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A One-dimensional Combined-change
Model for Compressible Flow™

F.M. YOUNG
W.E. SIMON

Lamar University, Beaumont, Texas, 77710, USA

An analytic combined-change one-dimensional compressible flow model is presented which:
includes all simple changes as special flow cases, extends the applicability of simple change
models to certain combined-change flow cases; provides an analytic means of solving combined-
change problems; illustrates the effects of normal shocks; and determines the processes for which
a wide array of properties are constant. Properties examined include Mach number, velocity,
speed of sound, density, static pressure and temperature, stagnation pressure, and entropy. One
case of constant Mach number is shown to locate the sonic point for combined-change flow
through a converging-diverging nozzle.

. The paper discusses material which can be
used in the following courses:
Introductory gas dynamics or similar
course.
. Students of the following departments may
benefit from the course/discussion in the

for teachers to build on the understanding
they have developed in their students for
simple changes and extend this understand-
ing to combined-change flows. The model
has also been shown to provide new infor-
mation for constant property flows and

paper: sonic point location that considerably
Aeronautical engineering and mechanical expands that available in standard texts such
engineering. as Shapiro (Chapter 8), Saad (Chapter 6), or

. Level of the course:

Senior and/or introductory graduate level.

. Mode of presentation:

Traditional lecture plus computer software

that students can use to do homework for

the entire course.

. Is the material presented in a regular or

elective course?
The course is usually required for aero-
nautical engineers and may be required or
elective for mechanical engineers.

. Class hours required to cover the material:

1-2 hours depending on the depth of cover-

age desired. This material is intended to

augment the coverage of combined changes

once the constitutive equations are devel-

oped.

. Student homework and

required for the materials:
The material would take 1.5-3 additional
hours of homework; however, the computer
software available with this paper would cut
at least that amount of time from other
homework assignments just through the
elimination of tabular interpolation.

revision hours

Zucrow and Hoffman (Chapter 9).

9. The standard text recommended in addition to

the author’s notes:
See any of the above. While the paper itself
is only applicable to the portion of com-
pressible flow in the chapters above, the
computer software is applicable to the
entire course.

10. Is the material covered in the text? In what way

is the text discussion different from the paper?
The paper describes an analytic model for
combined-change problems which had pre-
viously been approachable only with
numerical approximations. Further, since
the model is analytic it permits the associa-
tion of combined-change flow behavior with
that of simple change flows which is imprac-
tical using numerical approximations.

NOMENCLATURE

area
change coefficients
combination of change coefficients given by

. Brief description of novel aspects of the paper: Eq.(5)
The compressible flow model presented is C, combination of change coefficients given by
new. The model presents the opportunity Eq. (6)
¢,  specific heat at constant volume
* Paper accepted 10 April 1993. D hydraulic diameter



392 F. M. Young and W. E. Simon

F  generalized independent variable

Fxy generalized independent variable ratio
across a normal shock

friction coefficient

function of parametric variables

static pressure mass flow function
specific heat ratio

length

Mach number

static pressure

isentropic stagnation pressure

entropy

temperature

velocity

mass flow rate

distance in the direction of flow

ratio of the x component of injected flow
velocity to the main flow velocity
density
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SUBSCRIPTS

pertaining to area change

pertaining to a combined-change flow

! pertaining to fluid friction

pertaining to isentropic flow

pertaining to simple injection with y = 0

pertaining to simple injection with y = 1

pertaining to Rayleigh flow

0 isentropic stagnation state or injection with
y=0

) pertaining to injection with y = 1

pertaining to heat transfer

pertaining to mass flow injection

SUPERCRIPTS

# atM=1
non-dimensionalized

INTRODUCTION

CLASSIC analysis of one-dimensional, steady,
compressible flow of perfect gases is well docu-
mented by a number of authors; see: Shapiro [1],
Chapman and Walker [2], Zucrow and Hoffman
[3], and Saad [4]. The classic approach examines
the simplest case of each of the usual independent
variables of compressible flow: area change, heat
transfer, friction and mass injection. From a peda-
gogical point of view, combined-change analysis
should represent a generalization of simple
changes. While in theory, it does provide this
generalization, many students fail to make the
connection.

Shapiro, for example, presents the traditional
approach to combined-change problems which
begins with the constitutive differential equations,
considers limited two-independent-variable cases,
and then primarily uses numerical procedures for

the more general case. Beans [5] and Hodge [6]
provide computer programs for the numerical
solution of combined-change problems. Zucrow
and Hoffman [3] devote a chapter to generalized,
steady, one-dimensional flow. In addition to the
numerical procedures, they consider two analytic
cases involving constant Mach number. Unless
students expend substantial time in numerically
analyzing combined-change processes, they are
unlikely to see any similarities in combined-change
and simple change flow behavior.

Young [7] presents an analytic combined-change
model for steady one-dimensional flow of perfect
gases. This model provides an analytic tool for
gaining insights into the behavior of combined-
change flows. Simple change behavior can be,
through this model, associated with a range of
combined-changes as a logical means of building
on students’ understanding.

COMBINED-CHANGE MODEL

In the combined-change model presented by
Young [7], each of the independent variables is
represented by a constant change coefficient, C,
and a generalized variable, F, as shown below.

dA _ . dF :
A = L F ( )

d7, dF
T, " CF )

4fdx dF
D ~9F @

dw dF
il Oy 4)

Additional definitions are made for convenience.

¢,=2C,+C—2C, Q)
Ci= G+ Ct+2C,(1—¥) (6)

These relations define the thermodynamic path of
the process. Since combined-change flow is path-
dependent, the model is not completely general.
The model will be shown to be sufficiently robust to
give new insight into the combined-change flow.

The generalized variable is usually, except in the
case of simple friction, identified as one of the for-
merly independent variables in a specific analysis.
Substituting Eqs (1)—(4) into the constitutive equa-
tion for Mach number and integrating from M= 1
to M, an expression for the generalized variable
ratio, F/F*, is obtained. The constitutive equations
for Mach number and all other parameters to be
held constant are taken from Shapiro [1].

ForC,#0

R
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The function ff(M, k, C,/C,) is shown below
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Note that T,/ T could be written (F/F*)“as in the
equation for s” below.
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Young [7] also demonstrates how the functions
above can be used numerically to solve simple and
combined-change problems.

On request, the authors will supply a compli-
mentary copy of a PC-based compressible flow
calculator which calculates all the functions above
and their inverses as well as most other one-
dimensional functions.

(16)

SIMPLE CHANGES

The change coefficients in Eqs (1)—(6) and the
constants C; and C, can be readily determined for
each of the simple change flow types. For example,
for isentropic or simple area change flow the
generalized variable, F, may be chosen as the area,
A. Then from Eqs (1)—(4) the change coefficients
may be found.

=1 C=0 G=0 C,=0
Then C,, C, and C,/C, can be determined.
Ci=2{0)+0— 2(1)y=—2
C,=0+0+20)1—y)=0
¢, 0

c-=2™Y

Table 1 contains a list of the change coefficients,
determined in a similar manner, for each of the
usual simple change flows. There are a number of
observations that can be made from Table 1. For
simple injection with y = 1, the flow functions from
Eqgs (7)-(11) are the same as for isentropic flow.
For simple injection with y = 0, the flow functions
are the same as for Rayleigh flow. For simple
change flows, integration of Eqs (1)—(4) yields the
relationships on the first line below while substitu-
tions of the first line into Eqs (7) or (12), depending
on the value of C|, yields the expression for F’ on
the second line.

Simple change relations
Isentropic
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Table 1. Change coefficients for simple-change flows

Simple change C, C, G G ¢, C; C,/C,
Isentropic 1 0 0 0 =2 0 0
Rayleigh 0 1 0 0 1 1 1
Fanno 0 0 1 0 0 1 L]
Injection 0 0 0 1 2 2(1—y) 1=
Fanno <F>Ca <F>0.25 <T0)0,25 A
s = S— = [h—— 3 —*
(F >Cf F 4fL F Lo T‘(; cc A
—) == =exp —
F* F* P p <F>Cw 3 <T0>0'5 W
F* T: cc w*

(Ty/ T5).. is the combined-change stagnation tem-

Injection perature ratio. Young [7] shows that assuming a
& linear variation of duct diameter with axial posi-
(ﬁ) v F _w tion, a relation between C;and the change variables
Vi o ow* can be developed.
F Cq w 2
g = |— =|— 2
F=(5=(%) G-
Therefore, the statement that injection with y =0 \}A*
has the same set of flow functions as Rayleigh flow

The stagnation temperature ratio for Rayleigh flow

implies: :
2 may be taken from the simple change cases above
R I - and related to that for combined-change flows.
Ray injO T* w*
4 0 Froy=F;
Ray ce
andfory=1: :
_ T T 1.5
o= Fun= ()= (2 (#h, = (7)
Fisen . Finjl = <F> = <ﬁ>l T?)‘ Ray T’(')‘ cc
ot Therefore, a set of Rayleigh flow functions could be
(ﬁ) -1 used to solve problems involving the combined-
w A change process described above. For example, at a
A* Mach number of 0.5, the following ratios are
obtained from a table of Rayleigh flow functions
These results enable simple injection flow prob- with k = 1.4.
lems with y=0 or y =1 to be solved utilizing T p
Rayleigh or isentropic flow functions, respectively. T_S‘ =0.69136, ﬁ* =1.7778 and 17’('1 =1.1141
0 0
COMBINED CHANGES Then the value of the combined-change stagnation

o . temperature ratio can be obtained from:
This line of reasoning can be extended a step

further to apply simple change flow functions to T\ T\
combined-change problems. Examination of Egs FO Ray 0.69136 = FO -
(1)-(6)shows that while a certain set of values for the “

change coefficients gives unique values of C, and or

C,, the reverse is not true. In general, there are an T,

infinite number of combinations of the change (F) =0.78187
coefficients that can give the same value of C, or C,. o

For example, suppose that C,=0.25, C =1, from which the other variables may be determined
C;=—0.5,and C,,= 0.5 with y= 0, then the values as:

of C, and C, may be calculated to be 1.5 and 1.5 A

respectively. Therefore, the value of C,/C,is 1, the (F) =(0.78187)"% = 0.94034
same as for Rayleigh flow. The relationship among e

the change variables can then be developed in a W

manner analogous to that above for simple changes. <W)“. = (0.78187)"* = 0.88423

<£>C’ = . = <5> L 0.125
F* F* Tk D* = 2{—0.5)[(0.78187)>12% ~ 1]=10.030290
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Using Eqs (7), (9) and (10) as checks with M = 0.5,
C,/C,=1 and k= 1.4, the generalized function
equivalents are listed below.

F"=0.69136, p’=1.7778 and P;=1.1141

While this insight is important and provides a
logical transition from simple changes to combined
changes, the primary benefit of the model descri-
bed is to solve analytically combined-change prob-
lems without resorting to the types of artifices
above. Figure 1 is a plot of Eqs (7) and (12) for a
specific heat ratio, k, of 1.4 for a number of positive
values of C,/C,. Negative C,/C, values will be
discussed later. Figure 1 shows that F’ is zero when
the Mach number is zero and increases to a
maximum at a Mach number of one, after which it
decreases with increasing Mach number. The plots
corresponding to C,/C, of 0 and 1 and C, = 0 are
labelled generalized isentropic, Rayleigh and
Fanno flows, respectively, since these plots repre-
sent combined-change as well as simple change
flow as previously demonstrated.

Figures 2-4 are plots of 7', p’ and P as
functions of Mach number and C,/C, for a specific
heat ratio of 1.4. Figure 5 is a modified Mollier
diagram for a number of positive values of C,/C,
and k= 1.4. This diagram shows that the behavior
of combined-change flows, consistent with the flow
model, is analogous to simple change flows for pos-
itive values of C,/C,. That is, the entropy of the
flow increases as Mach one is approached from

’

Isentropic Flo

%0 05 1.0 15 20
Mach Number

Fig. 1. F’vs Mach number for positive C,/C, and k = 1.4.

1.2
1.1

1._

~ 091
All G, /C,
0.81

0.71

%% 05 1.0 15 2.0

Mach Number

Fig. 2. T" vs Mach number for positive C,/C, and k = 1.4.

either the subsonic or supersonic side. The maxi-
mum entropy point at Mach one represents the
same type of flow limitation that it did in simple
change flow. If the change in independent variables
is larger than that necessary to drive the flow to
Mach one, a flow readjustment must take place.

NORMAL SHOCKS IN COMBINED-
CHANGE FLOW

Since normal shocks take place in an axial length
equal to a few mean free paths in the gas, a
combined-change process involving a normal
shock can be modelled without loss of generality as

3 v
\=—C,=0

251

Generalized
Rayleigh Flow

2-" Isentropic Flow

)\ «— Fanno Flow

%o 05 1.0 15 2.0
Mach Number

Fig. 3. p’ vs Mach number for positive C,/C, and k = 1.4.

G0 G/
1

Generalized
Fanno Flow
0.5 ;
Rayleigh Flow
Isentropic Flow
%o 05 1.0 15 2.0

Mach Number

Fig. 4. P vs Mach number for positive C,/C, and k = 1.4.

- ———

Generalized
Fanno Flow

A Rayleigh Flo
[ ) G, /C,
Isentropic Flow 2
1
C1 — 0.5
: 6-0.3 -0.2 -0.1 0.0 0.1

s’

Fig. 5. Modified Mollier diagram for positive C,/C, and k =
14.
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a combined-change upstream of the shock, the
shock and a continuation of the combined-change
process downstream of the shock. An important
consideration in examining the effects of normal
shocks is the change induced in the independent
variable at the Mach one location. For example, in
isentropic flow the change in A* is used as a
measure of the effect of normal shocks. For
combined-change flows, the ratio of F* across the
shock will be developed as Fxy to indicate the
effects of a normal shock as shown below.

IO (F;
ny=<F:> =<7r> (17a)
forall C,/C,# 0 and
F*\¢: [F:
== 17
=) =) o

for C, = 0. Figure 6 is a plot of Fxy as a function of
supersonic Mach number for positive values of
C,/C,. This figure shows that the only value of C,/
C, for which F* does not change is one.

CONSTANT PROPERTIES IN COMBINED-
CHANGE FLOW

Constant properties will be obtained by taking
the constitutive differential equation for that
property (from Shapiro [1]) in terms of the
independent variables and Mach number and
equating the differential change in the parameter to
Zero.

Constant Mach number
For constant Mach number, d M? is set to zero.

1 — MY)dm? dT,
( ) ——2%+(1+kM2)—°
M2[1+(k— ) ] = s
4fdx
g =
+ kM =5

+2[1+(1 —y)kMz]dVW

1 — MHdM?
( ) =—2Ca%
[ k=1, ]
M1l +—-
2
+(1+kM2)C£
dF
+ kMG

+2[1+(1 —y)kMZ]CWdF—F

0=—2C,+ (1+kM?)C, + kM*C,
+2[1+ (1 — y)kM?C,

2
Generalized
1.81 ~ -
Isentropic Flow
1.6 Fanno Flow
1.41 Rayleigh Flow
F 12 e
1
0.8
0.6
0.4 :
1 2 3

Mach Number Upstream of Shock

Fig. 6. Fxy from Eqs (17a-b) as a function of Mach number
upstream of a normal shock.

Constant Mach number can be obtained from the
equation above in two ways. The values of the
change coefficients can be chosen at a particular
Mach number to make this equation zero at that
Mach number only. Those values of change co-
efficients are obtained from:

= (18)

or in terms of the change coefficients,
C(kM?*+ 1)+ kM*C;+ 2C, (1 — y)kM* + 1]
=0

a

In order to obtain more specific results, at least one
non-constant independent variable must be identi-
fied so that, in turn, the generalized variable F may
be identified. Variable area cases will be con-
sidered first. In this case C, = 1 and the following
relationship for C;is taken from Young [7].

2L
oG

The change coefficient form of Eq. (18) may then
be used to express the relation in terms of proper-
ties.

Cf=

(kM?+ 1) +

T
T
A
lan

D,
(5~ 1)
W,

In ™
— |20 - kM + 1)
lnA_1

—-2=0

Then Eq. (18) for constant Mach number and
variable area becomes:
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2fLkM? B
()
(Tm)(kM2+l) <A2> A
T,, A,
<&)2|(I—y)kM2+I| -
W (18a)

from which the two variable cases are extracted
and shown below.

Constant Mach number relations for variable area

Area and heat transfer
kM2+1

A (L)
A, \T,
Area and injection
Ay <w2>|( 1—y)kM2+1|

A \wy

Area and friction
D,— D, = fLkM?

Zucrow and Hoffman [3] on pages 500-501 show
the same result for the first and last cases above.

These results raise the interesting question, ‘what
would be the relationship for combined area
change, friction, and heat transfer to obtain con-
stant Mach number?’ In this case, there would be
an infinite number of solutions, since the resulting
equations are not fully constrained. One class of
solution from Eq. (18a) is:

where

at2b=2 and b20 for A,>A,
and

at+2b=2 and b<0 for A,<A,.

The case of constant area will be examined since
it changes the way in which the friction term is
integrated from Eq. (3). Taking 7, as variable and
area as a constant, Eq. (18) becomes:

T,, (kM2+1) 4fLKM? (w, 2((1=y)kM2+1]
@ e ()

T, D 7‘

=1
(18b)

which is the same relation that would result if w
were taken as the variable. The conditions for
constant Mach number for each of the two variable
cases involved are listed below.

Constant Mach number relations with constant
area

Heat transfer and

friction
Ty, —4fLkM?
T TCXP S a7 L.
Ty D(kM?*+ 1)
Heat transfer and
injection
—2|(1—y)kM2+1|
& = (E)_Z) (kM2+1)
T, W,

Injection and friction
w —2fLkM?
wi P DI = y)kM + 1]

These results are useful in another context. If the
Mach number goes through a stationary point, the
location of that point can be determined from Eq.
(18). For example, Beans [6] shows by numerical
calculations that the sonic point in a converging—
diverging nozzle is reached at a point downstream
of the minimum area when friction is considered.
Consider such a converging-diverging (C-D)
nozzle constructed of a large number of truncated
conical rings that closely approximate any desired
nozzle contour. Further, consider this nozzle at the
condition for which the back pressure is reduced
just to the point that a Mach number of one is
reached within the nozzle. At this point the Mach
number goes through a maximum at M= 1 and is
therefore an inflection point. The conical ring
which satisfies Eq. (18) for M =1 must contain
constant Mach number flow at M= 1. Using the
area change and friction case of constant Mach
number given previously, the slope of the nozzle
wall is found at the sonic point at shown below by
substituting M=1 and taking the limit as L
approaches zero.

dD—k
dx_f

This relationship agrees with the one Beans
obtained through an analytic argument. While the
argument above considered the case when the
Mach number is maximum at M = 1, the position
of the sonic point should not move because the
M = 1 will remain a stationary point when the back
pressure is reduced further.

A more general and perhaps straightforward
approach is to use Eq. (18) at a Mach number of
one and substitute into Eqs (1)-(6). As long as the
independent variables are continuous functions of
the axial dimension, x, and assuming that AaD?,
the sonic point locations for cases involving area
change can be found as shown below.
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Variable area sonic point location
With heat transfer
dD _1+k D dT,

dx 4 T, dx
With injection
dD _ D1+ k(1 —y)]dw
dx 2w dx

With heat transfer and friction

dD -kf+ 1+k D dT,
4 T, dx

With injection and friction
dD  D[1+k(1—y) dw
dx 2w dx i |

With heat transfer, injection and friction
- kf+ 1+k D dT(,+D[1+k(1—y)]d_w
4 T(, dx 2w dx

Beans did not present analytic expressions for the
cases above.

In addition, Beans presents calculated cases in
which the rate of change of area in a C-D nozzle is
large just downstream of the minimum area and
then becomes small near the nozzle exit. Beans
shows that the supersonic Mach number increases
at first, goes through a maximum and then decrea-
ses. The stationary point in this case is an inflection
point. Beans’s data for the friction factor, wall slope
and area ratio as functions of x/L are used to
calculate the inflection Mach number as a function
of x/L. The point of intersection of the inflection
Mach number and the Mach number calculated by
Beans is at the maximum Mach number. The same
procedure is used for the area change-heat transfer
and the area change-heat transfer-friction cases
presented by Beans. Figure 7 shows the data of
Beans reproduced for these cases and the inflection
Mach numbers calculated from Eq. (18). The
intersection of the inflection Mach number with
Beans’s data occurs at the maximum as expected.
The information gained from Eq. (18) can then be
used as a tool in adjusting the variations in inde-
pendent variables to achieve or eliminate points of
inflection in the Mach number without necessarily
calculating the complete Mach number distribu-
tion. For example, the steepness of the inflection
Mach number curves in Fig. 7 indicates that there
will be an inflection point even if the actual Mach
number distribution is not known.

The second method of obtaining a constant
Mach number is to choose the change coefficients
so that each power of M is independently zero
thereby giving a solution that is independent of
Mach number.

-2C,+ C+2C,=0=C,
G+ G+2(1—y)C,=0=C,

= Inflection Mach Number from Eq. (18

2 —_—
Case 1
1.8
= Case 2
3 161 g
£ Eq(18)-Case 1
z
5 1.4 Eq(18)-Case 2
©
=
1.21
1

0 02 04 06 08 1
Duct length, ft.

Fig. 7. Mach number in the diverging section of a converging-
diverging nozzle after Beans [6].

An important result of the equations above is that
anytime C, =0 and C, = 0, the flow is at constant
Mach number.

Constant velocity
For constant velocity, d V/ V is set to zero.

aF o

=
dA (k—1) , 4fdx
RPN RIEUP e

+[1+(1—y)kM2]d7w=()

¢+ EoD plcdF ke OF
« F 2 F T2 GTF

+{1+( = PMC, =0
[1+ 1 =kMC, 5

2 2
+[1+ (1= y)kM?C, =0

k—1 k
C+[1+( )M2]C+ MG,

The expression for any Mach number is then

-C,+C+C,=0
k—1 1
BT Gt 3 CG+(1-y)C,=0
These latter two equations are equivalent to C,/
C,=—1/kand C, =—C,.Proceeding in a manner

similar to that used for constant Mach number, the
relations below are developed for constant velo-
city.

2L

A
(k=1) Dy 2
Al <w2>2(1-.v)

W
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Constant velocity relations
Heat transfer, area and
friction
—2fLk

(k—l)Dl< 2_1>
T _(4) VA

T(ll Al

Heat transfer, and
injection

—2k(1-y)

Top _ (W2\ ")

Ty, w)

Injection area and friction

A (1 et ) Wy
A, (1-y)D, w,
An alternate solution is adiabatic and C, = 0 and
C, = 0 which corresponds to constant Mach num-

ber. The relations corresponding to this solution
are given below.

Constant velocity, adiabatic, variable area
With injection and friction

- ) -

A\ D(-y/ w
With injection
o JL Y
w, A’ y=

Constant speed of sound and temperature
For constant speed of sound, dc/c is set to zero.

de

=0
(&}
dA  (1—kM)[  (k—=1) 14T,
. p— 2| ===
L R A
k . 4fdx
=3 M =5 = M1+ k(1 - )MZ]—
=0
a-im)[ (k-1 k
2 2 =
MG+ gy [L+ 7 M C -3 mG

dF
= M1+ k(1 = ))MC,} =0

2
MCH T >

- M1 + k(1= y)M?C, =0

= M)[1+(k_1)M2:|C—§M“Cf

The expression for any Mach number is shown
below.
¢=90

¢,—C,=0 or C,=C,
—G—(1=y)C, =0 or C—==2l- yC,

These latter two equations are equivalent to C, = 0
and C,=0. The process is therefore also at
constant Mach number. Relations for this case are
the same as those for the same case in constant
velocity flow. It is shown later that for C, = 0 and
C, =0, static and stagnation pressures are also
constant. Since the speed of sound is proportional
to the square root of temperature, the case above
for constant ¢ applies for constant 7. This case may
be reducedto C,=1=C, and G;=—2(1 —y).If
the velocity ratio is less than one the area ratio
must be less than one to maintain a positive friction
coefficient. The result then would appear to be
counter-intuitive. The process involves area
change, friction and mass extraction with no
change in Mach number, temperature, pressure or
stagnation pressure. Actually, the mass extraction
process with a velocity ratio less than unity is
removing lower momentum flow at exactly the rate
at which friction is decreasing momentum. While
this is a theoretical possibility, two-dimensional
effects would make realization difficult.

Constant density
For constant density, do/p is set to zero.
d
L -0
0
dA (k— 1) , 4fdx
U RCESIh EL e

dw
—[1+ A= y))kM*—==0

k—1 dF F
Mzcd—F [1+( 5 )MZ]C,——kMZC,dF

dF
= [+{1~ MG, =0

(k=1) k

2 = b SESNN | 2 P 2

M2, [1+ S— M2 C,— 5 M2,
—[14 (1 = y)k]M2C, =0

The expression for any Mach number is shown
below.
¢=0

k
G-36G-1d
These latter two equations are equivalent to C,/
C, =—1/k for adiabatic flow. Specific indepen-
dent variable relations are obtained for this case as
shown.

—yk+1]C, =0
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Constant density relations

With injection, area and friction

s

A,

Area and friction

=- (1+f1§")

Area and injection

<&>Il+k(l-y)l N ﬁ
W A,

Friction and injection
W, —2fLk

w, P DI+ k(1 —y)
An alternate solution is C, =0 and .C, = 0 for
adiabatic flow which is the same as one case of
constant velocity flow.

Constant pressure
For constant static pressure, dp/p is set to zero.

dp

=0
P
dA (k—l) 5 4fdx
7—[1 5 ] =M1+ {k—1}M]——
dw
+-2+y = (- y)k = )M — =
dF (k—1) dF
C”F l:1+ > ]C—
—[1+(k—1)M2]CdeF
—R=y+(1 =k =DMIC, F =0

k=1 1+ (k — 1)M?
Ca—[1+T)M{|C,—[(—2)—]Cf

+[=2+y=(1=y)k— )M]C, =0
The expression for any Mach number is shown
below.
Cl_ C‘/_ :Lq_ (2 - y)Cw =0
€+ C—2(1—yC, =0

These latter two equations are equivalent to C; =0
and C, = 0. The process is therefore also at
constant Mach number.

F. M. Young and W. E. Simon

Constant stagnation pressure
For constant stagnation pressure, dP,/P,, is set
to zero.

Wy g
P,
1dT, 1 4fdx
2T, 2 D
dF 1 __ dF dF

l—y)Cw?=0

C+G+2(1-y)C,=0

T29F T29F ¢

any C,

These change coefficients are converted into rela-
tions among the independent variable as shown
previously.

2L

A2
L e _
@E @
T()l A 1 wl
Constant stagnation pressure relations

Heat transfer
and injection

Ty, wy\ 21
=)

F (ic.tior! and
injection
% =—2(1-y)
Injection
y=1

Area, injection and friction
-1

(=90 F)
W, _(A2> ‘< Al
w, \A,

Area, heat transfer and friction
—2fL

B =<&>D‘<\/::? )

T()l Al

Constant entropy
For constant entropy, ds/c, is set to zero.
ds

s =0
€,

k=1),, (k—1) , 4fdx
[1+ : ]T0+ M=

dw
H( =)k — M —==0
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(k=1) | .dF (k—1) dF
|t1+—2 MG+ + 5 MZCfF
dF
+ (1 —y)(k—1)M*C, =
=0
C=0

G+ C+2(1-y)C,=0=0C,

These latter two equations are equivalent to C,/
C, = 0 for an adiabatic process. The three specific
cases corresponding to these isentropic conditions
are shown below.

Constant entropy relations

Area, friction and injection

-
&-(ﬁ)
W B A,

A
Dy(1-y) ( /A—i —>

Friction and injection

wa_ o T2fL
w P DI—y)

Area and injection
y =1 arbitrary A, w

Discussion of some constant-property results

A summary of all constant-property conditions
is listed in Table 2. These constant-property
conditions are based on the relationships between
independent variables assumed for the generalized
flow model. There are many other possible rela-
tionships between the independent variables in
addition to those used. The conditions obtained
with this model are, therefore, not complete. An
example of a case not included is that of isothermal
flow with simple friction. The variation of T, and
4fL/D is not of the form of Eqs (2)—(3) for this
case.

The conditions are correct within the bounds of
the model limitations. There are a few cautions.
The model permits negative friction coefficients,

Table 2. Summary of constant-property conditions

Property  Conditions necessary to hold constants

M C,/C,=—1/kM?or
C,=0and C,=0

\Y C,=—Cand C,/C,=—1/kor
adiabatic and C,=0and C,=0

c,T adiabatic and C,=0and C,=0

p C,=0and C,=0

o adiabatic and C,/C,=—1/k or
adiabatic and C,=0and C,=0

P, C,/C,=0any C, or

C,=0and C,=0
adiabatic, C,/C, =0 any C,

»

extracting mass at velocity ratios greater than one,
and other physically unattainable conditions. The
model does not consider real effects such as multi-
dimensional flow or shocks.

The case of C;, =0 and C, = 0 results in con-
stant Mach number, speed of sound, static tem-
perature and pressure, and stagnation pressure.
With the Mach number determined to be constant
and C, = 0, these results can be obtained from the
mass flow functions as shown below

WzJT_m -

—=g(M, k

P14, 8(M,, k)
wilTo P A, [Ty, wo _ wilTor _ M. k)
PiA; py Ay Ty w, DP2A; EW2,

but M, = M, therefore

Cl
P Fz—ca F2 2
wh 2 (7) " (7)
8(M, )Pz F, F,

(%)Cw= 8(M,, k)

—Ca+£I-+CW
14} (ﬂ) ey

P2 \F,

The exponent of F,/F, above is —C,/2, or zero.
The value of p,/p, is then 1, implying constant
pressure. A similar result is obtained using the
stagnation pressure mass flow function, with the
result that P, is constant.

An interesting consequence of both C, and C,
being zero is that for y=0, C;=—2C, and C,+
2C, = 2C,. If this constant Mach number process
involves area change, it involves friction. The
negative sign in the relation between friction and
area-change coefficients permits decreasing area
only, so that the friction coefficient remains posi-
tive.

The cases for which C,/C, = —1/k involve a set
of generalized flow functions which are calculated
from Eqs (7)-(11) and are included as Table 3.
Special variables are defined for this table to
demonstrate constant velocity when C, = —C, and
constant 0 when the flow is adiabatic. These
variables are shown below.

Vv
=_V;f0r C]—_‘_C

An expression for the stagnation temperature ratio
for this case is shown below.

15 _(F)C, _<F)~C1_ 1
Tt \FY \F F
The temperature ratio may then be found in terms
of F'.
L
™ F
Finally, the velocity may be expressed in terms of
the Mach number and the speed of sound. The
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Table 3. Generalized flow functions for C,/C, =—1/k and k = 1.4

M F P P T s V. o
0.0  0.000000  0.633938  1.200000  1.200000 0.182322 1 1
0.1 0.011076  0.637112  1.197605  1.197605 0.180324 1 1
02 0047619  0.646693  1.190476  1.190476 0.174353 1 1
03 0.106090  0.662852  1.178782  1.178782 0.164482 1 1
04  0.186047  0.685877  1.162791 1.162791 0.150823 1 1
0.5 0285714  0.716176  1.142857  1.142857 0.133532 1 1
06  0.402985  (0.754282 1.119403  1.119403 0.112796 1 1
0.7 0535519  0.800853  1.092896  1.092896 0.088831 1 1
0.8  0.680851  0.856682  1.063830  1.063830 0.061875 1 1
09  0.836489  0.922703 1.032702  1.032702 0.032179 1 1
1.0 1.000000  1.000000  1.000000  1.000000 0.000000 1 1
1.1 1.169082  1.089810  0.966184 0966184  —0.03440 1 1
1.2 1.341614  1.193538  0.931677 0931677  —0.07077 1 1
13 1.515695  1.312765  0.896861  0.896861  —0.10885 1 1
14 1.689655  1.449255  0.862069  0.862069  —0.14842 1 1
1.5 1.862069  1.604970  0.827586  0.827586  —0.18924 1 1
1.6 2031746  1.782076  0.793651  0.793651  —0.23111 1 1
1.7 2197719  1.982962  0.760456  0.760456  —0.27384 1 1
1.8 2359223 2210242  0.728155  0.728155  —0.31724 1 1
1.9 2515680 2466776  0.696864  0.696864  —0.36116 1 1
20 2666667 2755676  0.666667  0.666667  —0.40547 1 1
speed of sound is taken as the square root of Table 4. Generalized flow functions for C,/C,=0and k = 1.4
temperature.
M F P P T s
T /i
V=M |[==M |= 0.0000  0.0000  1.0000 1.8929  1.2000  0.0000
e & 0.1000  0.0295 1.0000 1.8797 1.1976  0.0000
02000  0.1139  1.0000  1.8409 1.1905  0.0000
For adiabatic flow, T T:‘)‘ is one, so the density may 0.3000 0.2415 1.0000 1.7784 1.1788  0.0000

0.4000  0.3955 1.0000 1.6953 1.1628  0.0000

be found from the equation of state as p"/T". 0.5000 05570 1.0000 15958 11429  0.0000

, Jo) 0.6000  0.7083  1.0000 1.4841 1.1194  0.0000
P === 0.7000  0.8350  1.0000 1.3647  1.0929  0.0000
1Y 0.8000  0.9277  1.0000 1.2418 1.0638  0.0000

, 09000 09825 1.0000 1.1190 1.0327  0.0000

e P _ 1.0000  1.0000  1.0000  1.0000  1.0000  0.0000

p =plorG=0 11000 09843  1.0000 08866 09662  0.0000

12000 09418  1.0000 0.7806 09317  0.0000

, L 13000 0.8795 1.0000 0.6832 0.8969  0.0000

By design, the definitions of both V" and o’ should 14000  0.8045 1.0000 0.5948 0.8621  0.0000

be one at all values of Mach number to demon- 1.5000  0.7229  1.0000 0.5156  0.8276  0.0000
s that hey areconsant L DmL g gl g om

The last cases of constant properties involve 18000 04829 10000 03294 07282  0.0000
stagnation pressure and entropy. In the latter case 1.9000 04134  1.0000 02825 0.6969  0.0000
the flow must also be adiabatic. Table 4 contains 20000 03512 1.0000 02419  0.6667  0.0000
the generalized flow functions for C,/C,=0.
Constant stagnation pressure is clearly shown by
Table 4. While s is also shown to be zero, the
definition of s* given above Eq. (11) should be

closely examined. Entropy is zero when s’ is zero 1.2

and C, = 0. Therefore, in addition to the conditions C,/C, =-1

for Table 4, the process must also be adiabatic. The 1.1 Sub-critical 3

constant parameter conditions C,/C, = —1/k and ) 7

C,/Cy= —1/kM? merit further examination. 1 C,/C =1k G, /C =05
Figure 8 is the T — 5" diagram (a modified Mollier ) Critical pl %
diagram) for values of C,/C,=—1, —1/k, and = Super-critical

—0.5. Figures similar to Fig. 8 were first observed
in cases of mass injection with y > 1 (Hodge and
Young [8]). These figures indicate that the constant
Mach number associated with C,/C, = —1/kM?is
a singularity in a more general flow process.
Constant velocity and density are associated with
the C,/C, =—1/k locus which divides flow beha-
vior into two distinct regimes. One regime is Fig. 8. T — s diagram for C,/C, = —1,—1/k, and —0.5 and k
characterized by subsonic singularity Mach num- =14.

085 04 03 02 0.1 00 01 02 03 04
g
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bers which will be called the subcritical regime. The
other regime is characterized by supersonic Mach
numbers and will be called supercritical.

Figure 9 shows the generalized independent
variable function, F’, from Eq. (5), as a function of
Mach number. Increasing F’ drives subsonic flow
processes toward the subcritical singularity while
decreasing F’ drives supersonic flow processes
toward the supercritical singularity. Figure 10
shows P, from Eq. (10) as a function of Mach
number. P increases as a subcritical singularity is
approached and decreases as a supercritical singu-
larity is approached. For subcritical cases, there is a
local minimum in P, and for supercritical cases a
local maximum at M = 1. p’ from Eq. (9) is shown
as a function of Mach number in Fig. 11. The
behavior of p’ is similar to that of P} except for the
inflection point. The inflection point in p’ is at a
Mach number of

and is a local minimum for subcritical cases as long
as C,/C;>—1 and a local maximum for super-
critical cases. For C,/C, <—1 there is no inflec-
tion point.

5
4

C,/C, =-1

Sub-critical
3 S G,/ =1k

TR Critical
2_
1
| o Super-critical

0 ; ; ; —
0.0 0.5 1.0 1.5 2.0

Mach Number

Fig. 9. Fas a function of Mach number for k = 1.4, C,/C, =
—1,—1/k and —0.5.

C,/C, =-1/k

Super-critical

%o 05 1.0 15 2.0
Mach Number

Fig. 10. P} as a function of Mach number for k = 1.4, C,/C, =
—1,—1/k and —0.5.

3
231 ¢, /0, =-1
o) Sub-cntlcal\ C,/C; =-1/k

Critical

G /G =05

Super-critical/

0 . . .
0.0 0.5 1.0 15 2.0
Mach Number

0.5

Fig. 11. P’ as afunction of Mach number for k = 1.4, C,/C, =
—1,—1/k and —0.5.

A NUMERICAL EXAMPLE

Pratt and Heiser [9], in analyzing a dual-mode
scramjet engine in the ramjet mode, have modelled
the burner section as an area and stagnation
temperature change of a one-dimensional flow of a
perfect gas. Their analysis technique starts with the
Mach number entering the burner section and then
uses an assumed stagnation temperature distri-
bution with axial dimension to numerically inte-
grate the constitutive differential equation and
hence to calculate the properties downstream. This
process must be carried out iteratively since the
‘thermal throat’ (M = 1) must just be reached at the
end of the axial length. The method presented here
has three advantages. The method is analytic and
thereby the number of calculations is reduced,
especially for parametric studies. Also, the proper-
ties at the ‘thermal throat’ are given explicitly,
thereby eliminating the need for iteration. The third
advantage lies in the assumption that there is a
relationship between the stagnation temperature
and area. This permits a solution independent of
how the stagnation temperature varies with axial
dimension. As an example, take the Mach number
at the burner entrance as 0.3. For this case, the
generalized variable F will be taken as T, there-
fore, the relation between 7, and A is given by,

A < T, >Ca
A 1 TOl

where the 1 state is that entering the burner section
and the c state is at the ‘thermal throat’. When the

axial stagnation temperature distribution is deter-
mined, the area variation follows as

T,
T, = f(x)
then
A — C
A, =f(x)"«

From Egs (5)-(6) the values of C| and C, may be
determined and then the ratio C,/C,.
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L (—ihy

A number of values of C, will be used to illustrate
positive, zero and negative values of C,/C,. The
stagnation temperature, area and stagnation pres-
sure ratios across the burner section are shown in
Table 5 as calculated from Eqs (7), (10), (12) and
(14) as appropriate for the value of C,/C,.

The first entry for C, = 0 corresponds to genera-
lized Rayleigh flow and in this case it is actually
simple Rayleigh flow. The entry for C,=0.5
corresponds to generalized Fanno flow even
though there is no friction. The entry for
C, = 0.563 corresponds to Eq. (18) for a constant
Mach number of 0.3. This latter value then descri-
bes an upper limit on the rate of area increase with
stagnation temperature increase. If the limit is
exceeded, the flow will decelerate instead of accel-
erating through the sonic point.

Table 5. Burner ratios

Ca CZ/CI T(Jr/ T()l A(/Al P(I(/P(H
0.000 1.00 2.883 1 0.834
0.250 2.00 5.598 1.538 0.756
0.500 @ 2002 14.15 0.491
0.563 ~7.94 o o 0

CONCLUSIONS

A combined change one-dimensional compressi-
ble flow model developed by Young [7] is shown to
provide a logical extension of students’ understand-
ing of simple change flows to include combined-
change flows. The first step in this extension is to
show that each of the simple change processes with
which the students are already familiar, actually
represent an infinite number of combined-change

processes which have the same value of C,/C,.The
next step in the extension is to show that simple
change processes are part of a spectrum of positive
valued C,/C, combined-change processes which
exhibit behavior similar to that of simple change
processes.

The behaviour of combined-change flow for
negative values of C,/C, is approached by using
the model for constant property analysis. Proper-
ties analyzed include Mach number, velocity,
speed of sound, density, static pressure and tem-
perature, stagnation pressure and entropy. Two
cases are found for constant Mach number. One
case, C, = C, = (), also involves constant pressure
and stagnation pressure. If in addition the process
is adiabatic, speed of sound, density, velocity,
entropy and static temperature are constant. The
other case, C,/C, =—1/kM?,is shown to coincide
with the Mollier diagram singularities first
observed by Hodge and Young [8] for cases of
simple mass injection with y > 1. These singulari-
ties exhibit distinctly different behavior for sub-
sonic and supersonic Mach numbers. These types
of behavior are separated by the C,/C, = —1/k
locus on a 7" — 5" diagram. The C,/C, = —1/k
locus is shown to represent a constant-density pro-
cess when the flow is adiabatic, and a constant-
velocity process when C,=—C,. This case of
constant Mach number is also shown to describe
the location of the sonic point downstream of the
minimum area of a converging—diverging nozzle.
This case also assists in determining whether a
Mach number inflection point will exist in a given
flow.

The model presented by Young [7] defines the
thermodynamic path of the combined-change
process and therefore, the model is not completely
general. Despite this lack of generality, the model is
shown to be sufficiently robust to provide new
insight into one-dimensional compressible flow.
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