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Electrostatics and Thermostatics:
A Connection Between Electrical and
Mechanical Engineering*
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This paper establishes a basic analogy between electrostatics and thermostatics to improve the
communication between electrical and mechanical engineers. The analogy further enhances the
learning of electrical engineers in thermal problems as well as the learning of mechanical
engineers in electrical problems. The analogy is clearly exhibited using a well-designed table, a
figure and an example. To reinforce the concept, analytical solutions are derived for a two-
dimensional two-layer structure with a strip source of known flux. The solutions together with a
new discretization method are used to solve the similar structure with known voltage on the strip
electrode. Two practical examples are presented for further illustration and understanding.

INTRODUCTION

DESPITE the similarity between thermostatics
and electrostatics, little effort has been devoted to
linking these two subjects together. This paper
establishes the basic analogy between these two
subjects so that mechanical engineers can apply
their knowledge in thermostatics to solve the
electrostatic problems and electrical engineers can
use their knowledge in electrostatics to study the
thermostatic problems. Through this analogy, we
hope that electrical engineers will become more
able to think in thermal terms and mechanical
engineers will become more comfortable with
electrical terms.

Electrical engineering students learn electrosta-
tics in electromagnetic theory but seldom have a
chance to study thermostatics. On the other hand,
mechanical engineering students study thermosta-
tics in heat transfer but do not have an opportunity
to learn electrostatics. Thus, few students under-
stand both subjects well. Most of them probably are
not taught both subjects in school. The basic
analogy between two subjects definitely will
improve the communications between the electri-
cal and mechanical engineers.

In industries and in applications, electrical
problems are almost certainly coupled with
thermal problems. Neither electrical engineers nor
mechanical engineers can get by without facing
both problems. In view of the trend of a concurrent
engineering approach to improve design efficiency
and reduce design cycle time, understanding of
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both subjects is highly encouraged. Furthermore, in
present products, more different parts are inte-
grated in more systems. This results in more inter-
action, more interface and more coupling between
electrical and thermal problems. Consequently,
knowing both subjects well becomes increasingly
important and highly desirable.

Mathematically, electrostatic and thermostatic
problems share the same Poisson equation. The
major mathematical difference between them lies
in the boundary conditions, in particular, the
prescribed conditions on the sources. For the
thermostatic problem, it is usually the flux on the
source that is prescribed for the determination of
temperature distribution. For the electrostatic
problem, however, it is the voltage (temperature)
that is given for determining the charge flux (heat
flux). In what follows, we first present the basic

ogy between electrostatic parameters and
thermostatic parameters. This analogy is clearly
displayed using a well-designed table, a figure and
an example. A two-layer structure with a strip
source of know flux is analysed. Analytical tem-
perature solution is derived using Fourier integral
transform. A two-layer structure with a strip source
of known potential (temperature) is then studied.
Analytical solution for the charge flux (heat flux) of
this structure is not available. A discretization
method is thus formulated to calculate the charge
density distribution on the strip source. An elec-
trostatic example of strip transmission line is
analysed for illustration purposes. A thermostatic
example on the thermal performance of a field
effect transistor is presented and discussed. The
paper is concluded with a short summary.
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Table 1. Analogy between thermostatics and electrostatics

Thermostatics

Electrostatics I

Electrostatics 11

Temperature, T (°C)

Potential, V (Volt)

Potential, V' (Volt)

Temperature gradient Electric field Electric field

VT (°C/cm) E=-YV(V/cm) E ==YV (V/cm)
Thermal conductivity Electrical permitivity Electrical conductivity
K (Watt/cm °C) € (Coulomb/cm V) or x (A/(cm V)) or

(Farad/cm) (1/(cm&2))
Heat rate, Q (Watt) Charge, Q (Coulomb) Current, I (amp)
Heat rate density Charge density Current density
gw (Watt/cm®) q. (Coulomb/cm?) m(A/cm®)
Heat flux Electrical displacement Charge flux
F (Watt/cm?) D (Coulomb/cm?) J (A/em?)
F=—-KNT D=—-V J==xJV
V-F=gqy V:D=gq, Vei=nx,
Thermal conductance Electrical capacitance Electrical conductance
Gy % (Watt/C) c=- g (Coulomb/ V) G 'é (AV)

Governing Poisson’s equation

Governing Poisson’s equation

Governing Poisson’s equation

1 1 1
ViT= ¢ qu ViV=<4 VV=_ =
Typical boundary Typical boundary Typical boundary
condition of source: condition on source: condition on source:
F is uniform V is uniform V is uniform
ANALOGY BETWEEN THERMOSTATICS Heat Source
AND ELECTROSTATICS Uniiog - Elos

Table 1 exhibits the analogy between thermo-
statics and , electrostatics. Figure 1 shows the
corresponding two-dimensional two-layer con-
figurations. Here, we use the terminology ‘thermo-
statics’ to describe the steady-state heat conduction
problem. As for electrostatics, it is seen from Table
1 that there are two types of electrostatic problems,
ie. electrostatics I and II. Electrostatics I is
concerned with the structure which has an elec-
trode between two dielectric media of very low
electrical conductivity. One of its major
applications is the analysis of strip transmission
lines under quasi-TEM approximation [1, 2].
Electrostatics II deals with the structure composed
of media having high electrical conductivity. One
application is the analysis of electrical resistance of
laser diodes [3].

Mathematically, thermostatic and electrostatic
problems share the same Poisson equation. The
major difference between them lies in the boundary
conditions, in particular, the prescribed conditions
on the source, asindicated in Table 1 and Fig. 1.For
the thermostatic problem as in Fig. 1(a), usually the
flux on the heat source is prescribed for determining
the temperature distribution. If the flux on the
source is uniform, the temperature solution is
derivable. For the electrostatic I problems shown in
Fig. lgb), the potential on the source (electrode) is
given for calculating the charge density-distribution
on the electrode and the potential distribution
inside the media. With prescribed potential on the
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Fig. 1. Cross-section of two-dimensional thermostatic and
electrostatic configurations with a strip source.

electrode, the interface between medias 1 and 2
possesses mixed boundary conditions. On the por-
tion of interface without the electrode, the required
boundary condition is the continuity of the normal
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component of the electric displacement. However,
the electric displacement on the electrode at the
interface is unknown even though the potential on
the electrode is given. This leads to difficulty in
deriving an analytical solution for the potential
distribution. In fact, analytical solutions for this type
of problems have never been reported unless for the
special casesof &, = &,.

The most important application of the electro-
statics I shown in Fig. 1(b) probably is the analysis
of microstrip under quasi-TEM approximation [1,
2]. Usually the first layer is the substrate onto which
an electrode is deposited and the second layer is the
free space. The substrate is mounted on a metal
housing which is also the electrical ground. Con-
sequently, the microstrip becomes a transmission
line for carrying RF or microwave signals. The
microstrip structure does not support pure TEM
mode, pure TE mode or pure TM mode. Rather, it
supports only hybrid modes. However, in actual
applications, the substrate thickness is made much
smaller than the wavelengths of the RF signals to
reduce dispersion and device size. As a result, the
hybrid mode behaves very similarly to a TEM
mode and can be seen as a quasi-TEM mode. Using
quasi-TEM approximation, the structure may be
satisfactorily analysed on the basis of line voltage
and current. Accordingly, the problem reduces to
an electrostatic one. In electrostatic approxi-
mation, there are several methods of analysing the
microstrip structure, including the modified
conformal mapping technique [4, 5], the method of
moments [6-12], the variational method [13-17),
the Fourier series expansion method [18], the func-
tion-theoretic technique [19], the Legendre poly-
nomial projection method [20] and the unified
method [21].

Using the conformal mapping technique, analyti-
cal expression for the characteristic impedance of
the structure Fig. 1(b) was derived for the special
case of &, =¢, =g, [4, 5]. The expression was
further applied to the case when &, # ¢, using an
effective dielectric constant to replace ¢, in the
expression. This effective dielectric constant is a

function of the microstrip geometry and requires
numerical techniques to calculate. Thus, the modi-
fied conformal mapping technique is not a truly
analytical method. Analytical solution of the
microstrip structure has thus never been reported
except for the special case of &, = &,. On the other
hand, if the prescribed condition on the strip
electrode is uniform charge density rather than
potential, the analytical solution for the structure
has been reported [21]). Using this analytical
solution with the method of moments, the structure
with prescribed potential on the electrode can be
solved [21].

To elaborate the analogous concept of thermo-
statics and electrostatics, we used the technique to
be presented in the next two sections to calculate
the temperature distribution of the two-layer
structure depicted in Fig. 1(a) and the potential
distribution of the structure in Fig. 1(b). Two types
of boundary conditions on the source are studied.
One type is known temperature and the other is
known heat flux. For illustration purposes it is
assumed that the top surface of the structure is
adiabatic and the bottom surface is isothermal. For
thermostatics, adiabatic boundary means zero heat
flux over the boundary. In practice, adiabatic
condition is achieved by having a good thermal
insulator such as ambient above the boundary. The
electrostatic equivalence of an adiabatic boundary
is zero electric displacement over the boundary, as
can be seen from Table 1. This equivalence
requires the space above the top surface of the
structure to have zero permitivity. In practice,
permitivity can never be zero unless at some fixed
frequencies. Thus, in true electrostatics, zero
permitivity is not realizable. Accordingly, the
electrostatic equivalence of an adiabatic boundary
is hypothetical and serves only to exhibit the
concept of analogy. For convenience, Table 2 lists
the thermal conductivity, the electrical permitivity
and the electrical conductivity of representative
materials.

Figure 2(a) shows the calculated temperature
distribution with a known uniform heat flux on the

Table 2. Thermostatic and electrostatic properties of representative materials

Material Thermal conductivity Electrical permitivity Electrical conductivity
K (W/(em*C)) & (Coulomb/(cm V)) X (A/(cm V))
Free space 0 8.854 X 107 (=¢,) 0
Pure water 0.006 81¢, 55%10°®
Gold 3.2 NA 4.6 X 10°
Silver 43 NA 6.2 X 10°
Copper 4.0 NA 59 x10°
Iron 0.84 NA 10X 10°
Silicon 1.5 11.9¢, 43X 107%*
GaAs 0.46 13.1¢, 1078+
Glass (Pyrex) 0.011 5.1, <107'®
Quartz 0.014 3.7¢, <1071
Sapphire 0.25 10¢, <1074

NA, not applicable.
* The conductivity is the intrinsic conductivity of pure semiconductors. In practice, the conductivity is
increased by doping impurities and can go as high as 10° A/cm V.
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Fig. 2. (a) Calculated temperature distribution with a uniform known heat flux on the source of 1 mm in width and thickness of 1 mm

for both first and second layers. The thermal conductivities of layers 1 and 2 are 1.0 and 0.1 W/(cm °C), respectively. (b) Calculated

temperature distribution with a uniform temperature of 1°C on the source of 1 mm in width and thickness of 1 mm for both first and
second layers. The thermal conductivities of layers 1 and 2 are 1.0 and 0.1 W(cm °C), respectively.

source of 1 mm in width. The thicknness of the first
and second layers is also 1 mm. The flux is adjusted
to give a peak temperature of 1°C on the source
with respect to the isothermal bottom surface. The
thermal conductivities, K, and K, are 1 and 0.1 W/
(cm °C), respectively. To give the 1°C peak
temperature, the required heat flux is 17.01
W/cm?. Figure 2(b) displays the temperature
distribution of the same structure except that the
source has a uniform temperature of 1°C. Figure
3(a) and (b) gives a field presentation of Fig. Ztg)
and (b), respectively. The arrows represent the
negative temperature gradient and the brightness
indicates the magnitude of the temperature. Once
the peak temperature on the source is determined
or given, the temperature distributions depend
only on the ratio of K, to K, rather than on the
absolute value of X, and K,. Thus, if both K, and
K, change by the same factor, the temperature
distributions will not change. However, the
required heat flux on the source to keep the
temperature distributions will increase in pro-
portion to the factor by which K, and K, increase.

To convert the temperature distributions in
Fig. 2 into electrostatic equivalence, we make the
following translations:

Temperature, T, °C — potential, V, volt
Thermal conductivity, K, W/(cm*C) — electrical
permitivity, £, Coulomb/(cm -

K, =1W/(cm°C)~ &, =1 Coulomb/(cm V)
K;=0.1 W/(cm"C)~ &,= 0.1 Coulomb/(cm V)

To have a 1V peak potential on the electrode of
Fig. 2(a), the uniform e density required on
the electrode is 17.01 Coulomb/cm? which is equal
to the sum of upward and downward electrical
displacements on the electrode. At this point,
everything seems reasonable. However, a com-
parison of the permitivities used with the actual
permitivities shown in Table 2 indicates that the
values used in the example are far too large. The
actual permitivity ranges from 8.854 X 104
Coulomb/(cm V) for free space to 8.854 X 1071
Coulomb/cm V for highly polarizable ceramics.
Accordingly, more reasonable values of ¢, and &,
are £, = 1X 10712 Coulomb{%c:lV) and ¢, =
0.1 X 10~*? Coulomb/(cm V). The corresponding
charge density required on the electrode of
Fig. 2(a) reduces from 17.01 to 17.01 X 107"
Coulomb/cm? and the peak potential on the
electrode remains at 1 V.

From Fig. 2(a) we see that the potential on the
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electrode is non-uniform if the charge density is
uniform. In Fig. 2(b), we observe that the uniform
potential on the electrode leads to a non-uniform
charge density distribution which increases nearly
exponentially from the middle to the edge of the
electrode, as will be shown in a later section. For
practical electrostatic or quasi-static devices, it is
the potential on the electrode that is controlled by
the external circuit. Thus, the uniform potential on
the electrode is much more common than the
uniform charge distribution. In fact, it requires a
great deal of effort to obtain uniform charge
distribution on the microstrip electrode.

TWO-LAYER STRUCTURE WITH A STRIP
SOURCE OF KNOWN FLUX

Since the structure shown in Fig. 1(a) has an
analytical solution, we begin our discussion with
this structure. For convenience, the structure is
exhibited in Fig.4 in the form of modeling a
thermal problem. A strip source is located at the
interface of the two-layer structure. The source has
a width of 2w and uniform flux of F. The bottom
surface is assumed isothermal. If this thermal
model translates to an electrostatic one, the
equivalent condition on the source is a uniform
charge density (Coulomb/cm?). The thermal con-

Isothermal Boundary

Isothermal Boundary~~ (0,0)

/ Adiabatic Boundary

Isothermal Boundary (0,0)

—g
~
0

(© dr—

Isothermal Boundary-" (0,0)

Fig. 4. Thermal model of a two-layer structure with lateral

boundaries extending to infinity, isothermal bottom surface, a

heat source of width 2w and uniform flux F. The three configu-

rations are (a) structure with isothermal top surface, (b)

structure with adiabatic top surface and (c) structure with open
' top surface.

ductivity of each layer is K, and K,. The lateral
boundaries extend to infinity. For structure with
finite lateral boundaries, the lateral boundaries can
be taken into account using the method of images
[22].

e governing Laplace equation is

o oW
V (I, y) axz * ayz 0 ( )

where W (x, y)is the temperature. We first solve the
structure for which the top surface is also iso-
thermal as depicted in Fig. 4(a). The boundary
conditions of this structure are given below.

1. The temperature approaches zero as x

approaches infinity.

The top and bottom surfaces are isothermal.

The temperature is continuous at the interface

between layers.

Tangential component of the temperature

gradient is continuous at the interface.

Normal component of the heat flux is con-

tinuous at the interface except at the source

position.

. The heat flux on the source is uniform.

. On the source, the normal component of the
heat flux has a discontinuity equal to the heat
flux of the source.

G e R

~1 O\

In mathematical description, these boundary
conditions translate to the following equations:

(i)
al-O i=12atx=0andasx - (2)
ox
Wh=0 j=12asx~ A3)
Yh=0 aty=0 4
YA=0 aty=d, (5)
Wi(x, y)=WO(x,y)aty=d, (6)
owh gy
—_—— - 7
ax ax 3ty dl ( )
own . ¥ _ |0;x>wandy=d,
' 9y 2 dy Filx|€wandy=d,

®)

where W is the temperature in the ith layer, F is
the heat flux of the source, d, is the thickness of the
first layer and (d, — d,) is the thickness of the
second layer.

Because of the symmetry of the structure, the
plane at x = 0 is adiabatic, which suggests that we
take the Fourier cosine transform of Eq. 1. Inte-
grating by parts and using the conditions that ¥(x,
y)— 0and 0¥/0x + 0 as x—~0and d¥/0x =0 at x
= (), we have

1 diy(ay) _

we.))= o, a7 0 Q)
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where y(a, y) is the transform temperature
expressed by

y(a,y)= f Wi)(x, y)cos(ax)dx (10)

and a is the spatial frequency. The solution of Eq. 9
has the form of

y)(a, y)= Asin h(ay)+ Bcos h(ay) (11)

After applying the transform boundary conditions,
we obtain

y(a, y)= e 5 S
a’cos h(ad,) [Kl - K, 12 :|
and
N _ Fsin(aw)
¥(@.7) a’cos h(ad,)(K,y — K,B) (13)

X [sin A(ay) — tan h(ad,)cos h(ay)|
where 8 and y are defined below,

B=1—tanh(ad,)tanh(ad,)  (14)

y=1—tanh(ad,)coth(ad,)  (15)

The solution in the spatial domain is then obtained
by the inverse Fourier cosine transform given by

Wi(x, y)= ,—%j ¥%a, y)eos(ax)da (16)

If the top surface of the structure is adiabatic rather
than isothermal as shown in Fig. 4(b), the solution
of Eq. 9 becomes

¥iXa. y) = Fsin(aw)sin h(ay) % 17)
azcosh(ad,)[K, - K, E]
and
Fsin(aw)
¥,y =

a’cos h(ad,)(K,& — K,p0) (18)
X |cos h(ay) — tanh (ad,)sin hA(ay)]

where o and £ are defined as

o =tanh(ad,)— tan h(ad,) (19)

& =coth(ad,)— tan h(ad,) (20)
If the top surface is open as exhibited in Fig. 4(c),
the thickness of the second layer approaches
infinity, i.e. d, — ©, Applying this condition to Eqs
12 and 13 or Egs 17 and 18, the solutions for the
isothermal top surface and the adiabatic top

surface configurations degenerate into the same
solution given below,

: % Fsin(aw)sin h(ay)
¥(a,y) a’cosh(ad))|K, + K,tanh(ad,)]
21

and
Y(a Fsin(aw)
Y) a’cos h(ad,)(K,y,— K,f,) @)
X _[sin h(ay) — cosh(ay))
where f, and y, are defined below.
Bo=1—tanh(ad,) (23)
Yo=1—coth(ad)) (24)

TWO-LAYER STRUCTURE WITH A STRIP
SOURCE OF KNOWN POTENTIAL

The solutions in the previous section are
obtained assuming that the flux on the source is
uniform. This is the general case for thermal
problems. When it comes to practical electrostatic
problems, the uniform flux (charge density for
electrostatics I) does not hold any more. Instead, it
is the potential rather than the charge density which
is known. In fact, we can only control the potential
in practical problems. A representative structure is
shown in Fig. 5(a) which is a shielded microstrip
line. As indicated previously, due to mixed
boundary conditions at the interface, the analytical
solution of this structure has not been derived.
However, the structure can be solved using a
discretization method and the analytical solutions
derived in the previous section.

To solve the problem, we first divide the strip
electrode into N segments as exhibited in Fig. 5(b).
The width of each segment may be different. The
ith segment is centered at x = x; and assigned an
unknown uniform charge density given by

o(x)=AXU (25)

where U is a unity charge density and 4, represents
the unknown relative charge strength on the ith

Ground

Ground

( :

(b) [ | o }
Xi

— 20

=X

Fig. 5. (a) Electrostatic model of a two-layer structure. The

lateral boundaries extend to infinity. The top and bottom

surfaces are grounded. The electrode has a width of 2w and a
potential V. (b) Segmentation of the strip electrode.
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segment yet to be determined. First, consider a case
where only the ith segment is present and it has a
unity charge density U. The potential at the
interface between the first and second layers due to
this ith segment can be computed using the
solutions Eqs 12 and 13 derived in the previous
section. Using ®,(x, d,) to denote this potential,
then the potential due to the ith segment having a
charge density o(x;) = 4; X U can be expressed by

Potential due to the ith segment = ®,(x, d,)4;
(26)

Based on the superposition principle, the potential
produced by all N segments is thus given by

N
Vx)= 2 ®;(x d)A @7
=1
Apparently, the potential V(x) over the electrode
must satisfy the prescribed potential. In Eq. 27,
since we have N unknown 4;s, we need to specify
V(x) over the electrode only at N locations. For
simplicity, we specify ¥(x) at the middle of each
segment and define it as
V= V(s (28)
Substituting Eq. 28 into Eq. 27 yields

N N
V=2 ®x, d.)).,-szl @, (29)
i=] -

where
D, =P(x;, d)) (30)

Rewriting Eq. 30 in matrix form yields

v, A

v ®, P,...0, A,

V3 - 21 .. ... AJ

. =3 ? (31)

. D, ... Lo N

V A

where @ is the potential at x= x; due to the ith
segment with a unity charge density U. ®;s can be
computed using the solutions derived in the
previous section. The potential on each segment is
prescribed by the boundary conditions and thus is
known. Accordingly, by inverting the matrix [®,],
we obtain the charge strength matrix [4], i.e.

i, | L
A, Q, D), ... Py, V,

Ar_] = ¢2| ...... I./.-‘ (32)
o | Pl R

% v,

It is clear that, for the above method to be valid, the
potential on the strip electrode does not have to be
uniform. In fact, uniform voltage on the electrode is
a special case. :

After the charge density of each segment is
obtained, the potential at any given point within the
structure is expressed by

N
W(x,y)= 2 A®(x,) (33)
And the electric field is given by
E(x,y)=—V¥(x,)) (34)

The characteristic impedance of the microstrip is
then calculated using the expression

Z,= (ohms) (35)

1

vy CCo
where v, is the speed of light in free space, C, is the
capacitance per unit length of the microstrip with
all layers replaced by free space and C is the
capacitance per unit length of microstrip with
dielectric structure. The capacitance per unit
length is the total charge per unit length divided by
the potential of the strip conductor, namely,

N
2 o(x:)2w,;
i=]
ST
where 2w, is the width of the ith segment.

(Farads/cm) (36)

AN ELECTROSTATIC EXAMPLE

To illustrate the method presented, we solve an
electrostatic two-layer structure shown in Fig. 5(a).
The first layer is 250 #m thick alumina substrate
and the second layer is 2 mm thick free space. A
250 um wide electrode is located on the substrate.
The relative permitivities of the free space and the
alumina are 1.0 and 10.0 respectively. The top and
bottom surfaces are electrically grounded and the
lateral boundaries extend to infinity. This structure
represents a typical microstrip transmission line.

For the problem on hand, it is the voltage rather
than the charge density on the electrode that is
given. We first need to divide the electrode into
elements. Segmentation of the electrode needs not
be equally spaced. Several schemes of discretizing
the electrode were studied to identify an optimal
one. Figure 6(a) exhibits the resulting charge
distributions on the electrode which is equally
divided into 16 segments and 100 segments,
respectively. The voltage on the electrode is 1.0 V.
We see that the charge distribution is very non-
uniform near the edges of the electrode. Appa-
rently, equal discretization is not an efficient
scheme. Figure 6(b) displays the charge distri-
bution on the same electrode which is divided
exponentially into only eight segments. To
compare the accuracy of the equal and exponential
discretizations, the potentials on the electrode and
the dielectric interface were computed using the
corresponding charge distributions obtained. The
results are shown in Fig. 7 where the potential
attained with equal discretization of 100 segments
is plotted as a reference. We see that discretization
of 100 segments results in a potential on the
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Fig. 6. Computed charge distributions on the strip electrode at 1.0 V of constant voltage for the two-layer structure example. (a) Equal
discretization into 16 segments and 100 segments. (b) Exponential discretization into eight segments.
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electrode which perfectly satisfies the boundary
~ condition of 1.0 V on the electrode. It is also seen
~ that the exponential discretization of eight seg-
ments gives a more accurate result than that
obtained from equal discretization of 16 segments.
Other schemes have also been tried. It was con-
uded that exponential discretization appears to
the most effective one for microstrips.
- Once the charge distributions were calculated,
 the line capacitances were obtained using Eq. 36.
- The results are presented in Table 3 for a different
umber of segments in the equal discretization
eme. Notice that C,, is the line capacitance with
alumina substrate replaced by free space and C
the line capacitance of the structure with alumina
rate. The characteristic impedances were also
culated using Eq. 35 and are shown in Table 3.

0.‘ LB I Trprrrrrrry TYyrervrrvry L }
100 150 200
Position Along Dielectric Interface (um)

LB LA e

Fig. 7. Potential on the electrode and dielectric interface obtained using the charge distributions computed with the equal discretization
of 16 segments, exponential discretization of eight segments and equal discretization of 100 segments. The boundary condition on the
electrode s a constant voltage of 1.0 V.

We observe that, as the number of segments
increases, the line capacitance increases due to
more accurate determination of charge distribu-
tions. This is in agreement with the principle of the
variational method [13]. The characteristic impe-
dances, however, decrease with the number of
segments. Also given in Table 3 is the CPU time
using IBM compatible 486 PC with co-processor
running at 33 MHz.

From the charge distribution determined, the
potential distribution in the structure and electrical
fields at the interface were computed. Figure 8&1)
limns the equipotential contours obtained from the
charge distribution determined with 20 segments
of exponential discretization. Figure 8(b) shows the
electric fields at the interface between the alumina
substrate and the free space. E, is the tangential
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Table 3. Line capacitance and characteristic impedance of the two-layer microstrip

No of equal Cy C Z, CPU*(s)
segments (Coulomb/cm) (Coulomb/cm) (Ohm)

4 16913 E~"2 25629 E~"* 50.66 022

6 1.7163 E™"2 25956 E™* 49.98 0.38

8 1.7294 E™12 26126 E™3 49.62 0.44

10 1.7369 E~'2 2.6225E7" 49.42 0.50

12 1.7426 E*" 2.6298 E~" 4927 0.55

14 1.7459 E~"* 2.6342E7" 49.19 0.66

16 1.7494 E™"2 26388E7" 49.09 0.77

18 1.7516 E™"2 26419E71 49.03 0.82

20 1.7534 E~12 2.6444E71 48.99 0.99

30 1.7583E"2 2.6517E" 48.85 1.54

40 1.7613E™"* 26561 E™ 4877 2.14

50 1.7633E™"? 26591 E™" 48.71 2.85

60 1.7647 E~12 2.6609E~" 48.68 3.68

70 1.7658 E™*2 26621 E~" 48.65 4.67

80 1.7668 E~'? 2.6629E~" 48.63 5.83
100 1.7683 E12 26635E7" 48.60 8.73

* CPU time measured using IBM compatible 486 PC with co-processor running at 33
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Fig. 8. (a) Equipotential contours in the cross-section of the two-layer structure example. The unit of contours is in volts. (b) Magni-

tude of the electric fields on the electrode and along the dielectric interface. E, is the

tangential component. E,(d}) is the normal

component right above the interface and E (d7) is that right below the interface.

component of the electric field, E,(d}) is the
normal component right above the interface and
E,(dy) s that right below the interface. We see that

« 18 zero on the electrode, as anticipated. Near the
electrode edge, however, E, increases drastically
and reaches a peak value right at the edge. This
peak value is ~1000 V/cm for an electrode voltage
of 1.0 V. It increases in proportion to the electrode
voltage and may cause corono discharge or
dielectric breakdown for high applied voltage.
Right above the electrode, the normal component
is positive and thus the field aims upward. Right
below the electrode, it is negative and the field
points downward. At some distance away from the

electrode, both E\(d}) and E (d}) become negative
and the electric flux lines begin heading downward
at the interface. From the magnitude of E,(d}) and
E,(dy), one may also calculate the total charge
density along the interface, which includes both the
free charge and the bound charge.

A THERMOSTATIC EXAMPLE

The thermostatic example is a metal-semicon-
ductor field effect transistor (MESFET) built on
semi-insulating gallium arsenide (GaAs) substrate
as depicted in Fig. 9. The device is fabricated by
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” N
i -type GaAs
Depletion’ Region /R0 BN hannel
Semi-insulating GaAs

Metallization

Fig. 9. Physical structure of a GaAs field effect transistor using Schottky diode as a gate. Here 2 is the gate width and L the gate length.

growing an n-type GaAs layer on the GaAs
substrate, followed by producing two n*-type
regions. Metal pads for drain and source are
deposited on the n* regions to achieve ohmic
contact. A metal strip for gate is deposited between
the drain and source to form a Schottky diode on
the n-layer. The bottom surface of the substrate is
metallized. In typical applications, both the source
and the bottom surface are connected to the
electric ground. When a positive voltage is applied
between the drain and source, electrons in the n-
layer flow from the source to the drain, producing a
current going from the drain to the source. A
positive voltage between the gate and the source
increases the depth of the depletion region in which
electrons are depleted.

Due to the depth increase in the depletion
region, the n-type conduction channel opening is
reduced, resulting in current reduction between the
drain and the source. Thus, the gate voltage
controls the drain to source current. Due to the
high mobility of electrons in GaAs, MESFETs
built on GaAs have a higher speed than silicon

transistors and, thus, have important applications
in microwave and millimeter-wave devices and
systems. The demands on the performance of
GaAs MESFETs have been higher power and
higher operation frequency. This leads to higher
power density on the GaAs device chip. Con-
sequently, thermal performance becomes a critical
issue for GaAs MESFETs [23, 24].

One approach in studying the thermal perfor-
mance of MESFET is to approximate the device
structure by a two-dimensional geometry and
identify the thermal resistance. The simplified geo-
metry is portrayed in Fig. 10. This two-dimensional
approximation is practically reasonable because
the gate width 2w in Fig. 9 is much smaller than the
gate length L. Here, we should point out that, in the
FET tradition, the 2w in Fig. 9 is called the gate
length while the L is named the gate width. In the
two-dimensional thermal model of Fig. 10, the gate
is treated as a strip surface heat source because
most of the heat is generated right underneath the
gate electrode. One method of finding the thermal
resistance is to utilize the model for the shielded

Gate (Heat Source)
source 1 20 [+ prain
I I S R

Substrate

K

Isothermal

Cross-Section

Fig. 10. Two-dimensional FET thermal model.
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strip transmission line in the dielectric medium
shown in Fig. 11(a) [25-27]. The characteristic
impedance of the stripline is given by [26, 27|

A Hg)
& H(g"
where H(g) is the complete elliptic integral of the
first kind, 4, and &, are the permeability and the
permitivity of the medium, respectively and

1
Z = 2 (37)

o,

m ’
g=sech 24, g =tanh 2d, (38)
The capacitance of the stripline is [2]
1
G vz, L (39)
where L is the length of the stripline and
1
7
i JHi€ (40)

is the phase velocity of the electromagnetic wave
propagating along the stripline. Substituting Eqs 37
and 40 into Eq. 39, we obtain

H(g')
' H(g)

In the shielded stripline shown in Fig. 11(a) the
electrical field distribution is symmetrical with
respect to the plane along the electrode. One-half
of the stripline can be represented by the structure
depicted in Fig. 11(b). In Fig. 11(b), the condition
of &, =0 is hypothetical because &, = 0 is not
realizable unless for some specific media at a

C,=4Le

(41)

C. C. Lee and D. H. Chien

specific frequency. For the half stripline, the capa-
citance is thus

H(g)

Cy=2Le; ——==-

; ' H(g)

By comparing Fig. 10 with Fig. 11(b), we see that

they are the equivalent of the thermostatic and

electrostatic models. From Table 1, the analogy of

the thermal conductance in an electrostatic model

is C. Accordingly, the thermal conductance of

Fig. 10 is given by Eq. 42 with ¢, replaced by K,

ie.
H ’
Glh - 2LK| %

(42)

1

and® = —

Gn'r
where © is the thermal resistance. In the half
stripline shown in Fig. 11(b), the boundary condi-
tion on the electrode is uniform voltage which
translates into uniform temperature for the thermal
model of Fig. 10. Thus, Eq. 43 is valid for the
boundary condition of uniform temperature on the
heat source.

For thermostatic problems, usually it is the flux
which is prescribed on the source. Thus, if uniform
heat flux is given in the model of Fig. 10, its thermal
resistance can be obtained using the two-layer
structure shown in Fig. 4§c) by letting K, = 0.From
Eq. 21, we can find y!)(a, y) for y = d, and
K, = 0. Substituting w‘“ga, d,)into Eq. 16, we find
the peak temperature W)(0, d,). Dividing W")(0,
d,) with the source power, we obtain the thermal
resistance

(43)

1 1 [ sin(aw)tank(ad,) 44
b f — da (44)

+ 20 |«
=

Dielectric _

)
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Electrode

MONCN N R D ONTN NN NN N N N NN NN

Grounded
Cross-Section
(a)
- 20 |« g =0
_
4
1 g
J_\\\\\\\\\\\\\‘\\\\\\\‘
Grounded
Cross-Section
(b)

Fig. 11. Electrostatic models of strip transmission lines. (a) Shielded stripline with electrode width of 2w and thickness of 2d,. (b) An
open stripline with electrode width of 2w and thickness of d,. Notice that the conditions of &, = 0 is hypothetical because it is not
realizable in electrostatics.
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Eq. (43) derived from
electrostatic stripline
model
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thermostatic model
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Fig. 12. Calculated results of thermal resistance-length product using Eq. 43 derived from electrostatic stripline model and Eq. 44
obtained from thermostatic model for the GaAs FET model shown.

Now we are ready to compare the thermal
resistance results of Eqs 43 and 44. The example is
amodel of GaAs FET with a substrate thickness of
125 um shown in Fig. 12. The results of resist-
ance-length product are plotted in Fig. 12. We see
that the thermal resistance obtained from the
thermostatic model of Eq. 44 is higher. This is
explained as follows. In the thermostatic models,
uniform flux is prescribed and the resulting
temperature on the heat source is non-uniform.
The thermal resistance of Eq. 44 is derived using
the peak temperature on the heat source. On the
other hand, in the electrostatic stripline model
which results in Eq. 43, uniform electrostatic
potential is prescribed which is analogous to
uniform temperature on the heat source. The
thermal resistance is obtained with the uniform
temperature and, thus, is lower than that of Eq. 44
which uses the peak temperature of the non-
uniform temperature distribution on the source of
the thermostatic case. From the results given in
Fig. 12, we see that Eqs 33 and 44 are closer as the
gate width 2w becomes smaller. This is because
when the gate width is smaller, the peak tempera-
ture used in Eq. 44 becomes closer to the uniform
temperature utilized in Eq. 43.

The choice of using Eq. 43 or Eq. 44 depends on
the prescribed condition on the heat source. There-
fore, the engineers need to pay close attention to
the actual heat source condition. At this point, we
should point out that the use of the electrostatic

stripline model gives only the thermal resistance.
However, the thermostatic model not only
provides a thermal resistance closer to the real
situation but also enables us to calculate the tem-
perature and flux at any locations in the structure.
The temperature and flux distribution in the struc-
ture offer the engineers an opportunity as well as
insight as to how the heat is transported from the
source to the external boundary.

SUMMARY

In summary, we establish and present the basicanal-
ogy between thermostatics and electrostatics to
enhance the understanding of both thermal and
electrical problems without having to learn either
thermostatics or electrostatics from scratch. To ela-
borate the analogy, an explicit example is given. To
strengthen the link, we derive and report the analyti-
cal temperature solution of a two-dimensional two-
layer structure with a strip source of known flux. To
further reinforce the connection, a discretization
method is formulated to calculate the charge dis-
tribution on the strip source of given voltage. To
consolidate the concept, two application examples
are analysed and discussed. We are certain that the
analogy and examples would enhance the com-
munication between electrical engineers and
mechanical engineers.
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