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Magnetostatic Torque Experienced by an

Electric Circuit™

RAJENDRA K. ARORA

FAMU/FSU College of Engineering, Department of Electrical Engineering, Tallahassee, FI. 32316, USA

A simple derivation is given for the torque experienced by an electric current loop of arbitrary
shape, not necessarily confined to a plane, when it is placed in a magnetostatic field, which is not
necessarily uniform, in terms of the magnetic moment of the loop. The result is illustrated with the

help of an example.

1. The paper discusses materials for a course in:
Electromagnetic fields and/or electromech-
anical dynamics

2. Students of the following departments are

taught in this course:
Electrical engineering

3. Level of the course (year)
Third-year undergraduate

4. Mode of presentation:

Class lecture
5. Is the material presented in a regular or
elective course:
Regular course

6. Class or hours required to cover the material:
The material forms a part of the discussion
of forces and torques on electric circuits
when they are subjected to magnetic fields.
Total time devoted to the topic is three or
four lectures.

7. Student homework or revision hours required

for the materials:
Approximately 4 hours

8. Description of the novel aspects presented in

your paper:
The torque acting on a current circuit placed
in an arbitrary magnetic field is expressed in
terms of the magnetic moment of the circuit.
A simple derivation of the formula for
torque is provided, and the result is illus-
trated by an example.

9. The standard text recommended in the course,

in addition to author’s notes:
Texts vary. Current texts are: electromag-
netic fields—C. R. Paul and S. A. Nasar,
Introduction to Electromagnetic Fields,
McGraw-Hill (1987); electromechanical
dynamics—F. R.Bergsethand S. S.Venkata,
Introduction to Electric Energy Devices,
Prentice Hall (1987). :
10. The material is/is not covered in the text.
Not covered.
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INTRODUCTION

CALCULATION of torques on current-carrying
circuits when they are placed in magnetic fields is of
interest to electrical engineers from the viewpoints
of both theory and practical applications. One
method for evaluating the torque is in terms of the
magnetic moment of the loop. The subject is
commonly discussed in texts on electromagnetism,
in varying degrees of depth. The following general
observations can be made:

1. Several texts [1-6] assume the loop to lie in a
plane. (As noted in [7], this restriction is not
necessary.)

2. In most texts, including those cited above, the
treatment is restricted to wuniformm magnetic
fields.

3. Some texts do not clarify the fact that when an
electric circuit is placed in a non-uniform
magnetic field, there acts on the circuit, in
general, a force of translation in addition to a
couple, with the result that the torque is
dependent on the choice of the reference point.
Only when the magnetic field is uniform does
the force of transmission become zero, in which
case the torque reduces to a couple and the
reference point need not be specified (see, e.g.

(8]

The following formula (without proof) was given
in [9] for torque on a current loop, whose shape can
be chosen at will, when it is placed in a non-uniform
magnetic field.

T=£deB+£rx(dM-V)B (1)

In (1), dM is the magnetic moment of a differen-
tial current loop enclosing an area da, ie. dM =
Ida, and the integrals are over a surface S spanning
the loop. This result assumes that VX B =0 over §,
which is the case if there is no current density over
S. The first integral in (1) represents the couple
acting on the loop, and has no reference to the
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origin of coordinates. The second integral may be
interpreted as the contribution to the torque arising
from forces of translation, dF, acting on differential
current loops which together constitute the current
loop: dF = (dM - V) B. This part of the total torque
depends on the choice of origin. The second
integral vanishes if B is uniform, but must be taken
into account in computing the total torque if B is
not uniform.

This paper presents a derivation of the formula
and an example to illustrate the result.

DERIVATION OF THE FORMULA FOR
TORQUE

In this section, a simple proof of (1), suitable for
undergraduate classroom presentation, is offered,
based on consideration of forces on the four sides
of a differential current loop.

Let a rectangular loop with sides dx and dy and
centered at the point P(x,, y,, z,) lie in a plane
parallel to the xy plane of a Cartesian coordinate
system in the presence of a non-uniform magnetic
field of flux density B (Fig. 1). The Lorentz force on
the side 12 is:

dF,,=Idya, X B(x, + dx/2)
=Idy[a,B,(x, + dx/2)
—a,B,(x,+dx/2)|

Expanding B,(x, + dx/2) and B, (x, + dx/2)ina

Taylor’s series about the point P and retaining only

the first-order differential terms, one obtains:

dF,,= I dy[a,B,(P)— aszéP) + (a,0B,/0x
—a,0B,/dx)dx/2] (3)

The torque associated with dF 12 evaluated about

the origin O is
dT,, =r;, X F),

@)

(4)

Z‘P

dx
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where r,, is the position vector of the center-point
of the segment 1-2 of the loop in Fig. 1. If r
designates the position vector of P, then Iy =r+
a,(dx/2). Thus:

dT,/I=dyr X [a,B,(P)— azBI%P)] =y
X (a,0B,/ 0x - a,0B,/0x)da/2
+aB,(P)da/2

where the third and higher powers of the differen-
tial segments have been neglected. Similarly, the
torque dT;, about O associated with the Lorentz
force on segment 3-4 of the loop is given by:

dT,,/I=dyr X [—-a,BzSP) +a B,(Is)] (
+r X (a,0B,/0x — azé)B,/ x)da/2
+a,B,(P)da/2

Summing (5) and (6), we obtain:

(dT,,+dT,,)/I=da[rx (a,0B,/0x— a,0B,/9x)
+a,B(P)] 7
Similarly, the contribution to torque arising from

forces on sides 2-3 and 4-1 of the current loop is
obtained as:

)

6)

(dTy3+dT,, )/ I=da[rX (a,0B,/0y— a,0B,/0y)
=i axBy( (8)
Adding (7) and (8), and recognizing that V- B = 0,
the total torque dT acting on the loop is expressed
as
dT/I = dafr X (a,0B,/0x + a,0B,/dy + a,0B,/0z)
+a,B,(P)—a,B/(P) )
If VX B=0,then,dB,/0x =0B,/0z, dB,/dy=0B,/
dz,so thata dB,/0x + a,0B,/dy+a,0B,/dz=(0B/
dz) = (a, *V)B, and:
dT/I=da(r XV B +a,x B) (10)
It follows immediately that, for an arbitrarily
oriented differential current loop:

dT=rX(dM-V)B+dMxB  (11)

dy

A 4
n

/ g
X

Fig. 1. Arectangular differential current loop placed in a non-uniform magnetic field.
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The result (11) permits extension to a loop of finite
dimensions, not necessarily planar. Inasmuch as a
closed circuit can be considered to be made up of a
large number of differential current loops, the
torque on a closed circuit of arbitrary shape placed
in a non-uniform field is given by (1).

AN EXAMPLE

Consider a single turn of an armature winding of
a d.c. machine, with coil pitch p and axial length L,
carrying a current /. Assume that the magnetic flux
density is sinusoidally distributed on the armature
surface, with a wavelength 2b, as depicted in Fig. 2,
in which a segment of the armature surface is
approximated by a plane surface. On y = 0:

B,= B,sin (i;"—— ) (12)

At the outset, one notes that, since VX B=10, a
purely y-directed flux density of the form given by
(1) cannot exist in the air gap. Assuming that there
is no dependence of flux density on the z-
coordinate, there must be an accompanying x-
component of B, such that:

9B, 0B, n X
3y --5;-3“,-5005 % e ony=0 (13)

Y b
~2D _ B SIn(x/b - )
R O -
b |pb "
P
P(xg. %)

Fig. 2. Cross-sectional view of a single-turn armature winding
of a d.c. machine in a sinusoidally distributed magnetic flux
density.

A magnetic field which satisfies the conditions (12)
and (13) can be generated by introducing a scalar
magnetic potential u such that B = —Vu. The
potential u satisfies Laplace’s equation in two
dimensions, 0*u/0x? + 0%u/dy* = 0, with the
boundary condition u = 0 on y = 0. By the method
of separation of variables, one readily finds that the
above conditions are satisfied by

b
u=—B,—~ sin(%— )sinh (%) (14)

Thus:

B=—Vu=B, [a,cos (% i ) sinh (%)
+ a sin (% I a) cosh (?)]
(15)

The air-gap field is depicted in Fig. 3.

Let it be required to evaluate the torque gene-
rated about an axis parallel to the z-axis and
passing through the point P(x,, y,) in Fig. 2 using
equation (1). Take § as the surface y = 0 which
spans the coil. Note that, on §, B has only a y-
component; hence dM X B = 0 and the first
integral in (1) yields nothing. To evaluate the con-
tribution of the second integral in (1), first evaluate
(dMV)B.On y=0:

(dM-V)B =1L dx(a,-V)B=1IL dx%—

=alL deﬂ,%cos (frb—x ~ ) 20

Therefore:
rX (dM-V)B = [a(x — x;) — 2,y

X [a,IL diB,, -g— cos (% = )]

=a,y,/L dB,, % cos (% - a)
a7)
Substitution in (1) leads to

NN/ NN

Fig. 3. The magnetic field in the air gap.
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Totpb/2
T=azanLBr < cos (E—a)dx

¥ 7
b Xo—pb/2 b

ay, ILB, 2 cos ( b a) sin =3 18)

As a check on this result, it is verified that the same
result is obtained by other methods:

1. From Lorentz forces on the conductors:
T= IJ rX(drxB)= —a,y,(F, +F,) (19)
- ;

where the integration is over the contour C of
the circuit, and F, and F, are the Lorentz forces
on the two conductors.

2. From change in flux linkage A associated with a
virtual angular displacement d6 about an axis
passing through the point P and parallel to the
Z-axis:

04 9 [xo+eb2
T=1—= =]y —
39 Yo aX” xg—pb/2

Details of these calculations are omitted.

B,dx  (20)

CONCLUSION

In the foregoing, a simple derivation is provided
for the torque acting on an electric circuit of any
given shape when it is placed in a non-uniform
magnetic field, in terms of magnetic moment, under
the assumption that there are no currents on the
surface § spanning the loop. The torque consists of
two parts: (i) a couple, which is independent of the
choice of reference point; and (ii) a part which can
be considered to arise from forces of translation
due to non-uniformity of the field and which
depends on the choice of reference point. An
example is given to show that the second term must
be included (indeed, in the example considered, it
is the only contributing term) for a correct evalua-
tion of the torque.
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