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A spreadsheet program to solve the hyperbolic one-dimensional wave equation by the Lax-
Wendroff one-step method has been successfully developed by using the Lotus 1-2-3 spreadsheet
package. The users do not require spreadsheet knowledge in order to use the program. The
program is fully interactive and provides some unique features, such as a powerful interactive
graphics capability, that are not normally achievable by conventional programming. These
features are illustrated by a numerical example.

INTRODUCTION

ELECTRONIC spreadsheets, originally intended
for commercial applications, have been applied to
various scientific and engineering problems [1-6].
Lam [4-6] has demonstrated the application of
spreadsheets in solving partial differential equa-
tions of the elliptic, parabolic and hyperbolic types.
Spreadsheet programs have been proven to offer
greater educational value in enhancing the learning
effectiveness as compared to the conventional
programs in high-level languages that are normally
used in classrooms. The main advantages over the
conventional programs are: (a) ready-to-run, so
that keying-in, compiling and debugging are not
required; (b) interactiveness and user-friendliness
with substantial error and help messages; (c)
intermediate iterates are available for iterative
methods; and (d) able to execute interactive
graphics for ‘What-if?’ analysis easily. Due to their
proven advantages, these spreadsheet programs
have been incorporated into a recent text [7]
written by the author.

All previous spreadsheet programs [4-6] apply
various numerical methods to second-order partial
differential equations directly. To extend the
spreadsheet approach to systems of first-order
equations, the explicit Lax-Wendroff method has
been implemented in a spreadsheet to solve the
second-order one-dimensional wave equation. The
Lax-Wendroff method is chosen because it is often
included in related courses due to its ease of use, its
second-order accuracy and because it forms the
basis of other better methods. The one-dimensional
wave equation is chosen for the current develop-
ment because it can be easily broken into a pair of
first-order equations and most people have some
physical understanding of the string vibration
problem which is discussed in a numerical example
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and is modelled by the one-dimensional wave
equation. All the features and advantages of the
previous programs, including the interactive
graphics feature, are retained in the current spread-
sheet program. Like its predecessors, it can thus be
used without spreadsheet knowledge. It can be
adopted in related courses as a better alternative
tool (other than the conventional computer
programs) to aid the students to understand the
numerical aspects of the Lax-Wendroff method.

PROBLEM FORMULATION

The hyperbolic one-dimensional wave equation
is

(1)

where ¢ (= constant) is the wave propagation
speed, u = u(x, t)is the dependent variable, r and x
are the temporal and spatial coordinates respec-
tively. To compute the numerical solution, two
Dirichlet boundary conditions u(0, ) and u(L, ¢)
and two initial conditions u(x, 0) and du(x, 0)/0t
are prescribed. The solution domain is shown in
Fig. 1.

The Lax-Wendroff method is an explicit time-
marching technique of second-order accuracy in
time and space for solving systems of first-order
partial differential equations. It is well-documented
in many standard texts [8-10]. Therefore, only the
basic numerical expressions and steps used in the
current spreadsheet program are briefly described.

When the Lax-Wendroff method is used to solve
the one-dimensional wave equation (1), the
second-order equation is first split into a pair of
coupled first-order equations as follows:
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u(x, 0), u,(x, 0) prescribed
Fig. 1. The solution domain.
dq op b boundary conditions and initial conditions of p and
2 g (2b) q are known, (4) can be used to generate p and g in

where

p(x, )= CQ— and g(x, 1) = au 3)

Using Taylor series to expand p(x, ¢) and g(x, f)in
time, combining with (2), and using central differ-
ence for the derivative terms yields
ql 1)+ (pH-I_zpf
+ pr—l)
(42)

R
pit=pi+ 75 (9h —

and

2
gt =g+ % (Pl —P-) + RT (9% — 247
+4qL)
(4b)
where R is the Courant number given by

cAt
R i (5)
and the subscripts and superscripts denote the x-
and t-stations respectively.
Using Taylor series to expand u(x, ¢) in time,
combining with (1) and (3), and using central
difference for the derivative terms yields

n n n Mr n n
uft'=ul+Atq+ ¥ (Pi1—pPl1)-  (6)

In (4) and (6), the third and higher derivative terms
are truncated in the series. If the appropriate

a time-marching manner. Figure 2 shows the
required boundary conditions and initial condi-
tions together with the grid system in the solution
domain. Once p and g are known, the solution u of
the one-dimensional wave equation then follows
from (6).

In the first marching step fromn=0ton=1,
for I x-intervals,

ou?
P;'C—(I yeenl)

which are obtained by differentiating the pre-
scribed initial condition #) with respect to x
numerically. To be consistent with the second-or-
der accuracy of the Lax~Wendroff method, the
three-point forward difference, central difference
and three-point backward difference are used for i
=(,i=1,...,I—1andi=Irespectively. Also,

L
4?'—5[— (i=0,1,..,1
are obtained directly from the prescribed initial

condition 0:{/0t. Using these in (6) and (4) yields
ul, ptand g} for i = 1, ..., I — 1. To obtain

Pi[= c(0u}/dx)] for i = 0 and i = I, we again use

three-point forward difference and three-point
backward difference respectively to differentiate u;]
with respect to x numerically with the values u} and
u} from the prescribed boundary conditions. To
obtain g}[= 0u}/9¢] for i = 0 and i = I, we
numerically differentiate the prescribed boundary
conditions uf and u}with respectto fat n=1.Inthe
present program, these boundary conditions are
taken to be constants and thus g} =0fori=0and i
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Fig. 2. The grid system and the boundary and initial conditions.

= [. The marching procedure can be continued to
generate uf at all interior grid points.
The Lax-Wendroff method is conditionally
stable and the stability requirement [8-10] is
cAr

R-E\I

known as the Courant condition.
THE SPREADSHEET PROGRAM

The current spreadsheet program was devel-
oped by using the popular spreadsheet software

Lotus 1-2-3 Release 3.1 [11]. The entire program
was written in macro commands in order to
facilitate user-friendliness, interactiveness and the
advanced interactive graphics feature.

The spreadsheet program developed is menu-
driven. The program menu tree is shown in Fig. 3
and the corresponding program commands are
described in Table 1. The menu structure and
commands are the same as those for the programs
developed previously [4-6]. The way of running the
program is identical to that of its predecessors
which was described in [4-6]. Due to the user-
friendliness, interactiveness and the provision of
extensive error and help messages, the program

Data Graph

Print Save Quit

Input Use Quit

Results Graph Quit

Go View Quit

X-variation T-variation

View Interact Quit

C BC Ist_IC 2nd_IC Quit

Fig. 3. The program menu tree.
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Table 1. The program commands

Program Command

Description

Data Input

Date Use

Data Quit

Graph X-variation
Graph T-variation
Graph View

Graph Interact
Graph Interact [list]
Graph Interact Quit
Graph Quit

Print Results

Print Graph Go
Print Graph View
Print Graph Quit

To enter new data for subsequent computation.

To continue iteration using the existing data.

To return to the main program menu.

To plot and display the graph of the dependent variable u against the x-direction.
To plot and display the graph of the dependent variable u against the t-direction.
To display the current graph as and when the user desires.

To invoke the interactive graphics mode for graphical "What-if" analysis.

To change a parameter in [/isf] in interactive graphics mode.

To clear the interactive graphics mode and return to the previous menu.

To return to the main program menu.

To send the input data and the computed results to a printer.

To send the current graph to a printer.

Todisplay the current graph. This allows the user to view the graph before printing.

To return to the previous program menu.

Print Quit To return to the main program menu.
Save To save the spreadsheet program with the existing data and results in a file.
Quit To return to 1-2-3’s READY mode.

can be employed by users without spreadsheet
knowledge. Figure 4 shows some of these messages
as displayed on the top of the monitor screen (in
1-2-3’s control panel). The only requirements from
the user are to run the Lotus 1-2-3 program by
keying-in 123 followed by the Enter key under the
DOS prompt, to use the 1-2-3 command/File
Retrieve to load the spreadsheet program into
memory and to use the 1-2-3 command/Quit
which ends 1-2-3 and returns to DOS. Therefore,
the user can concentrate on the numerical aspects
of the Lax-Wendroff method easily.

Example

Consider the problem of finding the deflection
u(x, r) governed by equation (1) of an elastic string
oflength L =1 mand ¢ = 1 m/s. The string is held
fixed at both ends and released from rest with the
initial deflection u(x, 0) = sin(7x)/15.

Using the program command Data Input, the
data c, L, I (the number of x-intervals and is taken
to be 12), the Courant number R (taken to be 1),
the two prescribed boundary conditions u(0, ) and
u(L, r) and the two prescribed initial conditions
u(x, 0) and du(x, 0)/dt are entered as shown in

Fig. 5. The values of dx and d¢ are computed by the
program. In Fig. 5 and the latter figures, the work-
sheet areas for displaying the values of the
boundary conditions, the initial conditions and the
computed results are set and displayed automatic-
ally by the program after confirmation of the
respective data. Also, these values are shown up to
x = 0.5m for this example due to the limited
resolution supported on the monitor screen. The
numerical results for 15 r-steps are obtained and
shown in Fig. 6.

Upon invoking the program commands Graph
X-variation and Graph T-variation and following
through a series of questions (for example, speci-
fying legends) posed by the program which are
subsequently answered, the computed results are
displayed graphically on the screen as shown in
Fig. 7. It shows that the period of vibration of the
string is about 2 s and that the solution is stable for
R=1,

Using the program command Graph Interact,
the interactive graphics mode is activated and the
monitor screen is split vertically with the text and
the current graph displayed on the left and the right
sides of the screen respectively. Figures 8 and 9
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A:Al: PR \= JIENU|
Graph Print Save Quit

Input Use Quit

A

OLVING THE 1-D WAVE EQUATION BY THE LAX-WENDROFF METHOD

(2)Constant BCs, not necessarily equal.
(a) The main menu

A:E17: U 6.1 Entry must be an integer > 1. please re-enter !

C
[Equation to be solved :
d?u(x,t)/dt? = c? x d?u(x,t)/dx? where d denotes partial differentiation

Constant ¢, ¢ = 1
Solution domain in x, L = 1.4
Number of x intervals, I =

(b) An error message

N:H26: U B READY]
Any changes for u(x,8)? <Y/N>: _
H
x= X= x= ; x= X=

t B 0.166667 8.333333 8. 5 8. 656657 8.833333 1
26 a 8 8.1 8.2 8.3 8.4 0.2 IR
27 |

(c) Option to amend u(x, 0)

N:A38: U B READY]

Number of t-stations to be computed (enter 8@ to quit) =

oundary an 1mt1a conditions u(x.08) at t are

x= x= x= x= x=
X B 8.166667 0.333333 8. 5 0.666667 B.833333 1
8 B 8.81 8.82 8.83 8.04 8.82 8

(d) To specify number of ¢-stations for computation

A:A36: U "t Computation in progress. please WAIT !

A lIIIIIIIIIIIIIIIIIIIIIlIIIIIllIIIIIllllIIlllllIIIIIIIIl
t "8 0.166667 0.333333 0.5 0.666667 0.833333 g

a 8 8.81 8.82 8.83 8.84 8.82 8

Initial conditions du(x,08)/dt at t=0 are :

(e) Current status of computer

Fig. 4. Some user-friendly and interactive features.
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N:B35: U “x=
Enter value of t (an INTEGER, in multiple of dt) for FIRST variation: _

A B C 0 E F G H
SULTS
T

35 %= X= x= x= x= x= x=
t B B.166667 8.333333 8.5 8.666667 6.833333 1
8 8 B.61 8.82 8.83 8.04 8.82 B
.166667 8 8.81 8.82 8.82625 0.8325 0.81625 8
(f) To enter value of ¢ for the first x-variation
Fig. 4 (cont.)
N:A32: U B

A A B C 0 E F G H

Constant ¢, ¢ = 1
Solution domain in x, L = 1
Number of x intervals, I = 12
Courant number, R = 1
Step in x, dx = 0.883333
Step in t, dt = 0.883333
Boundary and initial conditions u(x,8) at t=8 are :
Xx= Xx= = X= = X= Xx=
t B 0.883333 0.166667 .25 8.333333 0.416667 8.5
a 8 8.817255 0.0833333 0.04714 0.0857735 0.864395 0.066667
Initial conditions du(x,8)/dt at t=0 are :
x= X= x= x= A= K= X=
8 0.883333 0.166667 8.25 8.333333 0.416667 8.5
8 [} 8 a 8 a 8

LAX_WEN.WK3

Fig. 5. The input data (dx and d¢ computed by program).

N:A53: U +A52+$0T READY
Nusher of t-stations to be computed (enter 8 to quit) = _

3] A B C 0 E F G H
= X= = X= xX= X= X=
t 8 0.883333 0.166667  8.25 8.333333 8.416667 8.5
0 8 0.817255 8.833333 8.04714 0.057735 8.864395 0.066667
3.883333 8 0.81653 0.932217 8.845562 8.055801 B.862238 0.864434
3166667 8 8.914451 8.828832 0.948879 0.850066 B.955841 0.857811
8.25 @ 6.811763 0.823222 0.633337 0.64892 0.04564 0.84725
8.808532 0.016321 8.823264 0.628913 0.83233 0.83347
8.884392 8.088591 B.811897 0.014675 6.816744 0.817411
-0.08825 0.80802 3.3E-86 -8.80827 -0.08824 0.988819
-0.86457 -0.88878 -8.01215 -9.81491 -0.01699 -B.91789
-0.8884 -8.01674 -8.8237 -0.82887 -0.83256 -B.83401
-8.081196 -8.82336 -8.83346 -.84135 -0.84588 -B.84723
-9.01483 -0.8287 -0.04181 -0.85847 -0.85682 -8.85775
-8.8165 -0.8325 -8.04571 -0.05568 -0.06234 -0.8648
-8.01723 -8.63358 -8.04717 -8.85758 -0.086446 -B.06693
-8.81663 -0.83197 -0.84545 -8.85595 -8.06217 -0.06412
-9.81431 -0.82856 -0.94875 -8.05084 -B.8556 -8.8574
) 8 -8.01136 -8.82319 -0.83315 -8.04841 -8.84527 -0.84709
LAX_VEN.UK3

Fig. 6. The numerical results.
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(b) Variations of u with ¢, dx =0.08333 m

Fig. 7. The results graphed by the GRAPH commands.

show the screen displays in the interactive graphics
mode after the results are graphed by the Graph
T-variation and Graph X-variation commands
respectively. In these figures, the Courant number
R is changed to 1.05 and 1.1 and the results are
automatically updated graphically on the screen.
This is the graphical ‘What-if?’ analysis. It can be
seen in Figures 8 and 9 that the solution is unstable
for R> 1. As R increases, the instability swamps

the solution at earlier time and it also becomes
more severe. This information can be visualised by
the user almost instantly as he or she proceeds in
the interactive graphics mode. This feature thus
enhances the learning effectiveness. Apart from R,
the effects of changing other parameter such as the
initial conditions can also be visualised by using the
interactive graphics feature.
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A:C15: PR
@ R BC 1st_IC 2nd_IC Quit
Alter the constant, ¢

12

1
0.883333
8.883333

intervals,
ant number,
Step in x, dx
Step in t, dt

al conditions u(x,0) at t=E
x= = K=
§.083333 0.166667 8.25

B.017255 0.833333 0.04714

du(x,8)/dt at t=0 are :
X= A= X=
§.883333 0.166667 8.25

A:C15: PR
@ R BC 1st_IC 2nd_IC Quit
Alter t.hE constant, ¢

12

1.85
8.883333
B.8875

Step in x, dx
Step in t, dt

al conditions u(x,0) at t=E
X= = X=
B.083333 0.166667 8.25

B.617255 0.833333 0.04714

du(x,8)/dt at t=0 are :
X= x= x=

B.883333 8.166667 8.25

(b) R=1.05

Fig. 8. The interactive graphics mode showing the /-variations for different R.

CONCLUDING REMARKS

A spreadsheet program has been developed to
solve the one-dimensional wave equation by the
Lax-Wendroff method. The program employs
constant step sizes and constant Dirichlet boun-
dary conditions and is compatible with the Lotus
1-2-3 Release 3 or above. It is menu-driven, user-
friendly and interactive. Automatic error detec-

tion, extensive error and help messages have been
incorporated. The program can therefore be used
without much spreadsheet knowledge. The built-
in power interactive graphics feature allows
numerical experiments to be done graphically with
ease. These features, which are not normally
achievable by conventional programs, allow the
students to concentrate on the numerical aspects
of the Lax—-Wendroff method and, therefore, help
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A:C15: PR
R BC 1st_IC 2nd_IC Quit
Alter the constant, ¢

8.883333
8.891667

Step in x, dx
Step in t, dt

al conditions u(x,B) at t=0
x= x= x=
.883333 0.166667 8.25

8.817255 0.833333 0.04714

du(x.l)/dt at t=0 are :
x= X=
i .883333 8. 156667 8.25

LAX_VEN .UK3

(c) R=1.1

Fig. 8. (cont.)

A:C15: PR
@ R BC 1st_IC 2nd_IC OQuit
Alter the constant, c

1

1

12

1
0.883333
0.883333

intervals,
ant number,
Step in x, dx
Step in t, dt

al conditions u(x,8) at t=8
x= n= x=
.883333 0.166667 a. 25

B.017255 0.033333 8. 84714

du(x,8)/dt at t=0 are :
x= X= X=
B.883333 0.166667 8.25

8 8 a

LAX_VEN .UK3

(a) R=1

Fig. 9. The interactive graphics mode showing the x-variations for different R.

in stimulating their interest in exploring the
method.

The limitations of the spreadsheet program are
primarily governed by the capabilities of the Lotus
1-2-3 package. The number of curves that can be
graphed together is limited to a maximum of six and
the number of grid points cannot be too large to

avoid memory-full error. Due to the limited display
resolution and the physical size of the monitor
screen, the number of grid points that can be
dl‘ipld\fed on a screen is limited. For a fine grid
system, in order to view the numerical values at
some grid points outside a screen display, the user
has to return to 1-2-3's READY mode by using the
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A:C15: PR
M R BC 1st_IC 2nd_IC Quit
Alter the constant, ¢

1

1

12

1.85
8.883333
8.8875

omain in X,
intervals,
ant number,
Step in x, dx
Step in t, dt

al conditions u(x,B) at t=@
x= x= x=
(.883333 0.166667 8.25

§.817255 0.033333 0.04714

du(x,B)/dt at t=0 are :

X= X= X=

§.083333 0.166667 8.25

k4
LAX_WEN.WK3

(b) R=1.05

A:C15: PR
@ R BC 1st_IC 2nd IC Quit
Alter the constant, ¢

omain in x,
intervals,
ant number,
Step in x,
Step in t, dt

1.1
0.883333
8.891667

al conditions u(x,0) at t=9
X= = X=
§.083333 0.166667 8.25

B.817255 0.833333 0.84714

du(x,8)/dt at t=0 are :
X= x= x=
B.883333 0.166667 8.25

SE
LAX_WEN.WK3

(c) R=1.1

Fig. 9 (cont.)

program command Quit and then use the arrow
keys to move around. In order to incorporate the
interactive graphics feature, the solution at each of
the grid points is maintained as a spreadsheet
formula which consists of a rather large number of
characters. As a result, the memory requirement
increases progressively when the number of 7-steps
increases. Although this limitation can easily be
overcome by converting the formula at each grid
point to a numerical value by incorporating the

1-2-3/Range Value command in the macro pro-
gram, this was not done because it would disable
the useful graphical ‘What-if?" analysis while the
limitation can be alleviated if more memory is
available.

For educational applications, the above limita-
tions are not significant as the requirements are not
stringent. With the advancement in software and
hardware technology, it is anticipated that these
limitations will become less severe.
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