Int. J. Engng Ed. Vol. 10, No. 2, pp. 201-207, 1994
Printed in Great Britain,

0742-0269/91 $3.00+0.00
© 1994 TEMPUS Publications.

Convolutions, Transforms and Edge

Detection in Images™

JOHN SCHMEELK

Department of Mathematical Sciences, Virginia Commonwealth University, Richmond, Virginia,

VA 23284-2014 USA

Student motivation in mathematical courses continue to be a major concern. The author argues
that a partial solution to this problem is to offer some stimulating elementary image processing
techniques that will provide the student with immediate visual examples implementing profound
mathematical theory. This paper will offer very elementary applications for mathematical
concepts that are often difficult to convey. They will include convolution, Fourier transforms and
filtering. The mathematics is contained in the paper and stresses its application to the image. The
paper also contains a very brief introduction on wavelet theory, which is becoming a very
innovative method in understanding many difficult discrete data files.

1. INTRODUCTION

STUDENT motivation in mathematical courses
continues to be a major concern. The students in a
calculus, linear algebra, or matrix analysis course
often experience motivational problems contribut-
able in part to the apparent shortage of relevance of
the course material to their immediate interests and
personal experiences. The author argues that a
partial solution to this problem is to offer some
stimulating elementary image processing tech-
niques that will provide the student with immediate
visual examples implementing profound mathe-
matical theory.

To this end this paper provides an introduction
to some interesting problems in image processing
and describes some unusual applications for
convolutions, frequency analysis, matrices, and
partial derivatives [1-5]. The applications are all
drawn from image enhancement and are at a level
of undergraduate mathematics [6-9]. Depending
on the text being studied in the calculus, linear
algebra and matrix theory course, some portions of
our techniques may be included in third or fourth
semester applications. :

One principle application to be addressed will be
that of edge detection [4, 9-11]. It has far-reaching
results in many applications to include computer
vision, human vision and several innovative medi-
cal techniques [12-14]. For example, a patient
suffering from an aneurysm may be diagnosed
through an angiogram. An angiogram is a pictorial
illustration of the blood vessels having edges high-
lighted through the implementation of mathemati-
cal edge enhancement [4, 11]. The visible edges can
be studied by the physician and a diagnosis of the
condition can be completed with greater accuracy.
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Many image enhancement processes are per-
formed and computed using mathematical convo-
lutions, spatial and frequency filters in conjunction
with several mathematical transform algorithms.
Recently new transforms are being implemented,
drawing from the theory of wavelets. We will
conclude the paper with the definition and applica-
tion of a ‘mother’ wavelet. Several sources will be
given for the application of these techniques when
they are applied to image enhancement.

2. SOME NOTIONS AND NOTATIONS

Since a flat image is contained within a two-
dimensional Euclidean space, our featured space
will be R2. We will recall several fundamental
definitions and results for R2. For convenience, we
select two sets of continuous spatial coordinates by
the somewhat unusual notation

x=(x;, x;)and y=(y,, y,)

where x;, x; (1 < i< 2)are elements belonging to the
set of real numbers, R. The familiar dot product
formula then becomes

2
xey=3xy,

=i

together with its corresponding induced norm,

Implementing trigonometry, it is easily shown that
the cosine of the angle, ¢, between two vectors
determined by their spatial coordinates, x and y, is
in fact ;
xXey

b - A

cos¢ =
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provided |x| # 0 and ||y # 0 or
X ey=|a| - Iy - cos(g) 2.1

Expression (2.1) immediately indicates that per-
pendicular vectors will have a dot product equal to
zero and normalized colinear vectors will have a
dot product equal to one. This observation is

important in Section 3.
We now revisit the partial derivative definitions,

af(xuxz)_ lim f(x,+Ax,,x2)—f(x,,x2) 2.2)

Ox, Axj=0 Ax,
and
of(x,, x,) i f(x1, X, + Ax,) = flx, x;)
_— = m

axZ Mz"(} AXZ

When we examine a computer image on a
monitor using a reasonable number of pixel loca-
tions illustrating the image would be 256 rows and
256 columns of pixel locations. This then defines a
grid size of 256 X 256 square. The location of a
particular pixel can then be designated using the
cartesian coordinate (n,, n,), where n, is the row
location and n, is the column location. Clearly in
this application the set of values for n, 1 < i< 2,
would range over positive integer values. If we
further normalize the distance between pixel
locations, then Ax, = Ax, = 1 and our discrete
approximate partial derivative formulas at the pixel
locations become

df(n,, n,) = fin, + 1, n))— f(n,, ny)
on, 1

-fn,+1, ny) = f(ny, n,) (2.3)

and

d(n,, n,) ¥ finy, ny+ 1) = f(n,, ny)
on, 1

=f(n, ny+ 1) = f(n,, n,)

3. THE GRADIENT

We now introduce the notion of a directional
derivative for a function, f(x,, x,) ata point (a, b) £
R* evaluated in the direction, L. The direction, 8, of
L was chosen and the equations,

x,=a+rcosf
X,=b+rsinf

will be implemented, where r ranges over the real
numbers <0. Figure 1.1 illustrates the vector, L.

We introduce the classical definition for the
gradient of the function, f(x,, x,) to be

Ve (af(;;l X) ; af(-:;;:z)) (3.2)

together with a unit vector in direction, 6 to be

X2
L
I .
I)(z-b=rsm (8)
(alb) et -1
X;-a=rcos (6)
X
Fig. 1. Directional derivative,
u= (cos 6, sin 6) (3.3)

We assume the chain rule and compute the
directional derivative of f(x,, x,) at (a, b) in the
direction given by the vector, L. Implementing
formulas (3.1)~(3.3), these computations become

df(a+ rcos@, b+ rsin6)
dr r=0
_dA o o o
ax, or 612 or =0
. b T
- ——af(ai )cos e+ ~——6f$ 9 sin @
1 2
- (6}”5;, 2 3 af(ai' b)) * (cos @, sin 6)
1 2
=Vfeu

=[Vf]l - ful - cos¢
=|Vf] - L - cos¢ (34)

Expression (3.4) implements expression (2.1)
where the angle, ¢, is between the vector, u, and the
gradient vector, Vf.It is not to be confused with the
direction of L, which is 6. It is then easily seen from
expression (3.4) that the 'maximum value occurs
when the angle, ¢, is zero degrees; namely, the
maximum value of the change of the function, f(xy,
X,) occurs in the direction of the gradient.

When we study an image and compute the
change in pixel values the above result tells us that
the expected greatest rate of change would be in the
direction of the gradient. Using the discrete
approximations given by expression (2.3), this then
becomes horizontal and vertical differences
between neighbouring pixel values.
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4. SINGULAR MATRICES AND
EDGE DETECTION

We introduce the continuous calculus definition
for convolution [3-6] given by the familiar formula

h(x,, x;)* fix,, x,)

=J’ J‘ h(yi, y2) (X, = y1, X, = y,)dy,dy,

and its discrete counterpart given by the formula

h(n,, ny)* f(n,, n;)

- i i h(k,, k,)f(n, — k,, n,— k,)

kj=— kj=—w

We now select the singular matrix

1 2 1
h-( ) 0 (4.1)
=l

and convolute it with a function, m = f(n,, n,). The
function, f(n,, n,), returns the numerical value of
the gray level at a pixel location, (n,, n,). The value
of m ranges from 0 to 255 at positive integer
values, where 0 corresponds to pure black and 255
corresponds to pure white. These values do depend
on the software configuration. We now compute
the discrete convolution of f(n,, n,) with the
matrix, &, given in expression (4.1). This process
then becomes

h(ny, ny))* fin,, n,)

+1 4]
nt E 2 h(khkz)f("‘l_khnz_kz)

kp=—1 ky=—I

=Rl 0~ 1)
—fin,+1,n,+1)
+2f(n,,n,— 1)
=2f(n;,n,+1)
+f(n,—1,n,—1)
=f(n,—1,n,+1) (4.2)

If we study the result given in expression (4.2), we
find it represents a weighted linear sum of changes
at pixel values in the vertical direction of a patch of
3 X 3 square array of pixel values. We thus term
this result a vertical edge detector. Likewise, if we
take the transpose of the matrix, s, we have

1 i
h‘-(Z 0 —)
1 s =]

which when convoluted with the image function,
f(n,, n,) will give us the weighted linear sum for the
horizontal edges contained in a 3 X 3 square array

of pixel values. Singular matrices, 4 and /', are of
little utility in a mathematical environment but
when applied to an image function, f(n,, n,),
enhances the edges. In fact when we compute

A
edges =
22 \/Ih(”h ns)* fin,, ”:)F + i (ny, ny)* f(n,, ”:)F

together with an imposed established threshold the
so-called Sobel edge detector is produced [4,6, 1 1].

We have the letters N and O illustrated in Figs 2
and 3 respectively, together with the Sobel edge
detector applied to them and illustrated in Figs 4
and 5 respectively [3].

Fig. 3. The letter O.

Fig. 4. Sobel edge detector on letter N.
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Fig. 5. Sobel edge detector on letter O.

5. FOURIER TRANSFORM

The Fourier transform of a function |3],

F (flxi, x3))(u,, u2)

= | J exp(—2mjlu,x, + u,, X;)f(x,, x,)dx,dx,
= (5.1)

and is corresponding discrete version implemented
in the software, Pro-Matlab,

F(f(n,, m))(ky, ko)
N=1 N-I l(.’.?l’klml % Er!kzm:)

=2 2 f(ml+l,m2+1)eﬂ’ i z

ml—(} m:-l]

(52)

where N is of the form 2¢ and g is a positive integer.
Since the kernel of the Fourier transform contains a
complex valued exponential function, the result of
the transform will give a complex valued function.
We express this function in the usual manner,

F(f(x,, X)) (U, U)= U(u,, uy) +
jV(ul’ uz)

We decompose this function into its magnitude
which is often called its spectrum and its phase
given by the familiar formulas.

mag| # (f(x,, X)) Uy, )] =+ JU(u,, uy) +
V3 (uy, us)

and
W(u,, u,
phase [ # (f(x,, x;))(u,, u,)] = arctan U((#uh))
respectively. Computer algorithms implementing
fast Fourier transform methods are standard to the
scientific community. One such software package
entitled Pro-Matlab has been used to illustrate the
spectrum content for the letter O and illustrated in
Fig. 6.

The essential technique termed filtering
addresses the behaviour of the spectrum content
contained within an image. It is the enhancement of
degradation of this content which will result in the
quality of the resolution seen by the viewer. Figure
7 illustrates a simulated defocused lens filter

Fig. 6. Spectrum of letter O.

Fig. 7. Simulated defocused lens filter.

Fig. 9. Defocused letter E.
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Fig. 10. Filtered and restored letter E.

constructed using mathematical formulas within
the software media of Pro-Matlab. When it is
applied to the letter O and E, the result is illustrated
in Fig. 8 and Fig. 9 respectively. This defocused
letter E can then be restored using filtering tech-
niques as illustrated in Fig. 10. The art of filtering
becomes a paramount technique to the enhance-
ment of images in any multimedia production.

6. WAVELETS

We will restrict ourselves to wavelet functions,
W(x,, x,), belonging to the class of square integr-
able functions usually denoted L*(R?). That is to
say,

] s, x,

—00 —00

< o0

When we select a wavelet function, W(x,, x,),
having appropnate properties for the particular
application, it is termed the ‘mother” wavelet. We
then generate a doubly indexed family of wavelets
from the mother wavelet, ¥(x,, x,), by dialating
and translating

-— b X, — b
Web(xy=|a| 2 |a.| 8 B R |
(x)=la\| "2 a2 ( i e )

where a, b, R, a, #0,i=1,2.
The basic wavelet transform for the function,
f(x,, x,), with respect to the ‘mother’ wavelet

function, W (x,, x,), then becomes

(Wavelet f)(a, b)=|a [} |a,)| "}

" X _b xo'-b-;
xJ J‘W(‘a—l', T) f(x,, x;)dx, dx,.

We note the kernel of the Fourier transform being
exp(—2aj[u,, k, + wu,k,]) is replaced by the
translated and dialated wavelet function

a ' a,

There are conditions imposed on the ‘mother’
wavelet function, W(x,, x,), and the most natural
condition is that

J‘ '[ W(x,, x,)dx,dx,=0

—00 -

A detailed discussion for the necessary mathe-
matical considerations can be found in references
[15-18].

Additional integer parameters, n, m, 1 <i <2,
are then included into the wavelet transform a.nd
the transform becomes

(Wavelet f,m,n)(a, b)

= a;""a;" " [[W(a™x,— n,b,, ;")
x(xz e nzbz) f(x“ x:)dxﬂix;.

This transform offers computational difficulties
but with state-of-the-art computer and software
configurations, they can be readily computed.

A classical but important wavelet is the negative
normalized second partial derivatives of the Gaus-

" W(xy, xy)exp ((—xi — x3)/2)

The Gaussian and its corresponding ‘mother’
wavelet are illustrated in Figs 11 and 12 respect-
ively. The theory and application of wavelets to
image processing is currently being investigated by
several researchers [2, 11, 18]. The results are on
the frontier of this subject and are presently being
developed, reviewed and are in press.

Fig. 11, The Gaussian.

Fig. 12. Mother wavelet generated from Gaussian.
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7. CONCLUSIONS

We have had a guided tour of profound mathe-
matical concepts involving complex variables,
transforms implementing improper integrals con-
taining complex valued kernels, and directional
derivatives to include gradients. It is the hope of the
author that students having had the opportunity to

explore the above visual examples incorporating
these mathematical notions are now able to trans-
port this learning experience to other relevant
applications. The versatility of a student’s ability to
transport mathematical techniques to other situa-
tions is a major measure of their success in all fields
of science.
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