Int. J. Engng Ed. Vol. 11, Ne. 2, pp. 111-118, 1995
Printed in Great Britain.

0949-149X/91 $3.004+0.00
© 1995 TEMPUS Publications.

Functional Simulation in Microprocessors
Applications Teaching*

JACEK MAJEWSKI

Cybernetics Institute, Technical University of Wroclaw, ul. Janiszewskiego 11/17, 50-370 Wroclaw, Poland

In microcomputers and microprocessors instruction the student’s job is to write programs for
controlling equipment connected to a microcomputer. Instead of real devices we propose control
devices simulated on the computer screen. Of course, it is important that the simulated
environment is invisible for the students. Control programs, written by students, should work in
the same way in the simulated environment as in a real environment. The paper considers as an
example the preparation of a control program for the model of a plotter. The control plotter
programs are wrilten in C and 8086 assembler and compiled by real compilers: Borland C and

TASM.

INTRODUCTION

FROM THE BEGINNING when microcomputers
were invented, the most common microprocessor
communication with the outside world has been
through input/output ports that are located in the
I/O or memory space. This facilitates constructing
more advanced and more complicated microcom-
puter peripherals such as parallel or serial ports,
timers or counters, DMA controllers and so on.
Generally, internal ports of these peripherals are
designed for the following functions:

e DATA ports;
¢ CONTROL ports;
e STATUS ports;

Communication through input/output ports is also
applied for devices such as printers, plotters,
floppy or hard discs, etc. More complicated
devices, such as display graphic controllers, con-
tain ports in addition to memories. Complex
external devices have complicated electrical
schemes. From the programmer’s point of view,
electrical details of controlled devices are not
essential. For proper control it is enough to know
what information to send to the CONTROL/
DATA ports. The situation is the same even if
external devices are causing interrupts.

In the teaching of microprocessor programming,
the above idea is very common: students control
external real devices, connected to the micro-
computers, by writing programs in a specified
language (assembler, C, BASIC). These programs
are sending sequences of controls through input/
output ports. Instead of real devices we consider
the situation of controlling simulated devices
displayed on the computer screen. This aspect is

* Paper accepted 25 November 1994,

111

presented below. For better understanding we
consider a case study of controlling a microproces-
sor external device. A Plotter as an example of an
exercise given to a student.

STUDENT EXERCISE: PLOTTER CONTROL

Before writing a program it is important to
understand how a controlled device works. Figure
1 shows a plotter connected to an IBM computer.
The model of the plotter is similar to a real teaching
device designed by ELWE of Germany. By
controlling the movement of the plotter arm,
equipped with a pen, students should draw a simple
figure (e.g. a thombus in Fig. 1). The plotter is
controlled by the IBM PC computer through the
output port located at the I/O position with the 300
Hex address. States of the plotter are read by two
input ports, placed at addresses 300Hex and
301Hex. The bit map of I/O ports is shown in Fig.
2. The kinematics scheme of the plotter is shown in
Fig. 3. The movement of the plotter arm (and the
pen) is controlled by two motors. The motor M1
shifts the arm to the left or right (LF, RT bits). The
movement of the pen forward and backward (FW,
BW bits) are controlled by motor M2. The active
state for all bits is 1. The output 300Hex port
consists also of a PEN bit that puts the plotter pen
to the down position and makes a point on the
drawing sheet (bit PEN=1) and the D1 bit that
turns the LED diode on or off.

The position of the plotter arm is indicated by
sensors: left sensor (S3), right sensor (S4), forward
sensor (S5) and backward sensor (S6). Addition-
ally, when the pen is located exactly at the bottom
left hand corner of the sheet the SP bit is equal to 1.
The plotter has also three free push-buttons (S0,
S1, 82) which can be programmed by the user.

The movement in a given direction can be

142 J. Majewski

Fig. 1. Realsituation: IBM computer controls a plotter.

Output Port Address: 300H:

7 6 4 3
[X I X BW FW]
No meaning ' ff | Backward _ Forward
Controlled by M2

5 Motor

2 1404 0
i TR BRI TS
Programmable Push Buttons j
2

Fig. 2. Bitassignment of I/O plotter ports (active stateis 1).

precisely measured by counting the number of
pulses produced by pulse generators: each motor
(M1, M2) has one pulse generator. Rotation of the
motor M1, when the pen is moved to the left/right
direction, causes pulses that can be observed on bit
PG1, for example.

For the device described, we write two simple
programs: one in Borland C [3] and one in 8086
TASM assembler [4]. The programs are shown in
Figs 4A and 5A. Both programs draw a rhom-
boidal spiral with the assumption that for drawing a

line it is enough to activate a motor and wait
(DELAY subroutine). The shape of the drawn
spiral is shown in Fig. 6.

FUNCTIONAL SIMULATION OF THE
PLOTTER

As mentioned in the Introduction and as is
visible in the programs demonstrated in Figs 4 and
5, control of any external microprocessor devices

Functional Simulation in Microprocessors Applications Teaching 113

right (rt)

backward (bw)

Status Bit (Sensor)
Control Bit

T
S0 S1 52 Free Programable Butions
S$3 Right Sensor
S4 Left Sensor
$5 Forward Sensor
$6 Backward Sensor
PG1 Pulse Generator for Motor M1
PG2 Pulse Generator for Motor M2
SP Pen Position Status Bit

M1 Left/Right Motor

M2 Forward/Backward Motor
PEN Up/Down Pen Control

LED Light Emiting Diode Control

Fig. 3. Kinematics scheme of the plotter.

{

#INCLUDE <DOS.H>

fdefine fw 0x08
§define bw 0ox10
#define 1f 0x04
f#define rt 0x02
f#define pen 0x20
#define edge 300
fdefine step 200
fdefine repeat_no 7

void main(void)
long int j,1i,k=edge;
for (J=0;j<repeat_no;j++)
{

OUTPORTEB (0x300, fw+1f+pen);
delay(k+=step);

OUTPORTB (0x300, fw+rt+pen);
delay(k+=step) ;

OUTPORTE (0x300,bw+rt+pen) ;
delay(k+=step) ;

OUTPORTB (0x300,bw+1£f+pen) ;
delay (k+=step);

}:
OUTPORTE (0x300, 0x00) ;

#INCLUDE °*PLOTTER.Ah"

fdefine fw 0x08
#define bw 0x10
f#define 1f 0x04
f#define rt 0x02
f#define pen 0x20
f#define edge 300
#define step 200
f#define repeat_no 7

void main(void)

(
long int j,i,k=edge;
START() ;
for (3=0;j<repeat_no;j++)
{

OUTPUT(0x300, fw+1f+pen);
delay(k+=step);
OUTPUT(0x300, fw+rt+pen);
delay(k+=s8tep);
OUTPUT (0x300, bw+rt+pen) ;
delay (k+=step);
OUTPUT(0x300,bw+1f+pen) ;
delay(k+=step) ;

)i
OUTPUT(0x300, 0x00) ;
STOP() ;
}

Fig. 4. Exemplary programs, written in C language, for drawing a rhomboidal spiral.

is a sequence of input or output instructions. From
the user’s point of view, electrical or mechanical
details of controlled environments are not import-
ant. It is enough to understand that after setting a
proper bit in a port there will be a proper reaction.
This level of understanding means that only
functions of controlled devices are important for
the user.

With this assumption, we construct an artificial
environment, simulated graphically on the com-
puter screen. The situation when the described
plotter is simulated on the IBM PC computer
screen is shown in Fig. 6. Control programs are
almost the same for the real plotter and the plotter
simulated on the screen. Figures 4B and 5B present
the same programs as Figs 4A and 5A. The

114 J. Majewski

{

ideal
model large
Jumps
1f equ 04h
e equ 02h
fw equ 08h
bw equ 10h
pen equ 20h
edge equ 300
step equ 200
repeat_no equ 7
extrn _delay:far
stack 100
dataseg
codeseg
macro make_move action
mov dx,300h
mov al,action
our dx,al
add cx,step

call delay
endm make_move

proc delay

push cx
call _delay
POP CX
ret
endp
proc _main far
PUSH DS
SUB AX, AX
push ax
mov cx, edge
mov bx, repeat_no
repeat:
push bx
make_move fw+lfi+pen
make_move fwsrtspen
make_move bwirt+pen
make_move bwilfipen
pop bx
dec bx
inz repeat
mov al, 00h
ouT dx,al
ret
endp
end _MAIN

ideal
model large
INCLUDE °*PLOTTER.MAC®

Jjumps
1f equ 04h
rt equ 02h
fw equ 08h
bw equ 10h
pen equ 20h
edge equ 300
step equ 200
repeat_no equ 7
extrn _delay:far
stack 100
dataseg
codeseg
macro make_move action
mov dx, 300h
mov al,action
OUTPUT dx,al
add cx,step

call delay
endm make_move

proc delay
push cx
call _delay
pop cCXx
ret

endp

proc _main far
CALL _START

mov cx, edge
mov bx, repeat_no

repeat:
push bx
make_move fw+lf+pen
make_movefw+rt+pen
make_move bw+rt+pen
make_move bw+lf+pen

pop bx
dec bx
jnz repeat
mov al,00h
OUTPUT dx,al
CALL _STOP
ret

endp

end

Fig. 5. Exemplary progam, written in 8086 assembler language, for drawing a rhomboidal spiral.

differences between the programs are shown in
capital letters. How does the simulated plotter
work? a C sample program will be considered.
Considerations for assembler are similar. The
general structure of user C programs is as follows:

include ,,plotter.h“
mEn
Start()
mEm
output(port, value)
EEmE
input(port)
EEm

Stop()

The statement include ,,plotter.h“ includes defini-
tions for the simulated environment.

Start(), Stop() functions are for creating (remov-
ing) the plotter picture on the screen as a back-
ground.

The function output moves the plotter arm with
the pen in the output port direction. When the arm
reaches the edge of the sheet a sound is produced.
The sound means that the moving mechanics are
being destroyed.

The function input gives the state of the sensors.
There are two situations when the state of a sensor
is changed. First, the state of sensors is changed as a
result of movement when a user program is
executed. Second, at any moment when a user

Functional Simulation in Microprocessors Applications Teaching 115

Drawing Area Result of User Program
E
[/
SSAGES

State of Input/Output Ports

FREE PROGRAMABLE
Tl

r'Sensors
LEFT RIGHT UP DOWN

EEEE

r-ﬁ
]
L 8! f“" L7 =]
=Y =)
LY

! Pen Ploter Arm / Help Area Plotter on/off Line
Area of Messages
for change of these sensors Manual Control of the Pen Positio

use the IBM PC keyboard: 0,1,2,3454

Fig. 6. The plotter simulated on the IBM PC screen: all details are the same as for the real plotter.

program is executed the user has the possibility to
change the states of sensors “manually” by pressing
keys on the IBM PC keyboard, for example, “4” for
changing the state of sensor §4. In this way the user
has a chance to “cheat”—it is possible to make the
left sensor active (If) before the plotter arm reaches
the left edge of the drawing sheet.

States of all sensors and control bits are visible
on the computer screen (see Fig. 6).

The description above shows that only functions
of the plotter are simulated, not electrical or
mechanical details. This degree of simulation we
call functional simulation [1].

LABORATORY EXPERIMENT
ORGANISATION

The process of a control program preparation by
astudent (a user) can be considered as consisting of
two steps:

e tutorial: understanding of controlled device, for
example the plotter;

® programming: cycle of editing, compiling, link-
ing and program execution.

Tutorials are set by teachers who with their
voice, chalk and hands describe how the device
works. A better solution is of course to give
students a written (boring) description on paper,
similar to that presented at the beginning of this
paper.

The process of programming can be simplified
by using batch processing files shown in Fig. 7: one
for the C compiler and one for the TASM assem-
bler. Both files are executing the endless loop: edit—
compile-link and execute. It is worth mentioning
that the C and assembler programs use the same
library plotter.lib.

LABORATORY EXPERIMENTS
PROPOSALS

Our model of the plotter allows students to write
programs of different levels of difficulty. It is easy
to see that examples shown in Figs 4 and 5 do not
exhaust the real possibilities of a plotter. The real
possibilities are to draw a line in a given direction
with a certain length and a given number of steps.
An example of how to draw lines in the left/right or
forward/backward direction, with a given length, is

116 J. Majewski

Rem Compile Batch Flle for ¢ Rem Compile Batch File for TASM

:continue :continue

edit Ml.c edit %1.aam

tcc -ml Ml.c plotter.lib tasm %1.asm

pause pause

if errorlevel 1 goto continue if errorlevel 1 goto continue
tlink %1.obj,%1,%],plotter.lib
pause
if errorlevel 1 goto continue

Fig. 7. Batch processing files for C and TASM assembler compilation.

shown in Fig, 8. The program reads the data froma The organisation of exercises described here
table. The table consists of two elements: presents a chance to see problems that are not
direction-of-movement, number-of-steps visible to users of g narmal plotter.

In this way the program of Fig. 8 works like a
Turing Machine: what to draw is described as a THE PLOTTER SIMULATING
string of data, interpreted by the computer. ENVIRONMENT

Next, a more difficult level of exercise is to write
a library of drawing primitives like lines, circles,
rectangles and fonts. Finally there is a need to
organise the library drawing primatives, as in a real Plot_ C—for C language programming;
plotter by Hewlett Packard or Rolland. PLOT _ A—for TASM language programming.

The environment for simulation of the plotter is
localised at two DOS directories:

#include *plotter.h*

#define fw_bw_pulser 0x02
#define 1f_rt_pulser 0x01

#define 1f_sensor 0x10
fdefine rt_sensor 0x20
f#define fw_sensor 0x40
#define bw_sensor 0x80
fdefine fw 0x08
#define bw 0x10
#define 1f 0x04
f#define rt 0x02
#define pen 0x20

unsigned char tab[)=(fwspen+1f, 2,1f+pen+bw, 4, bwipen+rt, 6,rt+pen+fw, 8,
fwipen+1f,10,1f+pen+bw,12,bwipen+rt, 14, rtspen+fw,16,0,0);
#define move(pulser, end_sensor, action, steps_no)
1f(| (input (0x300) & (end_sensor)))
{ output (0x300, (action));
counter=0;
old= (input(0x301) & (pulser));
while(counter < (steps_no))

{
if(input (0x300) & (end_sensor)) break;
new = (input(0x301) & (pulser));
if (old != new) (old= new; counter++; }
}

}
output (0x300,00)

B il i il il

void make_move (unsigned char direction, unsigned char steps_no)
{

unsigned char old,new,counter;

if(direction & 1f) move(lf_rt_pulser,lf_sensor,direction,steps_no);
if(direction & rt) move(lf_rt_pulser,rt_sensor,direction,steps_no);
if (direction & fw) move(fw_bw_pulser, fw_sensor,direction,steps_no);
if(direction & bw) move(fw_bw_pulser,bw_sensor,direction,steps_no);

)
void main(void)

{

int 1=-2;

start ()

while(tab[i+=2])) make_move(tab(i],tab[i+1]);
while(1l);

)StOP(l:

Fig. 8. Example of a more advanced C language program for precisely measured drawings.

Functional Simulation in Microprocessors Applications Teaching 117

In these two catalogues students can write their
own control programs for the plotter. The
PLOT C directory contains the following files:

PLOTTER.LIB
PLOTTER.DAT
PLOTTER.H
COMPILE BAT
TEST.C

The PLOTTER.LIB library file includes four of the
most important functions for plotter simulation:
Start(), Stop(), Input(port) and output(port, value).
The function Start loads the picture of the plotter
from the PLOTTER.DAT file. The file contains
only those details of the plotter which are
permanent. The function Stop removes the picture
from the computer screen of organised on the
computers. The purpose of the input function is to
read the state of plotter sensors. The output
function makes the movement of the plotter arm.
Definitions of all above functions are located at
PLOTTER.H header file. The COMPILE.BAT
batch processing file simplifies the edit—compile~
link-execute process. The file TEST.C contains an
exemplary control C language file.

The PLOT A directory has the following files
organisation:

COMPILE.BAT
TEST.ASM

It is worth mentioning that the simulated environ-
ment for assembler programming is a result of
creation of the C simulation environment. PLOT-
TER.LIB and PLOTTER.DAT are exactly the
same as for C language programming. It means that
from the assembler level the C language library
functions are called. Definitions of all plotter
functions are located at the PLOTTER.MAC
macro definitions file. The COMPILE .BAT batch
processing file simplifies the edit-compile-link—
execute process for the assembler language. The
file TEST.ASM contains an exemplary control
assembler language file.

ABOUT THE TUTORIAL AGAIN

As described above, the software environment
for the plotter simulation and programming needs
a tutorial. As has been mentioned, the tutorial can
be prepared by a teacher or delivered to students as
written material. Both solutions can be combined
into a computer tutorial prepared with the help of
AUTHORWARE PROFESSIONAL [2] system
programming, working under the MS-Windows

PLOTTER.LIB operation system control.

PLOTTER.DAT Figure 9 shows a sample computer screen of the
PLOTTER.MAC tutorial. By using the mouse and clicking the
Page 1

Introduction

Fig. 1 shows a plotter connected to the IBM computer. By controlling the movement of plotter's arm

equipped with a pen. you should draw a simple figure (like a rhombus on fig. 1). The plotter is controlled
by IBM computer through one output port located at /O space address 300Hex. States of the plotter are
read by two input ports placed at address 300Hex and 301Hex.

CﬂNTﬂﬂL
PROGRAM

REYBOARD{ |)

Pibgananta Bot

)

Fig.1. The IBM PC computer controls a plotter.

""Previous Page |

Fig. 9. Screen display example of the tutorial written with the help of the AUTHORWARE program.

118 J. Majewski

buttons on the screen, students can continue the
lesson (Next Page button), return to the previous
page (Previous Page button) or call for help
(Control Menu button). By pressing the Control
Menu button on the screen, extra buttons appear.

What todo?
Lecture Begin
End of Lecture
Return

Voice on/off

C Compiler

The What to do? button opens the window with
instructions on how to navigate the tutorial pro-
gram.

The Lecture Begin and End of Lecture buttons
are for starting the tutorial from the beginning or
for quitting the tutorial.

The Return button is for closing the window with
the help and with extra buttons.

The Voice on/off button is for activation of the
human voice of a speaker. If the IBM PC computer
has a Sound Blaster Card [5] it is possible to hear
the text instead of reading it.

The C Compiler button causes exit to the DOS
operating system and executes the COMPILE.
BAT batch processing file for the student’s program
preparation.

The tutorial has the following elements:

e the plotter text description,;
e kinematics scheme of the plotter;
¢ bit maps of input/output ports;

® sample C control plotter program;
® execution of the sample program;
¢ formulation of student’s exercise.

SUMMARY

Functional simulation was used for the creation
of a laboratory for the subject of Microprocessor
Applications. The following equipment connected
to microprocessors was simulated:

traffic lights board;

stepper motor;

industrial conveyor belts and lifts;
dynamic LED display/keyboard;
plotter.

This list of exercises does not include a series of
logically connected experiments from the teaching
point of view. Exercises were chosen from the point
of view of simulation difficulties: the first exercise is
very simple to simulate but the last two are
associated with multitasking problems. All exer-
cises are available for programming in C and
TASM languages. For all exercises, the tutorials,
written in the AUTHORWARE language, are
under preparation.

Acknowledgement—Parts of this work were supported by the
European Commission TEMPUS JEP 1087 and COMETT Cb
6717 programme grants.

REFERENCES

1. W. Baranski and J. Majewski, Functional simulation, Scientific Papers of the Institute of Engineering
Cybernetics of the Technical University of Wroclaw No. 89,7-12 (1991).

0 LI N

. Authorware Professional for Windows Authorware, Inc. (1991).

. Turbo Assembler, User’s Guide, Borland International Inc. (1988).
. Borland C++, User’s Guide, Borland International Inc. (1991).

. Pro Audio Spectrum Plus, User’s Guide, Media Vision (1991).

Jacek Majewski is an assistant professor of computer science at the Technical University of
Wroclaw (Poland). His research interests are simulation techniques, microprocessors and
DSP. Majewski received his M.Sc. in computer science from the Technical University of
Wroclaw in 1972 and his Ph.D. from the same university in 1978. He can be contacted at the
Cybernetics Institute of the Technical University of Wroclaw, tel. (048/071) 20-39-96.

