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On Teaching Establishing the Existence of

Limit Cycles*

T.J. OWENS
Control Engineering Centre, Brunel University, UK

The Lyapunov stability theorems and their use in establishing the existence of limit cycles have
been taught on final-year undergraduate control theorylengineering courses in the UK for many
years. However, the application of the theorems in this context is relatively less elegant and
complete than that of the more sophisticated invariant set theorems. In this paper the advantages
of using the invariant set theorems, as against the Lyapunov stability theorems, in teaching
establishing the existence of limit cycles are highlighted.

INTRODUCTION

THE LYAPUNOV stability theorems and their
use in establishing the existence of limit cycles have
been taught on final-year undergraduate control
theory/engineering courses in the UK for many
years. However, the Lyapunov theorems address
the stability of equilibrium points, taken by change
of variable, to lie at the origin of state space.

For a stable limit cycle the system settles down to
cyclical behaviour at the output. The Lyapunov
theorems are of interest with respect to establishing
the existence of limit cycles in that they introduce
the concept of a Lyapunov function as a measure of
the total energy of the system considered. Essen-
tially, if starting from within a region around the
origin the derivative with respect to time of the
Lyapunov function is always negative, then within
that region total energy must eventually decay to
zero. It follows that the system is asymptotically
stable within that region. This use of the concept of
a Lyapunov function has, traditionally been intui-
tively extended to address the establishing of the
existence of limit cycles. Noting that a system
exhibiting cyclical behaviour at the output is ‘stuck’
at a constant energy level, it is argued that it follows
that the derivative with respect to time of the
Lyapunov function will be zero starting from all
points corresponding to the energy level of the limit
cycle. Limit cycles are, therefore, identified from
the solutions to the equation obtained by setting the
derivative of the Lyapunov function with respect to
time to zero.

All points corresponding to the energy level of a
limit cycle form a closed trajectory (an invariant
set) in state space, as should be clear from the
associated cyclical behaviour at the output. Con-
sequently, stable limit cycle behaviour is best
understood as being associated with the system
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converging to an invariant set within state space.
The invariant set theorems specifically address the
problem of determining whether a system con-
verges to an invariant set in state space.

In the 1991/92 academic year the invariant set
theorems and their application (details taken from
Slotine and Weiping Li [1]) were taught and
examined, through a single question, for the first
time on the control and systems theory course for
final-year engineering undergraduates at Brunel
University. In this paper, following presentation of
the mathematical background, the examination
question concerned is presented together with the
corresponding question from the previous paper.
The questions are followed by relevant extracts
from their solutions. Students’ examination per-
formance over successive years is then reported.
The conclusions drawn from the preceding are
then presented.

MATHEMATICAL BACKGROUND

Let B, denote the spherical region (or ball)
defined by x| < R.

Definition. A scalar continuous function V(x) is
said to be locally positive definite if V(0)=0and, in
aball B,x# 0 V(x)> 0.

Definition. If, in a ball By, the function V(x) is
positive definite and has continuous partial deriva-
tives, and if its time derivative along any state
trajectory of an autonomous system of the form
X = f(x), is negative semi-definite, i.e. /{x)<0,then
V(x) is said to be a Lyapunov function of the
system.

Theorem (Lyapunov’s theorem for local sta-
bility). If, in a ball By, there exists a scalar function
with continuous first partial derivatives such that
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V(x) is positive definite (locally in By)
M) is negative semi-definite (locally in By)

then the equilibrium point 0 is stable. If, in fact, the
derivative M{x) is locally negative definite in B,
then the stability is asymptotic.

- Theorem (local invariant set theorem). Consider
an autonomous system of the form X = f(x) with f
continuous, and let ¥(x) be a scalar function with
continuous first partial derivatives. Assume that

for some 1> 0, the region Q, defined by V(x) <1
is bounded

Nx)< Oforallxin Q.
Let R be the set of all points within Q, where 1{(x)
= (), and M be the largest invariant set in R. Then,

every solution x(¢) originating in &, tends to M as
N,

SAMPLE EXAMINATION QUESTIONS

Bachelor of Engineering Degree Examination
Electrical Engineering and Electronics (Honours)
Part 11

EE 451 Control and Systems Theory

Time allowed—3 hours

Four questions to be attempted

June 1991-Question 7

State the second (direct) stability theorem of
Lyapunov.

Explain how a Lyapunov function may indicate
the existence of a stable limit cycle. What is the
significance of the existence of a stable limit cycle in
the response of a non-linear system to non-zero
initial conditions?

(i) If anon-linear system is described by the equ-
ations:
X, =X,
iZ - - —'113_-1'1

show that the only equilibrium point of the sys-
tem lies at the origin of the state-space. Using a
Lyapunov function of the form: .

Vx)=2x,+x,+2x,

show that the origin is globally asymptotically
stable.

(ii) Show that the non-linear system:

’tl =—x2+xl(1 _-xlz_X22)
Y=x,+x(l-x,—x,)

has a limit cycle, and determine its nature.

June 1992—Question 2
Define an invariant set for a dynamic system.

State, without proof, the global invariant set
theorem.

Limit cycles are usually undesirable in control
systems. Give three reasons why this may be so.

Show that the non-linear system:

)'.‘1 =x2_x](xl1+x22— 10)
.i'2=_x| —31’33(1]24‘){33— 10)

has a limit cycle and determine its nature.

RELEVANT EXTRACTS FROM THE
SOLUTIONS

June 1991—Question 7

A Lyapunov function such that V(x) = 0 for
some closed trajectory indicates the existence of a
limit cycle.

Taking V(x)=0.5x ,+0.5x

Ux) = x,x, + x,X,
The non-linear system

.fl =_x2+xl(1 _xlz_xzz)

gives

V= (X2t xp)(l—x,—x,)
V=0forx,+x,=1

i.e. a circle of radius 1 centred at the origin.

If x , + x,> 1, since (x,, + x ;) > 0 always, V<0
If x , + x,,> 1, since (x ; + x,5) > 0 always, V>0

So starting from initial conditions inside the unit
circle the system energy increases until the limit
cycle trajectory is reached. Starting from initial
conditions outside the unit cycle system energy
decreases until the limit cycle trajectory is reached.
Therefore, the limit cycle is stable.

June 1992—Question 2

A set G is an invariant set for a dynamic system if
every system trajectory which starts from a point in
G remains in G for all future time.

First, notice that the set defined by x , +x ,=10
is invariant, since

d(xlz + xzz s 10)
dt

=%k + 250, X+ 2x.%,

=—(2x,+6x,)(x*+x,,
—10)

which is zero on the set. The motion on this

invariant set is described (equivalently) by either of
the equations
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X=X

i‘: ol _xl
Therefore, we see that the invariant set actually
represents a limit cycle.

To see if this limit cycle is actually attractive, let
us define as a Lyapunov function candidate

V=(x,+x,,— 10

Using our earlier calculations, we immediately
obtain:

V=—4(x ,+3x,)(x 2+ x,, — 10)°
Vis strictly negative except if
X2+3x,=0, or x,+x,= 10

The first equation is verified only at the origin. The
second equation is simply that defining the limit
cycle.

The equilibrium point at the origin can be shown
to be unstable.

Consider the region Q , (i.e. x,, x; such that
¥(x,, x,) < 100), and note that while the origin
does not belong to Q,,,, every other point in the
region enclosed by the limit cycle is in €, (in
other words, the origin corresponds to a local
maximum of V). Thus, while the expression of V'is
the same as before, now the invariant set is just the
limit cycle. Therefore, the application of the local
invariant set theorem shows that any state tra-
jectory starting from the region within the limit
cycle, excluding the origin, actually converges to
the limit cycle. In particular, this implies that the
equilibrium point at the origin is unstable.

EXAMINATION PERFORMANCE

June 1991—Question 7

Number of candidates taking the
examination: 28

Number of candidates attempting
question 7: 24

Percentage of candidates attempting
question 7: 85.7%

Average mark obtained by the
candidates on question 7: 13.2
Average percentage of available marks

on the question obtained: 52.7%
June 1992—Question 2
Number of candidates taking the
examination: 16
Number of candidates attempting
question 2: 16
Percentage of candidates attempting
question 2: 100%
Average mark obtained by the candidates
on question 2: 15.8

Average percentage of available marks
on the question obtained: 63.3%

CONCLUSIONS

In teaching establishing the existence of limit
cycles, the conceptual advantages of using the
invariant set theorems rather than the Lyapunov
stability theorems have been demonstrated. This
has been done through the presentation of past
examination questions and extracts of the solutions
to the questions.

On examining the use of the invariant set
theorems in establishing the existence of limit
cycles, it was found that a higher percentage of the
students taking the Control and Systems Theory
examination attempted the category of question
concerned than in previous years, when the use of
the Lyapunov stability theorems in establishing the
existence of limit cycles had been taught. Further-
more, the average mark obtained on the category of
question was higher than before. Of course, these
observations do not constitute an evaluation of the
curriculum change made but do indicate that the
change did not degrade students’ level of attain-
ment under examination conditions.
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