they mention during an
interview that they are learning about CASE tools.

Student reaction

Our students’ reaction to the Software Engineer-
ing Laboratory has been very favorable (and grati-
fying). ‘This course should be required’ is a
common remark. Many students have said they
were glad to get hands-on experience designing
software. There have been three common com-
plaints: the project takes too much time; the labora-
tory should be more directly object oriented; and
some students would rather work on the personal
computers they are familiar with. This last com-
plaint is often heard early in the semester, °

HOW TO IMPROVE?

Reflecting back on the past couple of semesters,
we believe we can make a couple of changes to
improve the course.

Give'more time for the semester project

‘The semester project was very pressed for time,
and since it was at the end of the semester, it com-
peted for attention with many other activities. Next
semester one or two of the simpler assignments will
only be given one week for completion to allow
more time for the project. Our computer engineer-
ing students take a two-semester senior design
course. We see this course as providing valuable
opportunities to apply the tools and techniques
learned in the Software Engineering Laboratory.
For our computer science students, they have the
opportunity to take a senior-level design project
course and again apply the knowledge they have
gained.

Expose the class to a complete specification earlier

One problem we noticed early was that a number
of students understood the individual tools in the
CASE environment but did not understand how
the tools interrelated and/or did not understand
how the CASE specifications fed the implementa-
tion process. To solve these problems, the lectures
for the laboratory were changed to emphasize the
role the various CASE system tools played in the
specification process. Also we developed for a
small system a start-to-finish set of documents—
including the system requirements, specifications
and source code. The example system, a computer-
ized cash register implemented as an X-window
system client, is small enough to be wholly compre-
hensible to the students after a couple of hours of
study—but the students are able to learn how the
various specification diagrams complement each
other and provide different views of the example
system. The source code for the example system
demonstrates how the specifications are imple-
mented. Since the example system is an X-window
system client, the students are exposed to an event-
driven control structure.

CONCLUSION

We feel our approach will make a viable contri-
bution to the education of computer science and
computer engineering students. The students are
beginning to obtain real-world experience in con-
ceptual modeling for software systems. They are
learning to work together in groups with one
another. They are beginning to see the problems
that occur in developing large software systems:
communications, domain knowledge, experience,
reuse and others. Awareness of the significant
issues in developing software is one of the major
thrusts of our efforts.

We see this as a learning experience for us that
will continue for a long time to come. We will con-
tinually be gaining insight on how better to design
software systems for the foreseeable future. The
building of large, complex software systems is so
difficult that it is likely we will never arrive at a
totally satisfactory solution.

Another plan for the future is to attempt to
obtain larger case studies from industry for our
students to review and evaluate. Well-documented
case studies of successes and failure can bring forth
yet another experiential component of learning the
difficulties associated with developing large and
complex software systems.

Acknowledgements—The Undergraduate Software Engineer-
ing Laboratory at Texas A&M University was funded by the
NSF-ILI Program (grant no. CDA-9051378) and the State of
Texas.

Undergraduate Software Engineering Laboratory Experiences

REFERENCES
1. F.P.Brooks, No silver bullet—essence and accidents of software engineering, [EEE Comput., 4, 10~
19 (1987).
2. B.W. Boehm, A spiral model of software development and enhancement, [EEE Comput.,5,61--71
(1988).

3. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and
Design Prentice Hall, Englewood Cliffs, NJ (1991).
4. B.W. Boehm, Improving software productivity, [EEE Comput.,9,43-57 (1987).

William Lively received his Ph.D. in electrical engineering/computer science from Southern
Methodist University in 1971. He is currently an associate professor of Computer Science and
Director of the Laboratory for Software Research at Texas A&M University. He is the
University’s representative to the Software Engineering Institute and his laboratory serves as
an alpha test site for the Knowledge Based Software Consortium RADC. His current research
interests include developing direct manipulation nser interface management systems, life cycle
artifact managers to capture total software development information through a hierarchical
hypertext system and conceptual design tools. He is a member of IEEE, ACM and the
Computer Society.

Mark Lease received a BS in electrical engineering (1980) and BS in- computer science
(1987) from Texas A&M University. He is currently working towards a Ph.D. in computer
science. His research interests are software engineering and hypertext.

283

