Int. J. Engng Ed. Vol. 10, No. 3, pp. 291-298, 1994

Printed in Great Britain.

0742-0269/91 $3.00+0.00
© 1994 TEMPLU'S Publications.

Undergraduate Education and Research
in High-performance Computing™

LYLE N. LONG

JESSE L. BARLOW
LOUIS F. CONSTABLE
KEVIN M. MOROONEY

Department of Aerospace Engineering, 233 Hammond Bldg., Penn State University, University Park, PA

16802, USA

This paper describes a project to teach high-performance computing software and algorithm
development to undergraduate students. The project was funded by the National Science
Foundation and Penn State University. The funds allowed us to purchase a'massively parallel
Connection Machine CM-200 computer. A new course called Parallel Processing was introduced
and jointly taught by Aerospace Engineering and Computer Science. The course included topics
such as interprocessor communication, programming languages, parallel algorithms, parallel
efficiency and data structures. In addition to the course, undergraduates have also been writing
senior theses in high-performance compuring. Since the improvements in performance of vector-
processing supercomputers is leveling off, future supercomputers will be massively parallel. Since
these machines are quite different to classical serial computers, it is important to introduce
massively parallel computing early in the students’ careers. For most students, the projects
described herein were their first exposure to high-performance computing. While we have
numerous graduate students working in parallel processing, this paper will primarily address the

undergraduate project.

INTRODUCTION

THE PROJECT described herein is a joint one
between the Computer Science Department and
the Aerospace Engineering Department of the
Pennsylvania State University. The goal of this
project is to introduce undergraduates to high-
performance computing and parallel processing.
‘The interdepartmental nature of the project means
that a large and diverse student body has access to
the material. In addition, it fosters interdisciplinary
teaching and undergraduate research, between
Computer Science and Engineering—for both
students and faculty.

The Pennsylvania State University is located in
central Pennsylvania and has approximately
32,000 undergraduate students and 6500 graduate
students. In 1991 there were 8293, 1131 and 463
degrees conferred at the bachelor, master and
doctoral levels, respectively. The Computer Sci-
ence Department has roughly 200 undergraduate
students. The areas of study for these students are
mainly in software; in particular, compilers, algo-
rithms, data structures, artificial intelligence, com-
puter languages, operating systems and theoretical
computer science. The Aerospace Engineering
Department has roughly 150 students at the junior
and senior levels. These students study the tradi-

* Paper accepted 12 September 1993,

291

tional areas of aerospace engineering; fluid dynam-
ics, structures, propulsion, dynamics and control.

The teaching projects described herein address
parallel processing and scalable algorithms for
‘grand challenge’ problems. The grand challenges
require that the supercomputer industry aim for
the teraflop computing power that D. Allan
Bromley [1, see also 2], technical advisor to the
President, asked for by 1996. Traditional super-
computing power, usually associated with large
multi-CPU machines with vector processing
capabilities, is fast approaching the physical limits
imposed by the speed of light and the material
properties of the semiconductors used in those
machines. During the last several years, parallel
processing has emerged as the technology that will
provide teraflop computing power. The goal of 1
teraflop will be reached within a few years. There
are a number of grand challenge problems, such as
meteorology, turbulence, aircraft design, combus-
tion, molecular dynamics, vision and cognition,
protein folding, pharmaceutical design, neutron
transport, database management, and the human
genome, that will be forever changed by this tech-
nology.

Since Penn State is a large research university
(ranked 11th nationally in terms of sponsored
research), the undergraduate students are accus-
tomed to having research topics introduced in their
upper division courses. In addition, undergraduate
research is becoming more and more common at



292 L. N. Long, J. L. Barlow, L. F. Constable and K. M. Morooney

Penn State. Our undergraduates take courses in
topics as advanced as turbulent flow, computa-
tional fluid dynamics, composite material process-
ing, spacecraft control, artificial intelligence,
computer architecture, compiler technology and
matrix computations.

With the rapid progress made in the field of
massively parallel processing and the impact it is
having (and will continue to have) on almost all the
above technologies, it is important to provide
undergraduates with access to parallel computers.
While the undergraduates at Penn State have good
access to serial computers, access to parallel
computers has been rare. Courses taught in both
engineering and computer science have introduced
parallel computing concepts, but in-depth knowl-
edge and experience is not possible without access
to the computers. This project tries to provide
access to state-of-the-art parallel computers for
undergraduate students.

The primary impact of parallel computing upon
numerical analysis has been in matrix compu-
tations [3], the solution of partial differential
equations [4, 5] and particle-based simulation
methods [6]. These problems have a great deal of
exploitable parallelism. It is important for instruc-
tional reasons to be able to demonstrate the ability
to speed up large-scale computations on parallel
machines. In addition, many of the language tools
and constructs are not available on traditional
computers.

As an example, in matrix computations, the sim-
plest matrix operations, such as matrix-vector and
matrix-matrix operations can be performed at near
peak megaflop rates on most high-performance
architecture. For this reason, the Linear Algebra
Package (LAPACK) [3| was built around such
operations. For shared-memory machines such as
the Alliant FX/8, the Cray-X-MP and the Titan,
many of these operations were incorporated into
the Basic Linear Algebra Subroutines (BLAS)
(levels 1-3). The manufacturers of these machines
were asked to implement the BLAS in assembly
language or in the fastest way that they could be
implemented. The LAPACK modules for solving
eigenvalue problems, systems of linear equations
and least-squares problems were built on top of the
BLAS. The result was that the LAPACK routines
ran almost as fast as those written entirely in
assembly language. It is important for students to
understand this philosophy of software develop-
ment. That is, that one should develop software
that is as portable as possible while still being
efficient. However, at the same time, it should be
understood that new high-performance architec-
tures make it more difficult to develop software
that can be moved from machine to machine.

In addition, students should know how to
program numerical algorithms effectively and how
to use performance measurements. A classical
example is the solution of a traditional system of
linear equations. This problem is an important
subproblem that arises in problems ranging from

time-dependent partial differential equations (by
ADI methods) to the solution of eigenvalue prob-
lems. If the resulting system does not require
pivoting for Gaussian elimination, then it can be
solved in O(n) operations where n is the dimen-
sion of the system. Moreover, the algorithm is
simple and easy to program on sequential compu-
ters. Gaussian elimination is, however, a serial algo-
rithm that is not easily ported to parallel
computers. We know that algorithms such as cyclic
reduction or recursive doubling can solve the
resulting system in O(log n) operations using O(n)
processors. These methods, however, are not
stable for as large a class of matrices as Gaussian
elimination. It is useful for students to see these
techniques, to be able to experiment with themona
real parallel computer and to understand their
limitations.

PARALLEL COMPUTERS

Figure 1 shows several of the more powerful
existing and proposed computers. Their perfor-
mance range is shown in terms of speed per
processor and number of processors. The peak
speeds shown have not been completely demon-
strated for some of these computers, and, in most
cases, a machine with the maximum number of
allowable processors has not been assembled. For
example, the 1024-processor CM-5s at Los
Alamos National Laboratory and the National
Security Agency (NSA) are the largest CM-5s that
have been built. These machines have sustained
four times the peak speed of a 16-processor Cray
C-90. Massively parallel computers are the most
effective path to teraflop computing.

One clear trend is that all the high-performance,
massively parallel computers will take advantage of
CMOS chips found in RISC workstations. There
are vendors who will be using the Sparc, Intel
1-860, DEC Alpha and IBM RISC chips. This is the
most cost-effective approach to teraflop comput-
ing, since it takes advantage of mass-produced

IM 7. &
gkt s, R
F b ?"?zb
] Sa S CM-5/ v
eum t &% 544 Ay
= ik
- o 300 S 5 Intel
5 1004 4‘% S N P
£ 10 % CM-200 05!
E S e
; lo | “‘ “‘ e
Aoy | C9%0
; Sl MO e
1 + + + L i ¢
001 .01 0.1 1.0 10 100 1000
MegaFlops Per Processor

Fig. 1. Parallel processing computers.



Undergraduate Education Research in High-performance Computing 293

chips. An important design point for these new
parallel systems is that they be scalable. The
challenge for scientists and engineers is to develop
applications that will take advantage of these new
teraflop machines as quickly as possible.

There are several massively parallel computers
(i.e. more than 1000 processors) on the market.
These computers fall into two categories: multiple-
instruction, multiple-data (MIMD) or single-
instruction, multiple-data (SIMD). The MIMD
machines (e.g. Intel Paragon, Cray T3D, IBM SP2,
TMC CM-5, and (nCUBE/2) have processors
that can all be performing different operations
simultaneously. The SIMD machines (e.g. TMC
CM-200 and MasPar MP-2) have processors that
all perform the same operation simultaneously.
MasPar is essentially the only remaining manufac-
turer of general-purpose SIMD computers.

Cray, IBM, Intel, MasPar, Meiko and Thinking
Machines have all announced new machines that
show promise, but they are all quite different and a
clear winner has not emerged. Massively parallel
computers are still evolving rapidly. When they
first appeared, the main types of parallel computers
were either SIMD or MIMD designs. The proces-
sors on all the proposed teraflop machines are
quite similar now and the hardware (SIMD vs.
MIMD) debate is essentially over, since MIMD is
the dominant architecture. There are significant
differences in networks and memory access
schemes however.

The issue today involves the most effective
programming style. In particular, the question today
seems to be whether or not the data-parallel
approach (e.g. High Performance FORTRAN and
FORTRAN 90) is superior to the message-passing
approach (e.g. PVM |7]) for a particular application.
Most likely, both approaches will succeed, since
they both have their advantages and disadvantages.
We have significant experience using Connection
Machine computers and have been quite successful
with the data-parallel approach. In addition, all of
our CM-200 codes run very effectively on the
CM-5. There are algorithms, however, that are
difficult to program using the data-parallel
approach, for example, particle methods or Monte
Carlo methods.

There have also been advances in software
technologies and network reliability which pro-
vides a useful, inexpensive context for developing
parallel applications that will be prepared for the
next generation supercomputers. Loosely coupled
clusters of high-function workstations have been
shown to be useful parallel computer engines.
Software like Parallel Virtual Machine (Oak Ridge
National Laboratory), Express FORTRAN (Para-
soft Corporation), Control Process Software
(Fermi Laboratory) and Linda (Scientific Com-
puting Associates), all provide the mechanisms for
using clusters of workstations as parallel machines.
The power of these software solutions is that they
all operate with existing communication links
between the machines. The bandwidth of these

links, however, can be quite low and the message
latencies are quite large. A cluster of workstations
in a department or across a college campus can
participate in the solution of a single computational
problem using Ethernet, Token Ring, etc., as the
communication vehicle. Most of the above soft-
ware packages also allow for development of
applications in a heterogeneous vendor and archi-
tectural environment. Not only can we develop
programs which will scale for use on new parallel
supercomputers, but we can develop programs
which can take advantage of several different
architectures on the campus network. In the future
people will rely on the Message Passing Interface
(MPI).

PENN STATE COMPUTER FACILITIES

Students at Penn State have access to a wide
range of computer facilities, as shown below:

® 3-processor IBM ES9000 (Center for Aca-

demic Computing);

® 48-processor IBM SP-2 (Center for Academic
Computing);

® 2-processor Cray YMP/2E (Earth Systems
Science Center);

® 2048-processor CM-200 (Aerospace and Com-
puter Science);

® 16-processor nCUBE/2 (Electrical and Com-
puter Engineering);

® Workstation clusters: IBM RS/6000 and Sun
SparcStations;

® Workstations: IBM, Silicon Graphics and Sun;
® Microcomputers (Intel and Apple).

This is an environment smaller in scale but
identical in offering to the environment provided at
most supercomputer centers and national labs. The
university has an IBM ES9000, a three-processor
vector computer with 1 Gbyte of main memory and
190 Gbytes of disk space. We also just received an
IBM SP-2, which is a tightly coupled array of RS/
6000 computers with a high-speed switch and 6
Gbytes of main memory. The College of Engineer-
ing has a large number of workstations (IBM, SGI
and Sun) and personal computers, which are
available to undergraduates. The Department of
Computer Science has a laboratory with approxi-
mately 30 Sun workstations. All of the above
equipment is networked together on a fiber-optic
backbone.

The main computers used for this project were
the massively parallel Connection Machine (CM-
200) computer and the workstations. The CM-200
has a Sun SparcStation 2 front-end. The students
did not log onto the front-end directly, but used the
workstation labs around campus (SGI, IBM and
Sun). Several labs and the front-end computer ran
the Distributed Queuing Systems (DQS) devel-
oped by Florida State University [7] and the
Andrew File System (AFS) [8]. The students
compiled and ran their programs using DQS. Since



294 L. N. Long, J. L. Barlow, L. F. Constable and K. M. Morooney

the compilers only run on Sun workstations, the
IBM computers would send the compile tasks to
various Sun workstations. The students essentially
used the SGI computers as X-terminals, since SGI
did not support AFS. We did not activate time-
sharing on the CM-200, but next time we will, since
without it small jobs often sit in queues behind large
jobs.

In addition to the mainframe and the work-
station/computer laboratories, Penn State has also
computerized several classrooms. These high-
technology classrooms use a variety of computers
and projection devices. The simplest systems use
microcomputers with overhead projectors. The
most sophisticated classroom has an IBM RS/
6000 model 370 built into a podium with a ceiling-
mounted, high-resolution Esprit projector. This
classroom is in the College of Engineering and
accommodates 90 students. It also has a sound
system and a VCR that is connected to the projec-
tion system. The RS/6000 has 128 Mbytes of
memory and 5 Gbytes of disk space, so advanced
engineering packages such as NASTRAN, Patran,
Mathematica, MATLAB and IDEAS can be runin
the classroom. These classrooms are revolutioniz-
ing teaching at Penn State. They not only permit
faculty to present their existing lectures more
effectively, but also allow a teacher to discuss
topics that are impossible to cover using traditional
chalkboards and transparencies.

Penn State’s Center for Academic Computing
(CAC) has three full-time staff and two graduate
students dedicated to the exploration of high-
performance computing solutions for Penn State
faculty, staff and graduate students. The staff
provide expertise in all phases of high-performance
computing: parallel processing, vector processing,
general code optimization and application soft-
ware support. Additionally, the group is an active
member of the Cornell National Supercomputer
Facility’s Smart Node Program, the Pittsburgh
Supercomputing Center, and National Center for
Supercomputing Application’s Academic Affil-
iates programs. The CAC staff were invaluable in
setting up the computers for this project and in
giving guest lectures.

NEW UNDERGRADUATE COURSE IN
PARALLEL COMPUTING

Many of the issues discussed in the previous
sections were considered in a new three-credit
undergraduate course in parallel processing for
scientific computing (Spring semester, 1993). The
classroom was equipped with a Silicon Graphics
Indigo workstation built into the podium and a
high-resolution, ceiling-mounted Esprit projector.
This computer is networked and available through
Internet. The instructor can run programs locally
on the SGI or connect to remote computers, such
as the CM-200, across campus. Normally we use
X-Windows and we can have several windows

open at a time, each one can be running on a
different computer.

Having a powerful workstation built into the
podium opens up entirely new options for the
instructor. Instead of using a blackboard or
overhead projector, we can actually run live
demonstrations, edit code, show color graphics,
etc. At one point during class, we logged into our
CM-200 on campus and a CM-5 at Thinking
Machines Corporation (in Cambridge, Massa-
chusetts) from the classroom computer. We ran the
same code on each computer and could easily
compare compile times, runs times and output. We
have even run AVS on the remote CM-5 and
displayed the color graphics results in the class-
room, with all the results being computed 500
miles away.

An outline of the course is shown below:

I. Computer Hardware and History (four
lectures)
MIMD v. SIMD
Data Parallel Programming
Message passing
Workstation Clusters
Future Computers

I1. Operation of Computers (six lectures)
Unix, X-windows, vi, and emacs
CM-200, and Sun Front-End
Prism and Grafic V3
Silicon Graphics Workstations
Andrew File System (AFS)
Distributed Queuing System (DQS)

III. Languages (three lectures)
FORTRAN 90
High-Performance FORTRAN (HPF)
Parallel Virtual Machine (PVM)
Message Passing Interface (MPI)

IV. Parallel Performance Estimates (four
lectures)

V. Partial Differential Equations (four
lectures)
Finite Differences
Laplace’s Equation
Boundary Conditions

VI. Linear Algebra (eight lectures)
Full Matrices
Tridiagonal and Block Tridiagonal Matrices
Jacobi Method
Conjugate Gradient Method
BLAS/LAPACK

VII. Conclusions (one lecture)

An important component of the course was
instruction in modern progamming languages that
are designed specifically for parallel computers.
FORTRAN has been the most-used language for
scientific computing, in spite of its weaknesses
compared to other procedure oriented programm-
ing languages (such as C). FORTRAN 90,
however, does offer some modern programming
constructs (such as recursion) and a number of



Undergraduate Education Research in High-performance Computing 295

features that facilitate parallelism and vectoriza-
tion.

The simplest such constructs come out of trans-
lating DO loops into parallel or vector code. For
instance, we can transform the loop:

DOI=1N
IF (C(I) NE. 0.0) A(T) = A(I+1) / C(I)
ENDDO

into the parallel construct:

WHERE (C NE. 0.0)
A =CSHIFT(A,1,1)/C
ENDWHERE

The latter structure allows all of the operations to
be done at once. It is important for students to learn
to use vectorizing and parallelizing compilers. It is
also important to learn to find ways of exploiting
the parallelism in the code on their own since such
compilers do not spot all parallel constructs. For
instance, some sequential dependencies can be
unwound. A typical example is:

DOI=2N
A(I—1)=NEW(I)
OLD(I) = A(l)

ENDDO

This does not seem to be parallelizable, but the two
equivalent loops:

DO I=2N DOI=2N
OLD(ly=A() () = AQ)
A(I-1)=NEW(I) A(I—1)=NEW(I)

ENDDO OLD(1) = T(I)

ENDDO

both have exploitable parallelism. Students should
learn how to write loops in a manner where a
sophisticated compiler can spot parallel and vector
constructs. On the other hand, true linear recur-
rences (such as the one for Gaussian elimination on
tridiagonal matrices) must be unwound using more
sophisticated algorithmic techniques. Special com-
pilers cannot be expected to do it. Instead the
student must be taught how to use these algorith-
mic techniques.

Perhaps the most important contribution of
FORTRAN 90 s its ability to treat arrays as simple
data objects. This has always made sense both
mathematically and for the development of algo-
rithms. However, this change was strongly encou-
raged by the development of parallel computers.
These array and vector facilities are introduced to
the students along with the language FORTRAN
90 and the development of matrix algorithms.

Another important nonnumerical area is the
measurement of algorithm performance. For
instance, Schwartz [10] introduced the notion of a
paracomputer. This computer is an infinite array of
processing elements, each of which may access a
common memory in parallel for any piece of data.
Essentially, the normal causes of inefficiency,
routing delays and memory conflicts are not

present and the computer always has enough pro-
cessing elements.

One of the most well-known methods for analyz-
ing algorithm performance is Hockney's [11] n,
method, where n,, is the size of the problem that
obtains 50% of the processor efficiency. Hockney
and Jessope [12] show how this performance
measurement can be used to yield important
information for both parallel and vector algo-
rithms.

We also tried to stress the trade-offs between
communication, computation and branching. A
formula developed by Long [13] illustrates how to
match the best algorithm to a particular computer.
The processor speed and the network bandwidth
have a significant impact on which algorithms will
be effective.

Programming assignments
Several programming assignments were given
during the semester:

® Array addition and multiplication.

® Jacobi algorithm applied to the two-dimensional
Laplace equation.

® Conjugate gradient applied to the two-
dimensional Laplace equation.

® L evel 2 BLAS routine.

Each of these were programmed in FORTRAN 90
on the Connection Machine. For each assignment
they were told to do things such as:

® Run three different size problems and compare
CPU times and efficiencies.

® Plot solutions.

¢ Compute megaflop rates.

¢ Compute ratio of communication to computa-
tion time.

® Plot convergence histories.

The students also had to work two written home-
work assignments. These were both in the area of
linear algebra and BLAS algorithms.

The first assignment was designed primarily to
acquaint them with editing, compiling and running
jobs on the CM-200 from remote workstations.
None of the students were familiar with AFS or
DQS, so this first assignment was just to allow them
to become familiar with these systems and the CM-
200. They also learned how to time their programs
and compute megaflop rates. It was also their first
exposure to FORTRAN 90 and array constructs.

In the second assignment, they solved a two-
dimensional incompressible fluid flow problem
using the Jacobi method. This is an appropriate
second assignment since it is quite easy to program;
however, it is quite slow to converge. The students
ran several grids of varying numbers of grid points,
and they saw how the computer became more
efficient as the virtual processing ratio increased.

For the third assignment they had to solve the
same fluid flow problem as the second one, but
using a much more sophisticated algorithm: the
conjugate gradient method. The students were



296 L. N. Long, J. L. Barlow, L. F. Constable and K. M. Morooney

given a conjugate gradient subroutine written in
FORTRAN 90 and they had to write the main
program and call this subroutine. They were able to
see that this program ran quite fast, and converged
very rapidly.

It would have been useful also to assign an impli-
cit algorithm that involved tridiagonal matrices
with a cyclic reduction scheme, but there was not
enough time. We did discuss tridiagonal schemes
and block tridiagonal schemes in detail in the lec-
tures, and students had some non-programming
assignments. Next time we will try to give assign-
ments that include explicit, implicit and iterative
algorithms.

In the fourth programming assignment, the
students had to write a Level 2 BLAS routine to
perform matrix-vector multiplies. They also had to
compare the efficiency of their program to the
MATMUL routine supplied with the computer.
They had to discuss how the version written in a
lower-level language could be programmed to run
more efficiently on the CM-200.

These computer assignments required signifi-
cant computer resources. A record was kept of the
number of jobs submitted through the DQS system.
The students compiled roughly 7000 programs
and they ran approximately 3000 jobs on the CM-
200 during the semester. In addition, the computer
center, the faculty and the teaching assistant
responded to roughly 200 e-mail messages, which
was a very effective way of addressing some of the
students’ questions. We have also started using
Mosaic for courses.

Students on the course

There were 33 students on the course. This was a
senior-level course, but it was also open to graduate
students. The distribution of students is shown in
Table 1. The class consisted of 67% undergraduate
students. Most of the students were either from the
Aerospace Engineering or Computer Science
Departments. There were four graduate students
from Nuclear Engineering. Some of the other
departments represented were Astronomy, Elec-
trical Engineering, Chemical Engineering, Mech-
anical Engineering and Engineering Science.

It is often difficult having undergraduate and
graduate students in the same course. It was
especially difficult in this course since the range of
backgrounds was very wide. There were some
students who were not well prepared in FOR-
TRAN 77, UNIX and partial differential equ-

ations. At the other extreme, there were graduate
students who were quite familiar with numerical
methods, programming and applied mathematics.
The most difficult aspect was that some students
were not well prepared in linear algebra. The next
time this course is taught (Spring 1994), a much
more complete list of prerequisites will be given, to
narrow the range of student backgrounds. We are
also coordinating our efforts with the Electrical
Engineering Department, since they have begun
offering a graduate course in parallel processing.

Books used in the course
There is no one single book that is appropriate
for this course. We used several books, including:

® Getting Started in CM-Fortran, Thinking
Machines Corporation, 1991.

e Parallel Numerical Algorithms, C.L. Freeman
and C. Phillips, Prentice-Hall, 1993.

® FORTRAN 90 Explained, M. Metcalf and J.
Reid, Oxford University Press, 1991.

o Advanced Computer Architecture, K. Hwang,
MecGraw-Hill, 1993.

o Applied Numerical Analysis, C.F. Gerald,
Addison-Wesley, 1989.

® CM-FORTRAN Reference Manuals, Thinking
Machines Corporation, 1992.

Copies of the first book were obtained directly
from Thinking Machines Corporation, and the
students were asked to buy the second book. The
other books were put on reserve in the library. The
students would have preferred to have a single
textbook that we followed closely, but this was just
not possible due to the newness of the material.

HONORS PROJECTS AND SENIOR THESIS

In addition to the new course, undergraduates
have also been performing research in parallel
processing. Students on the Penn State University
Scholars Program are required to perform an
undergraduate research project and write a senior
thesis. Entrance into this program is by invitation
only and it attracts the highest-quality undergradu-
ate students. The presence of the CM-200 com-
puter has generated honors projects and senior
theses related to scientific computing and parallel
processing. Undergraduate honors projects on a
parallel architecture are excellent preparation for
graduate research in scientific computing as well as

Table 1. Distribution of students in parallel processing course

Department Undergraduate ~ Graduate Undergraduate Graduate
%o %
Aerospace Engineering 7 a 21 9
Computer Science 12 1 36 3
Nuclear Engineering 0 e 0 12
Other Engineering 3 3 9 9
Total 22 11 67 33




Undergraduate Education Research in High-performance Computing 297

for jobs in industry. There is a great shortage of
students trained in high-performance computing.
The ability to do more interesting, practical
projects at the undergraduate level will attract
more good students in graduate study in this
important area.

We will briefly describe four senior theses that
have been written at Penn State in the area of high-
performance computing. The topics of these were
as follows:

® Parallel Jacobi and aerodynamics on the 3090-
600s.

® Solving the Boltzman equation on the Connec-
tion Machine.

® Acoustic propagation solutions on the Connec-
tion Machine.

® Audio and video postprocessing on the Silicon
Graphics.

The first project was in aerodynamics. The
students (D. Gottfried and K. McGinniss) took a
vortex lattice code written in FORTRAN 77 and
modified it to use all six processesors of the [BM
3090 simultaneously. The resulting matrix was
split across the processors and solved using the
Jacobi algorithm.

The second project was a senior thesis of an
Engineering Science student (M. Kamon). It
involved solving the Boltzmann equation on the
Connection Machine using FORTRAN 90. This is
a very difficult problem, but the student was able to
write a program to solve for the structure of a shock
wave using the BGK form of the Boltzmann
equation. This program has been under continual
development since the student graduated and the

latest version of the code was awarded the Gordon
Bell prize in 1993 [14]. This code sustained 60
gigaflops on a 1024 processor CM-5, which is
roughly 50% of the peak speed.

The third and fourth projects were related and
were senior theses in Aerospace Engineering. Scott
Reid wrote an acoustic propagation code for the
Connection Machine for two-dimensional duct
acoustics. This code used a finite-difference
scheme and Runge-Kutta time marching. Chris
Tatnall then wrote a postprocessing code for this
code, which displayed the acoustic results using a
color graphics program on the SGI workstation.
The post-processing code also was able to play the
predicted acoustic signatures through the SGI
audio hardware.

CONCLUSIONS

This paper describes a recent project in teaching
high-performance computing and parallel process-
ing to undergraduate students. We feel this is an
important area of study, and an introduction at the
senior level is appropriate. This type of computing
is quite different to traditional computer science or
numerical methods, and should be introduced as
early as possible in the students’ career.

Acknowledgements—This work was supported by the National
Science Foundation (grant no. CDA-90-50874) and Penn State
University. The authors would like to thank Mr Dale Hudson,
the teaching assistant for the course, for his valuable contribu-
tions. In addition, we gratefully acknowledge Thinking
Machines Corporation for their assistance.

REFERENCES

. Anon., The Federal High-performance Computing Program. Executive Office of the President,

Office of Science and Technology, Washington, DC (1989).

2. Anon., Strategic Computing: Fourth Annual Report, DARPA, Washington, DC (1 988).

3. J.W. Demmel, J.J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling and D. Sorensen,
Prospectus for the Development of a Linear Algebra Library for High-performance Computers,
technical report no. ANL/MCS-TM-97, Mathematics and Computer Science Division, Argonne
National Laboratory (1987).

4. L.N. Long, M. Khan and H. T. Sharp, A massively parallel Euler/Navier-Stokes method, AIAA /.,
29, (4), 657-666 (1991).

5. Z. Weinberg and L. N. Long, An unstructured, adaptive, upwind scheme for the Navier Stokes
equations, Proc. Parallel CFD 93, Paris (1993).

6. B.C. Wong and L. N. Long, Direct simulation Monte Carlo (DSMC) on the Connection Machine,
Comput. Sys. Engng, 3 (1-4) (1992).

7. A. Beguelin, J. Dongarra, A. Geist, B. Manchek and V. Sunderam, PVM 3.0 User’s Guide and
Reference Manual, technical report TM-12187, ORNL (1993).

8. T. Green and R. Pennington, Distributed Queuing System, Version 2.0, Supercomputer Computa-
tions Research Institute and Pittsburgh Supercomputer Center (sources may be obtained via
anonymous ftp from ftp.scri.fsu.edu).

9. AFS version 3.2, Transarc Corporation, 707 Grant Street, Pittsburgh, PA 15219, USA.

10. J. T. Schwartz, Ultracomputers, ACM Trans. Prog. Lang. Syst., 2, 484-521 (1980).

1. R. W. Hockney, Characterization of parallel computers and algorithms, Comput. Phys. Commun.,
26,285-291 (1982).

12. R. W. Hockney and C. R. Jesshope, Parallel Computers 2, Adam Hilger, Bristol (1988).

13. L. N. Long, Gas dynamics on the Connection Machine, Invited Paper, Parallel CFD 92 Conference,
Rutgers University (1992).

14

. L.N. Long and J. Myczkowski, Solving the Boltzmann Equation at 61 Gigaflops on a 1024-node

CM-5, Proc. of Supercomputing '93, Portland, Oregon, Nov. (1993).



298

L. N. Long, J. L. Barlow, L. F. Constable and K. M. Morooney

Dr Lyle N. Long is an Associate Professor of Aerospace Engineering. He teaches courses in
numerical algorithms and fluid dynamics. Dr Long has developed several large computer
programs for the Connection Machine for solving problems in computational fluid dynamics,
electromagnetics, color graphics and linear algebra. The most notable achievement was the
development of a parallel computer program to solve the non-linear, three-dimensional
Boltzmann equation of fluid dynamics on a massively parallel Connection Machine. The code
has been nominated for the 1993 Gordon Bell Award. He received BME, MS and DSc
degrees from the University of Minnesota, Stanford University and George Washington
University, respectively. He spent six years at Lockheed Aeronautical Systems Company
developing a wide range of codes for vector and parallel computers to solve time-accurate
fluid dynamics, electromagnetics, aerodynamics, viscous flows and rarefied gas dynamics.

Dr Jesse L. Barlow is a Professor of Computer Science and has performed research on the
effect of computer architecture and computer arithmetic on algorithms in numerical linear
algebra. His papers have included material on parallel computing environments ranging from
systolic arrays to the Intel iPSC. He has taught graduate courses on matrix computation and
the solution of differential equations and taught undergraduate courses in numerical methods,
programming languages, data structures and algorithms, and computer architecture.

Lou Constable was a research programmer for the Numerically Intensive Computing Group
in the Center for Academic Computing at the Pennsylvania State University. Prior to joining
the Center for Academic Computing, he received his BS degree in computer science and
mathematics from the Pennsylvania State University. He currently works at Cornell
University in the Theory Center.

Kevin Morooney is the manager of the Numerically Intensive Computing Group in the Center

for Academic Computing at the Pennsylvania State University. He has worked in the

Numerically Intensive Computing group at Penn State for the last four years. Prior to working
at Penn State, Kevin worked as a biomedical engineer at the Johns Hopkins University
Teaching Hospital Francis Scott Key Medical Center in the Departments of Neurology and
Pulmonary Medicine. He was awarded his BS in Engineering Science and Mechanics from the
Virginia Polytechnic Institute and State University in 1985.



