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Turbo-compressors and Turbines as
Conjugate Machines and a Compressor as a
Machine with a Non-zero Lower Limit to its
Isentropic Efficiency*
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The paper discusses the differences and similarities between compressors and turbines. After an
explanation that treating turbomachines as steady flow devices is an approximation, it is pointed
out that isentropic and polytropic efficiencies are simply work ratios. It is also shown that there is a
non-zero lower limit to the isentropic efficiency of a compressor. The objectives of the paper are to
provide further understanding of the processes and interactions associated with turbomachinery
and, on this basis, develop a series of unified equations which may be applied to compressors and
turbines. These ideas can be included in final-year degree courses in power plants and aircraft
propulsion. The correlation of pressure ratios and temperature ratios across turbomachines,
using a parameter of the form Pv", is examined and limits are established. Attempts to operate a
compressor below the non-zero lower limit of isentropic efficiency are shown to result in its being
changed into a non-compression pumping machine. It is concluded that the unified equations
which have been developed will be helpful to students and useful for computer modellers
developing algorithms for simulating compressors and turbines.
1. The paper discusses material for a course in: discussion in the text is different in the follow-
Thermodynamics and turbo-machinery. ing aspects:
2. Students of the following engineering depart- The material is new, it is not covered in the text
ments are appropriate for the course: 11. Other comments:
Mechanical, aeronautical, chemical, marine. The paper should make students and teachers
3. Level of the course: think, it should appeal particularly to intuitors
Final year degree. and global learners.
4. Mode of presentation:
Lectures, practicals and some software pack-
ages. NOMENCLATURE
5. Is the material presented in a regular or in an
elective course: Capital letters
Elective course. C specific heat capacity used with
6. Class hours required to cover the materials: subscripts , and ,
40 hours total, say 2 hours on new material. P pressure
7. Student homework and revision hours R characteristic gas constant
required for the materials: T temperature
Homework and revision should match num- W, power
ber of lecture hours. X, Y,Z cartesian coordinates used in
8. Description of the novel aspects presented in Appendices 1 and 2
the paper:
Novel aspects are conjugate turbo-machines Lower-case letters
and a non-zero efficiency for the compressor. a modulus of the complex number used in
9. The standard text recommended for the Appendix 2
course, in addition to author’s notes: ¢ constant in straight-line equation in
Cohen, Rogers and Saravanamuttoo, Gas Appendix 1
Turbine Theory (ref. |5] in paper). h specific enthalpy
10. The material is not covered in the text. The dis- m gradient in straight-line equation in
Appendix 1
m mass flow rate
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305




306 W. A. Woods

n! exponent corresponding to non-
compression pumping machine

q heat transfer for unit mass

s specific entropy

u specific internal energy

v specific volume

w work for unit mass

= (Po/P,)/(y — 1)/y isentropic
temperature ratio for compressor

y= (P+/P,)/(y — 1)/7y isentropic
temperature ratio for turbine

Greek letters

y = C,/C, isentropic exponent

n isentropic efficiency used with
subscripts . and ,

m, polytropic efficiency used with
subscripts . and

3 work ratio parameter, used with sub-
scripts , ., p and ,

= T,/ T, temperature ratio, used in

Appendix 2

P angle in Argand diagram used in
Appendix 2

0 density of gas.

Subscripts

1 at inlet to the compressor

2 at outlet from compressor

3 at inlet to turbine

4 at outlet from turbine

a actual conditions

€ compressor

i isentropic conditions

in at inlet conditions

min minimum value

out at outlet conditions

p polytropic and also at constant pressure

ppm polytropic for non-compression
pumping machine

t turbine

v at constant volume

Special symbol

Q Circle around the symbol denotes a
reference state used in Appendices 1
and 2.

FOREWORD—-THE EDUCATIONAL
ASPECTS

SPARKES |[1] has put forward a framework of
learning which makes a distinction between knowl-
edge and understanding. Felder and Silverman |[2]
have described different types of learners. They
explain that intuitors are the people who prefer
principles and theories that are good at grasping
new concepts. Sensors, on the other hand, like
facts, data and experiments; they like solving
problems by standard methods and do not like
complications. Sensors are good at memorizing
facts. Another dimension Felder and Silverman

discuss concerns sequential and global learners.
Sequential learners are comfortable with a logically
ordered progression of material and they follow
and understand as the material is presented. They
follow a linear reasoning process when solving
problems.

From a technical viewpoint, the material pre-
sented in this paper is relevant to final-year degree
courses in thermal power or, perhaps, more
specialized courses in turbo-machinery and air-
craft propulsion. Educationally, the ideas pre-
sented may appeal to those who learn intuitively
and globally. Generally, lecturers are intuitors but
most students are sensors. The significance of the
conjugate relationships, unified equations and the
non-zero lower limit of the compressor isentropic
efficiency discussed in the paper may have to be
carefully explained to sensors and sequential
learners, but it should be attractive to intuitors and
global learners. The material given in the paper is,
therefore, directed at lecturers delivering courses
similar to those mentioned. The objectives of the
paper are to provide further understanding of the
overall thermo-fluid processes that occur in com-
pressors and turbines.

The goal of the paper is to encourage lecturers to
make small but important changes in the presenta-
tion of their courses.

INTRODUCTION

Turbo-compressors and turbines may be
regarded as conjugate or reciprocal machines. The
compressor is a work-consuming, pressure and
temperature increasing device, whereas a turbine is
a work-producing, pressure and temperature
reducing device, but they are both entropy produc-
ing machines.

The word conjugate is preferred in this case on
account of the similarity between the diagrams
shown in Figs 1 and 2 and that of an Argand
diagram showing a complex conjugate pair. It is
convenient to defer further discussion of this topic
until other aspects, given in the body of the paper
and in Appendix 1, have been introduced. The
analysis relevant to the conjugate nature of the
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Fig. 1. Temperature-entropy diagram for a compressor.
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Fig. 2. Temperature-entropy diagram for a turbine.

compressor and turbine in given in Appendix 2.
Turbo-machines are almost always regarded as
steady flow machines but, strictly, this is not the
case. Turbo-machines may be regarded as
machines which operate overall on a steady inflow
and steady outflow but the work interactions take
place during internal, unsteady flows. Although
this topic is not the subject of the present paper, it is
relevant to mention that it has been studied by
Dean [3] and Preston [4]. It is also appropriate to
mention now that: (i) if a reversible flow has a work
interaction, then the flow must be unsteady; and (ii)
if a steady flow produces a work interaction, then it
must be an irreversible process.

The processes considered in this paper are
regarded as steady inflow and steady outflow but,
as the through flows considered may be reversible
or irreversible with work interactions, the internal
flows are unsteady as they interact with individual
blades. The machines considered in this paper are
restricted to compressors and gas turbines and we
simplify the analysis by treating the working fluid as
a perfect gas.

Returning to the reciprocal nature of the com-
pressor and the turbine, one object of this paper is
to seek reciprocal relationships for the compressor
and turbine and, accordingly, develop unified
equations. In the course of doing this, a non-zero
value was discovered for the minimum isentropic
efficiency and the polytropic efficiency of the
compressor. The minimum polytropic efficiency of
a compressor is

p =

”pc=_

Y

and a further objective of the paper is to explain
this.

In what follows, the basic ideas involved in
applying the steady flow energy equation to the
inflow and outflow of a control volume containing a
turbo-machine are discussed. However, the details
of the internal flows in the control volume and, in
particular, the internal flows in the individual blade
passages of compressors and turbines are not
discussed. The limits of the isentropic efficiencies
mentioned and expressions for the minimum poly-

tropic efficiency and isentropic efficiency of the
compressor are derived.

Next, the unified equations for the turbo-
machine and the transformations needed to apply
them are discussed. The results of limits of the
efficiencies and the unified equations are con-
sidered; the main conclusions drawn are that there
is a non-zero minimum compressor efficiency,
which in the polytropic form is

y—1

npc,min - y

and a set of unified turbo-machinery equations
have been derived together with the required
transformations needed to apply them to compres-
sors and turbines.

BASIC IDEAS

The thermodynamic model selected to represent
the turbo-machine is the steady flow energy
equation, with a perfect gas flowing through a
control volume [5]. The turbo-machine is assumed
to be adiabatic and the change of elevation is
regarded as negligible. The steady flow energy
equation is written in terms of the stagnation states
as

W( . m (hout - hin) (1)

here the notation used for the work interaction is
that transfer to the control volume is the positive.
This modern rational notation was recently
explained by Mayhew [6]. In this paper, pressures
and temperatures are stagnation state values
unless otherwise stated.

For the perfect gas, equation (1) is,

W\‘ = me( Toul - Tm) (2)

Equations (1) and (2) are applicable to both a
compressor and a turbine. Logically, for a com-
pressor T, > T, and the power term is positive.
Corresponding to the gas turbine, 7,, < T,, and
the power term represents a negative quantity.

The application of the Second Law of Thermo-
dynamics to the turbo-machine [7] gives s,, > s,
and, as this applies both to the compressor and the
turbine, it leads to the basis of the isentropic
efficiency. The compressor case is illustrated in
Fig. 1 and the isentropic efficiency is defined by:

Tout,s - T,

- 3
"= T.—T, )

Likewise, the turbine case is illustrated in Fig. 2 and
the isentropic efficiency is defined by:

Tin - Tou( 4
T Tow, ®

The polytropic efficiencies for the compressor
and the gas turbine are, in this paper, also defined
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on the basis of stagnation state conditions. The
relationship between the polytropic efficiencies
based upon static and stagnation states is discussed
in detail in ref. [8]. The temperature-entropy
diagrams are shown in Fig. 3 for the small compres-
sor stage and in Fig. 4 for the small turbine stage.
The polytropic efficiencies corresponding to Figs 3
and 4 respectively are:

dT,
Moe = 37T %)
and
dT,
”p! - dT (6)

The isentropic relationship for the elementary
COMPpIessor is

dT dT, y—1dP
==y — 7
= =g (7)
Combining equations (5) and (7) leads to:
y—1dP
Ve P

a

7 —(r—1

We may drop the subscript ‘a’ and integrate
between the lower pressure and temperature and
upper pressure and temperature of the compressor

to give:
4 _ P, el 3
T1 - Pl ( )

In a somewhat similar way, equation (6) may be
combined with the corresponding equation for the
turbine:

dT, y—1 dP

T = T ”p( _f)_ (9)
and, after integration this leads to:
T, P, Tply=1)/y
Ff(ﬁ:) %
P+dpP

h)

Fig. 3. Temperature-entropy diagram for an elementary
compressor stage.

Before proceeding to the unified equations, it is
appropriate to consider the limits of the efficien-
cies.

Limits of the efficiencies

The isentropic efficiencies introduced above are
straightforward for the upper limit of the compres-
sor and turbine and this corresponds to reversible
isentropic cases which are

1. = M, = 1.0 for the compressor
1, = 1, = 1.0 for the turbine

The lower limit is also straightforward in the case of
the turbine, thus n, = 7., = 0 and this corresponds
to an isothermal but adiabatic irreversible expan-
sion.

The lower limit for the isentropic efficiency of
the compressor is not straightforward and we need
to formulate a clearer definition of a compressor.

The meaning of the verb to compress [9]—To
force into less space’—gives the key requirement,
but we also have a primary requirement that the
pressure should be increased, and the third condi-
tion, set down at the beginning of this section, was
that the process should be adiabatic.

Some thought leads to the conclusion that the
lower limiting case of the isentropic efficiency of an
adiabatic compression process in which the pres-
sure increases is one of constant specific volume.
To find this, we seek the curve that joins the end
state points of the fluid flowing through the com-
pressor, which is the same as the curve of constant
specific volume. That is:

aT oT
RGN

The constant volume expression is found using
the property relationship 7ds = du + Pdv which,
for a perfect gas becomes 7ds= C,dT+ Pdv.

This leads to:
oT T
—] == 12
( os )v ., (12)

The gradient of the compression curve on a
temperature entropy diagram, with a polytropic
compression 77, is given by:

P+dP

Fig. 4. Temperature-entropy diagram for an elementary
turbine stage.
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a7\  dT,
0s ds
Mpc
Now the elementary change of specific entropy
may be calculated from the gradient of a constant

pressure curve together with the difference of the
two differential temperatures, i.e.

os
ds= (5?>p dT,—dT)

The gradient of the constant pressure curve is
found from the property relationship 7ds=dh—
vd P which, for a perfect gas, becomes Tds = C,dT
— vd P and this leads to:

) _G
aT), T

Therefore, the elementary change of specific
entropy required is:

CP
ds= =2 (dT,—dT))

or\ _ 1 (_dI,
)  C, \dT,—dT,

pc

-5
“*\9s - Co\L— W5 (13)

Equations (12) and (13) may be inserted in equa-
tion (11) to give the minimum value of 7, s 7. min,

where
T T ( 1 >
Cv Cp 1_17pc,min

which reduces to #,.min = (¥ — 1)/7. This value
may be used to calculate a minimum value of the
-isentropic efficiency of the compressor, thus:

P\ 1
P,

- (14)

"c,min
g
P,

Operation at a value of 1., below 1,,.

Operation of the machine at a value below M e min
may at first be thought to be impossible. "The
machine could, however, be so inefficient that a
state change could take place and the pressure
could be increased to P, but the specific volume
would increase so that v, > v, and the temperature
would be:

and

Pz
T,> T,
l

but there would be no compression of the gas and
the machine could not be said to be a ‘compressor’.
It could be called ‘a non-compression pumping
machine’ and it may also be appropriate to call it a
blower.

The term polytropic efficiency implies a poly-
tropic process in which the parameter Pv" does not
change during the process. This type of relation can
be applied to equations (8) and (10). The poly-
tropic indices for the compressor n, and the
turbine n, are given by:

Ve
N . . — 15
C 1=y(1—n,) (13)
and
Y
- 16
S = =) (16)

If, for a compressor, the concept of matching the
inlet and outlet state properties with a parameter
Pv" was continued with beyond the constant speci-
fic volume mode of operation, the parameter n
would suddenly switch from © to — and the
parameter could be written as n! where n' = —n
and the relationship would effectively change to
P/v". The parameter n! would then be progress-
ively reduced from « to zero, at which 7,. 0.
These relationships are illustrated on T-s and P-v
diagramsin Fig. 5.

This has now set the scene to introduce the
unified equations and the reciprocal rule for the
equations.

UNIFIED EQUATIONS AND THE
EFFICIENCY RECIPROCAL RULE

The usual equations for temperature ratio and
pressure ratio in a compressor are:

T2 1 P2 (y—1)/y
= =1+ |5 -1 17
1 ”c [(Pl> ( )

v/(y-1)

P T,
={1+7|2-1 (18)
1

and

The corresponding equations for the turbine are:

p (r=1y/y
T,=T,— Ts[1—(35
4 3 3 (P3> /i

which may be rearranged as:
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p (y=1)/y
I,—T,=Tn, <P_;> -1

T“—1+ A 1 19
—T_3_ Un P, (19)

Likewise, it may be shown that

and

y/(y—1)
5—1+l Iy 1 20
P3 771 T3 ( )

If we now define a work ratio factor £ by the
equation:

E=7——7 (1)

out,s Tin
here the ‘out,s’ state point is isentropically related
to the inlet ‘in’ state point. Hence, we can write
equations (17) and (19) as the single equation:

e P\
T ={1+ § P_ -1 (22)

in

Likewise, we may write equations (18) and (20) as
the single equation:

y/(y—1)
Pou 1+1 Lou 1 23
Pin g Tin ( )

Thus, equations Ql%l)~(23) are the first set of
unified equations. To apply them to the compres-
sor and the turbine, two operations are needed.
First, the simple process of writing subscript ; for
‘in’ and subscript , for ‘out’ for the compressor and
subscript ; for ‘in’ and subscript , for ‘out’ for the
turbine. Secondly, the reciprocal rule has to be
applied and this is simply that

1
=% (24)
and
n=£& (25)

The second set of unified equations also relate
the pressure ratios and temperature ratios across
the turbo-machines. The term polytropic efficiency
implies that the end state points of the turbo-
machine can be fitted with a parameter, of the form
Pv", which does not change between the inlet and
outlet state points. This leads to:

(n—1)/n
Toul _ Pout
T = <P- > (26)

n n

and this is also related to:

Toul Poul fp(y_l)/y
7, "\P,, &)

n n

here &, is defined as a polytropic or small stage
work ratio, defined as:

ar,
- e

in a manner similar to that introduced earlier.

It may be shown that these equations may be
applied to the compressor and turbine by using the
above subscript transformations and a second
similar reciprocal rule, as follows:

1
O™ 5 (29)
p é—p
and
”pt = gp (30)
It also follows that:
i
n=——— 31
y—E(r—1D) S

Itis interesting to note that for a fixed &, or n, the
compression or expansion process, represented by
equations (26) or (27), is a straight line in the
logarithmic temperature-entropy diagram [10];
this (LTS) is briefly reviewed in Appendix 1.

The results of the above discussion are summed
up using equations (29)-(31), in Fig. 6. This is
clearly illustrated, in terms of n, for the turbine and
the compressor region. It also shows very clearly
the non-zero lower limit of the polytropic effici-
ency of a compressor and the asymptotes for 7,
and &, as n approaches infinity. The range and the
limiting values of various parameters are shown in
Table 1.

DISCUSSION

There are many similarities and differences
between compressors and turbines and the rela-
tionship has positive and negative features, rec-
iprocal aspects and other features that directly
correspond to one another. Examples of these,’
respectively, are the work or power interactions,
the ratio of ideal to actual work interactions and the
increase of specific entropy of the gas flowing
through the machine.

However, certain aspects of these may be likened
to a complex conjugate pair on an Argand diagram.
The temperature—specific entropy diagram shown
in Fig. 1 for the compressor has some resemblance
to a mirror image of the corresponding diagram
shown in Fig. 2 for the turbine. The temperature
and pressures for the compressor and turbine
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Fig. 6. Polytropic efficiencies of compressor and turbine as functions of polytropic index.

Table 1. Range and limiting values of polytropic efficiencies and work ratio

1 1
nand n' Mu=§ Mo = 5 Nopm™ F
P P P EP PP Ep
n= 0 lower limit for turbine
1<n<y 0<79,<1.0 normal range for turbine
n=y=14 1.0 1.0 upper limit for turbine and
compressor
y=1
y<n<co -y— <7, <10 normal range for compressor
y—1 -
n— /P T lower limit for compressor
N % ~0 limiting condition for a non-
| compression pumping machine,
n'— 0 1
changeover from n to n
y—1 :
0<n'<o 0< B < T range for non-compression

pumping machine

Equations: p u
For compressor and turbines — <L> =1

®\®

For a non-compression pumping machine
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move in opposite directions and yet the specific
entropy for both machines move in the direction of
an increase. These aspects are discussed in some
detail in Appendix 2.

The definitions of the isentropic efficiency for
the two machines have a reciprocal relationship
only because we have elected to define them in the
way we do and then call them efficiencies. Once we
have called a parameter of assessment an effici-
ency, it follows that we expect the upper limit not to
exceed unity or 100% and, in some cases, €.g. a
Carnot cycle, the upper limit is considerably less
than unity. However, we do not normally expect an
efficiency of zero to be beyond reach.

If, as in equation (28), we define & as a work
ratio, which is the actual divided by ideal, and not
call it an efficiency, as in the turbine case, the
reciprocal rule is not needed. We can still envisage
a work ratio with a value greater than unity for a
compressor and less than one for a turbine, without
any difficulties.

The unified equations (22) and (23) relate the
temperature ratio and the pressure ratio, respec-
tively, for both the compressor and turbme

The corresponding unified equations (26) and
(27) also relate pressure and temperature ratios.
Equation (26) is based upon the polytropic expo-
nent »n and a diagram illustrating the role of itin 7-s
and P-v fields is shown in Fig. 5. The region
applicable to the non-compression pumping
machine is also included on this diagram. Equation
(28) is based upon the small stage work ratio, which
corresponds to the full work ratio discussed above.
The reciprocal rule introduced for transforming the
isentropic efficiency from the compressor to the
turbine is also applicable for the polytropic efficien-
cies, as shown in equations (29) and (30). The poly-
tropic index is shown as a function of the polytropic
work ratio in equation (31).

The material presented here is intended to
provide increased understanding of the relation-
ships between compressors and turbines. This,
together with the unified equations derived, is of
use not only in understanding but also in writing
computer software for turbo-machinery, where the
unified equations can lead to common algorithms
for both compressors and turbines.

CONCLUSIONS

. The relevance of the work to engineering

education has been explained in some detail in a
foreword to the paper.

. The similarities and the differences between

compressors and turbines has been identified,
discussed and sets of unified equations have
been developed.

. The study has provided further fundamental

understanding of the processes and relation-
ships for turbines and compressors.

. The unified equations developed will be used to

computer modellers in writing software for
simulating turbo-machinery. Common algo-
rithms based upon the unified equations can be
used for both compressors and turbines.

. It has been discovered that a turbo-compressor

has a non-zero minimum polytropic efficiency,
which is given by:
=
npc,min y
and a corresponding minimum isentropic effici-
ency given by:
(Pz/P )(7—1)/)'_ 1
ncmm (PZ/PI)_ 1

. If a machine is operated at a polytropic or

isentropic efficiency below the value given in
conclusion (5), no compression of the gas takes
place and the machine is therefore not operating
as a compressor. It may be operatmg as ablower
or a non-compression pumping machine.

. The range of values of the polytropic exponent

has been determined for operation of a turbo-
machine as a compressor and as a turbine.

. A logarithmic temperature—entropy diagram,

disccussed by the late Professor W. J. Kearton,
has been reviewed and shown to be a most use-
ful diagram.

. It is claimed that compressors and turbines are

conjugate machines. The conditions required
for the outlet state points for a compressor and a
turbine to be a true complex conjugate pair have
been disussed in detail in Appendix 2.
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APPENDIX 1: THE LOGARITHMIC TEMPERATURE-ENTROPY DIAGRAM

The author was first introduced to the logarithmic temperature-entropy diagram as an undergraduate by
the late Professor W. J. Kearton [10]. As it does not seem to be in current use, a brief review is given here.
We may apply a corollary of the first law of thermodynamics to an elementary step, to obtain:

0,1 0= 9,
Here the new notation recommended by Mayhew [6] has been used. The symbols are:

0q elementary heat transfer to system
0,, elementary work transfer to the system
0, elementary increase in internal energy of the system

Next, the heat and work transfer processes are considered to be reversible and, accordingly, we may write:

0,= Tos
0, =—Pdv

considering the system as a perfect gas, we may also write:
ou= C,0T
and, substituting, we obtain
Tos= C, 0T+ Pdv

We note that all the terms of this equation are properties of the system of unit mass and that we may
proceed to the limit and write them as differentials, thus:

Tds= C,dT+ Pdv (A1)
Using the relations Pv= RT, C,— C,= R and C,/C, = y, we may readily derive

d 1dT =1) d
T el

A2
Cp ‘y T y 1% ( )

and

— - A3
Cp T y P ( )

Equations (A2) and (A3) may be integrated from a reference state, which can be defined as properties

®O-DO-@,and®=1/@).

The results may be expressed in terms of non-dimensional parameters as:

m% =y<s Cp®>+(y— 1)In(¥)/v (Ad)

and we note that (v)/v = p/(p)and
7 s p=L P

In = (A5)
@ G d @
We can compare these two equations with the straight line Y = mX + ¢ where, for equation (A4)

Y =InTAT)

m=y
O)

C

In

X=

p
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¢ =(y—1)lnv/v=(y —1)lnp/(p)
This represents a family of lines of constant specific volume or constant density ratio. We have, for equation

(AS),
) Y=InT/@
=1

O,

C

P

c= (”y— D1 p/@

X=

This represents a family of lines of constant pressure ratio.

Equations (A4) and (AS) are illustrated graphically in Fig. 7. It is convenient to call this the logarithmic
temperature—-entropy diagram, i.e. the LTS diagram.

A polytropic process represented by the equation

£=<@>" (a6)

or

may readily be shown to be represented by the equation:

n L =D (=@
n — =

@© -y G
This represents a series of straight lines through the origin and is shown in the inset on Fig. 7. The

implication of this is that the locus of the state points represented by equation (26) for a fixed n, or by
equation (27) for a fixed value of the polytropic work ratio &, is a straight line in the LTS diagram.

(A7)

APPENDIX 2: A COMPRESSOR AND TURBINE AS A CONJUGATE PAIR

A complex conjugate pair, Z, and Z, illustrated in Fig. 8, may be represented by
Z,=Re'*=a(cos P +isinP) (A8)
Z,=Re '*=q(cos P —isinP) (A9)

In the following part of this appendix, itis shown that for a turbine and a compressor working on a perfect gas
with a fixed y, which is the same for both machines, it is possible to find a range of pressure ratios for the com-
pressor and the turbine and maximum to minimum temperature ratios, which are related to one another, so
that the compressor and turbine represent a true conjugate pair of machines. This means that the temperature
rise in the compressor is numerically equal to the temperature drop in the turbine, and also that the increase in
specific entropy in the compressor is equal to the specific entropy increase in the turbine.

The entropy change is considered first. Using the equations given in Appendix 1, the entropy change in the
the compressor may be expressed as:

SZ = sl TZ y - 1 P2
=lh=—|—]}h= A10
C, T, < y ) P, (A10)
and, likewise, the entropy change in the turbine may be expressed as:
S4— 83 T, y—1 P,
=In—+— In — All
Cs T, ( Y ) P, i)

The specific entropy change in the compressor and the specific entropy change in the turbine are equal,
hence:
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If we write

and

then
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=S

Z, =2a(Cos¢ +iSing)
Z,=2a(Cosg —iSing)

Fig. 8. Illustration of a complex conjugate pair.
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(A12)

(A13)

In the following part of this appendix, it is shown that it is possible, in principle, to find a compressor in
which the temperature rise is equal in magnitude to the temperature drop in a turbine, and also that the
increase in specific entropy in the same compressor is equal to the specific entropy increase in the same

turbine.

The temperature changes are now considered.
For the compressor we have:

TZ_Tl_x_l

Tl ”c

and for the turbine we have

(A14)
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-1, _y—-1 7 (A15)
T, y
If the temperature drop in the turbine is normalized to the same reference as that of the compressor, thus:
T,—T, T,(y—1
» =—=— Al6
T*1 T] y 17( ( )

We require the temperature rise in the compressor to equal the temperature drop in the turbine. Therefore:

,—-T, T,—T,

T, T,

Hence

"_1=5<y;1)m (A17)

Next, we may find expressions for the temperature ratios 7,/ T, and T,/ T, in terms of the component effi-
ciencies and isentropic temperature ratios, using equations (A14) and (A15). This is carried out as follows:

T, x=]
7f=&+<nc> (A18)
;—‘; = [1 - <y%1>;7] (A19)

Combining equations (A13), (A18), and (A19), we obtain:

(2= |1 x—1 A20
FEdE e

1 @1
}[H nc J””‘ (A21)

YT 1-=n)

Hence the requirement that the specific entropy change in the compressor is equal to the specific entropy
change in the turbine leads to a relationship between x, y, 7. and 7, shown by equation (A21). The
relationship between x and y is shown graphically for # .= 0.8 and 7, = 0.9 in Fig. 9 and the corresponding
relationship between pressure ratios P,/ P, and P,/ P, are shown in Fig. 10.

It is interesting to note that for

and

1< P,/P,<24.7

then
Ps/ Py > Pyl Py
but for
P,/P,>?24.7
then

P,/P,> P;/P,

The changeover point occurs at x =y = 2.5,
The requirement that the temperature rise in the compressor is numerically equal to the temperature drop
in the turbine gave rise to equation (A17); this may be expressed as:
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I, (x—1
T, nn(1—1/y) (A22)
or
=1 (A23)

e (1—1/y)

This relationship is shown graphically in Fig. 9. The changeover point, mentioned above, occurs when

0=—=34722 (A24)
cilt
The conjugate points are first given by
I3— 1T, -1
L sing (A25)
Tl c
and
S8 x—1 l _
e =In (1+ : )x acos® (A26)
for the compressor.
Secondly,
T4 e T3 T y — 1 .
T, =- Fj (_y_> n,=—a sin® (A27)
and

(r=1)y
N P\ T _
C —ln<T3>+ln<P4 =acos®

(A28)
yre= 1
Inj{1 = ——n)y|=acos®
¥
for the turbine. It therefore follows that:
(*x—1
tan® = —1\1 A29
. n.In <l + z >— ( )
n. Jx

At the changeover point, the values are: a = 1.88 and ® = 85.73°.

The conclusions from this appendix are that it is possible to find a compressor and turbine that truly
represent a complex conjugate pair. In the non-dimensional plane of temperature change and specific
entropy change, for reasonable values of isentropic efficiency of the compressor and turbine there are a
range of values of turbine pressure ratios (P3/P,) and temperature ratios § which correspond to a range of
compressor pressure ratios P,/P,.

Finally, the corresponding pressure ratios for the turbine, for a value of y = 1.4, are greater than those of
the compressor in the range of P,/P, = 1 to P,/ P, = 24.7 and less than those of the compressor in the range
of P,/P,>24.7.
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