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Spreadsheet Approach to Partial
Differential Equations. Part 2:
Parabolic and Hyperbolic Equations™
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Singapore 2263

As a companion paper to Part 1 [1], three other interactive spreadsheet programs developed by
using the Lotus 1-2-3 spreadsheet software to solve the parabolic one-dimensional diffusion
equation and the hyperbolic one-dimensional wave equation are presented. For the diffusion
equation, the explicit forward time central space method and the implicit Crank-Nicholson
method have been implemented in the first two programs. For the wave equation, the explicit
central difference method has been implemented in the third program. The advanced interactive
graphics capability is demonstrated in two of these programs employing the explicit methods. It is
found that this feature is very useful in performing the ‘What-if* analysis graphically. These
programs have been tested in the classroom and favourable comments have been obtained.

INTRODUCTION

THE solution of the elliptic Laplace equation by
using the spreadsheet approach has been presented
in Part 1 [1]. Apart from the elliptic equation, the
parabolic and hyperbolic equations are also the
core discussion topics in engineering and science
subjects related to partial differential equations.
Generally, the parabolic one-dimensional diffusion
equation and the hyperbolic one-dimensional wave
equation are used to illustrate the numerical
methods in the teaching of these subjects. The
reasons are that these equations are simple and that
they have a wide variety of physical applications;
for example, the heat conduction (diffusion), the
nuclear diffusion and the unsteady fluid flow
problems for the diffusion equation and the vibra-
tion, the electricity transmission and the supersonic
flow problems for the wave equation. The finite
difference methods that are usually included in
teaching are the explicit forward time central space
(FTCS) method and the Crank-Nicolson (CN)
method for the diffusion equation and the explicit
central difference (CD) method for the wave
equation. These methods are based on a marching
technique in the time direction. Here, three
programs developed to implement these finite
difference methods by using the spreadsheet
approach are described. The objective is again to
provide the students with better alternative tools
(other than the traditional computer programs),
which can be used to enhance their understanding
of the numerical methods concerned. The useful-
ness of the advanced interactive graphics feature
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provided by the Lotus 1-2-3 |2], which is impos-
sible to achieve by the traditional approach, is
explored and is found to be extremely helpful in
viewing the effects of varying the input parameters
in graphical form automatically for the explicit
methods.

PROBLEM FORMULATION

The finite difference methods used in the spread-
sheet programs can be found in many standard
texts, for example [3-5].

The one-dimensional diffusion equation
The parabolic one-dimensional diffusion equa-
tion is

du_ 0%
ot ox?

where c is a constant and ¢? is the diffusivity, u is
the dependent variable, r and x are the time and
spatial coordinates respectively.

To solve the diffusion equation by finite dif-
ference methods, the physical r-x domain is
discretized and the grid points are labelled as
shown in Fig. 1. To obtain the numerical solution,
two Dirichlet boundary conditions (u(0, 7) and
u(L, ), t2) and one initial condition (u(x, 0),
0 < x < L) are specified. The solution procedure is
based on the marching technique in the r-direction.

The FTCS method. This method is also known as
the explicit Euler method. By using the forward
difference and the central difference representa-
tions for the time and spatial derivatives, respect-
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Fig. 1. The discretized computational domain

ively, the finite difference equation for equation (1)
is

wt' = Ful, +uly,)+ (1 2R (2)

where F = ¢’At/(Ax)*, known as the grid Fourier
number, and the subscripts and the superscripts
denote the numbers of the x- and r-grid points
respectively. In this explicit method, F < 1/2 for
stability.

The CN method. In this method, the spatial
derivative is replaced by the mean of the central
differences at the two consecutive 7-grid points (n
and n + 1) and the time derivative is replaced by
the central difference in the middle between these
two grid points. The finite difference equation for
equation (1) is

—Fut! + 2+ 2Rt = Ful = Ful.,

+ (2 —2F)u + Fujy, 3)
where all parameters are the same as those defined
for equation (2).

Applying this at the interior grid points i= 1, . . .,
I— 1 for marching one ¢-step from n to n + 1 yields
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where / is the number of x-intervals.
This implicit method is unconditionally stable.

The one-dimensional wave equation
The hyperbolic one-dimensional wave equation
is
0’u — 0’u 5)
9%t ox? (

where ¢ (= constant) is the wave propagation
speed, the other parameters are the same as those
defined for equation (1).

In applying the finite difference method, the x-¢
domain is discretized and the grid points are
labelled in the same manner as for the diffusion
equation shown in Fig. 1. However, to obtain the
numerical solution, two Dirichlet boundary condi-
tions («j and uj, n2 0) and two initial conditions
(u! for 0 < i < I and 0w/t for 0 < i < ) are speci-
fied. Similar to that of the diffusion equation, the
solution procedure is based on marching in the ¢-
direction.

The CD method. Using the central differences
for both derivatives, the finite difference equation
for the wave equation is

W =—yrt 4 RZ(“TH +ul,)
+2(1 = RO (6a)

where R = cAt/Ax, known as the Courant
number, and the subscripts and superscripts
denote the numbers of the x- and r-grid points
respectively.

Equation (6a) is used for n> 0. For the first time
step, n =0 and ;' in equation (6a) is replaced by
that obtained from the initial condition du’/0¢
using the central difference and the equation
becomes

2 0
=B (Ul + )+ (1= R+ (80 5

(6b)

where 0u/0t = du(x,, 0)/0t is prescribed.
This method is explicit and R< 1 for stability.

THE SPREADSHEET PROGRAMS

The programs developed are menu driven with a
common menu almost identical to that for the
programs for solving Laplace equation as pre-
sented in Part 1 (see fig. 3 and table 1 in [1]). The
only differences are that the Graph T-variation
command replaces the Graph Y-variation com-
mand because ¢ is now one of the independent
variables and that the Data Use command will con-
tinue the calculations at more ¢-steps (rather than
the iteration) using the existing data since the finite
difference methods used here are based on the time
marching procedure. The same user-friendly and
interactive features as those described in Part 1 [1]
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are retained. The only difference is in the proce-
dure of using these programs due to the time
marching procedure. In this case, after the march-
ing of a t-step is completed, the user will be
requested to indicate whether the marching is to be
continued for the next r-step. If the response is
negative, the program will return to the main menu.

In the programs, the step sizes Ax and Ar are
computed automatically based on the input data L,
I, Fand R.

The interactive graphics feature. The Lotus 1-2-3
Release 3.1 offers a useful interactive graphics
capability which is ideal in studying the effects on
the solution graphically when an input parameter is
changed—the so-called ‘What-if* analysis. This is
done by using the two simple 1-2-3 commands
/Worksheet Window Graph and /Worksheet
Window Clear. First, the program command Quit
must be used to return to 1-2-3’'s READY mode
after a solution has been obtained and a graph has
been created by the program command Graph
X-variation or Graph T-variation. To set the
interactive graphics mode, the arrow keys are used
to move the 1-2-3 cursor to a column which can be
any one apart from the leftmost column shown on
the screen. Upon invoking the 1-2-3’s /Worksheet
Window Graph command, the monitor screen will
be split vertically at that column and the current
graph will be displayed on the right side of the
screen. Some of the input data can then be altered
manually (by moving the 1-2-3 cursor to the
respective location(s) followed by keying in the
new value(s) and hitting the Enter key) and the
numerical results as well as the current graph will
be updated automatically. The interactive graphics
mode can be cleared by using the 1-2-3’s /Work-
sheet Window Clear command.

The interactive graphics mode as explained can
be used only when the spreadsheet cells storing the
solution contain formulae which depend algebrai-

A:H28: 18

cally on the contents of the other cells storing the
input data so that the contents of the former cells as
well as the graph will be updated accordingly when
the contents of the latter cells are changed. For the
programs employing the FTCS method for the
diffusion equation and the CD method for the wave
equations, any input data except the number of x-
intervals / can be altered manually after a solution
has been obtained. The value of 7 cannot be altered
in this manner because new x-grid points are
required for a different value of 7 and the program
can only generate new x-grid points within the
command Data Use. For the CN method imple-
mented for the diffusion equation, the interactive
graphics mode cannot be used since each r-step
marching is done by solving equation (4) using
matrix operations in a way that the contents of the
cells storing the solution are numerical values.

All programs assume constant Dirichlet boun-
dary conditions. The boundary conditions are
required to be entered only once at the starting step
corresponding to = 0 and they will be used for the
time marching in subsequent 7-steps. However, for
the FTCS method and the CD method, variable
Dirichlet boundary conditions can also be used as
will be discussed later. The initial condition is
entered at each interior grid point corresponding to
t= 0 accordingly.

The spreadsheet program FTCS. WK 3

This spreadsheet program employs the FTCS
method to solve the diffusion equation. To march
one z-step, the program assigns equation (2) at the
new grid points and the numerical results are
obtained. This is done by the 1-2-3's /Copy
command programmed in the macros.

Example. Consider the unsteady one-
dimensional heat conduction problem of a thin
metal rod perfectly insulated laterally of length
L=1m, ¢c=1.1m/s" and initial temperature

Any changes for the boundary or initial conditions? <Y/N> :

oS Wrom-

53]

SOLVING THE 1-D DIFFUSION EQUATION BY THE FTCS METHOD
onditions : constant steps in x and t, constant B.C.'s (may not equal)
[© C Y Lan, Nanyang Technological University]

quation to be solved :

du(x,t)/dt = c¢? x d?u(x,t)/dx? wvhere d denotes partial differentiation

Constant ¢, ¢ = 1.1
Solution domain in x, L = 1
Number of x intervals, I = 6
Grid Fourier number, F = 8.3
Step in x, dx = 0.166667
Step in t, dt = 0.0886887

x= x= x= x= x= x= x=

t 0 8.166667 8.333333 8.5 0.666667 8.833333 1

i 30 [} [} g 8 il
FTCS.WK3

Fig. 2. The input data in FTCS.WK3
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u(x, 0)=0°C. At r=0s, the temperature at one
end u(0, ) is suddenly brought to 30°C and the
temperature at the other end u(1, ) is brought to
10°C.

Using the program command Data Input, the
data are entered as shown in Fig. 2 in which /=6
and F=0.3. In this figure, the x-grid points have
been overlaid on the working sheet A automati-
cally before the boundary and initial conditions are
entered along the first row corresponding to ¢ = 0.
The results for 15 r-steps are obtained as shown in
Fig. 3(a) and the variations of « with x are graphed
as shown in Fig. 3(b).

Figure 4 shows the screen in interactive graphics
mode invoked by the 1-2-3s command /Work-
sheet Window Graph with the cursor moved to

A:A35: +A34+3DT

Proceed another t-step ? <Y/N> :

C.Y. Lam

column D. It can be seen that the screen is divided
vertically with the current graph (variations with x
in this case) displayed on the right. To study the
effects of varying the grid Fourier number F, the
content of the cell with address A:E12 which
contains F is changed manually and the numerical
results as well as the graph are updated auto-
matically as shown in Fig. 5(a—d) for F= 0.5, 0.51,
0.55 and 0.6 respectively. These figures clearly
verify that the FTCS method is unstable for F> (.5.

The "What-if” analysis is also done by varying the
other parameters. Figure 6 shows the results by
changing the boundary condition u(0, ¢) to 10°C
and Fig. 7 shows the results by changing the initial
condition u(x, 0) to —20 sin (7zx). In Fig. 7, the
new initial condition is entered as 1-2-3 formulaes

READY

X= x= X= xX= s x= x=
8 8.166667 8.333333 8.5 B.666667 8.833333 1
38 8 8 8 8 18
38 9 8 8 3 18
30 12.6 2.7 8 8.9 4.2 10
38 14.85 4.86 1.68 1.62 4.95 18
38 16.398 6.723 2.376 2.457 5.466 18
38 17.5761 8.3214 3.7044 3.3354 5.9235 18
308 18.52686 9.71271 4.9788 4.22253 6.37802 18
30 19.32456 10.93678 6.172092 5.893658 6.814767 10
38 20.081886 12.82371 7.277969 5.933521 7.2540804 18
30 208.61146 12.99613 8.298356 6.733 7.681658 10
30 21.14342 13.8714 9.238882 7.487204 B8.892563 18
30 21.61879 14.66301 10.108281 8.194875 8.483187 18
30 22.84642 15.38168 10.89825 8.85343 8.851497 10
30 22.43307 16.83607 11.62983 9.466296 9.196628 18
38 22.78485 16.6333 12.38264 10.83446 9.51854 18
30 23.10361 17.17933 12.92139 108.560814 9.817753 10
Fig. 3. The solution of the one-dimensional heat conduction problem for 7 = 6 and F = 0.3 using FTCS.WK3

(a) The solution for 15 r-steps

FTCS Method for 1—=D Diffusion Equation

u (degree C)

04

0 02

o 1=0clt _ 3cit o Oclt

0.6

-
ad
A - Lo-

0.8

x (m)

S

Qclt 12clt

(b) Variations of u with x as displayed on the screen
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Fig. 4. The interactive graphics screen for / = 6 and F = 0.3 using FTCS.WK3
A:E12: 0.5 READY]
A E
onstant ¢, ¢ = 1. FTCS Method for 1—D Diffusion Equation
main in x, L =
intervals, I =
12 ier number, F = 8.5
Step in x, dx = 8.166667
Step in t, dt = 0.811478
x= x= x=
B.166667 8.333333 8.5
g a s
15 8 8
15 7.5 8 -
18.75 7.5 5 ) 0
18.75 11.875 5 P ity
20.9375 11.875 8.75 RN

20.9375 14.84375 8.75 “=0dt . 3t o bt
02.42188 14.84375 11.5625

22.42188 16.99219 11.5625 o-9cdt  —12ct - 135dt
NK3

Fig. 5. The effects of varying F using FTCS.WK3 (/= 6)

(a) F=0.5
A:E12: 8.51
a E
M'?t".“' €, € 1. FTCS Method for 1—D Diffusion Equation
main in x, L = 35
intervals, I = o
12 ier number, F = 8.5 30

Step in x, dx = 8.16666 :
Step in t, dt = 0.811708 i ‘

4

15.3 ] \ b SR80
14.994  7.803 Lo, it
18.97965 7.49088 5.30604 = v :
18.74076 12.23588 4.987678 D& 04 80000
21.16549 11.85678 9.140715 x (m)
08.92365 15.21903 8.72626 t=0clt « 3ct . 6clt
02.64323 14.81787 11.98179
22.48384 17.36242 11.52834 “9dt 12dt o V5t

(b) F=0.51.



376 A:E12: 8.55 READY]

3
o"?t.{'t €, €= 1.1 FTCS Method for 1—D Diffusion Equation
main in x, L = 1 35
intervals, I = 6 2
ier number, F = 8.55 30
Step in x, dx = B8.16666 $ [\
Step in t, dt = 0.012626 FEN=HTI
) 20

x= xX= x=
.166667 8.333333 8.5

] 0 g

16.5 8 8 - ,

14.85 9.875 a -
29.08625  7.26  6.655 06 08
18.49238 13.93769 4.6585 (m)
22.31649 11.33921 11.09721 o
20.50492 17.24362 8.0108956 o 1=0dt . 3cit « 6clt

23.9335 13.95937 14.48762 -
21.7843 19.69168 10.3583 TR T o | I
TCS.WK3
(¢) F=0.55
A:E12: 0.6 READY]

A E
onstant c, ¢ 1. FTCS Method for 1—D Diffusion Equation
main in x, L = 70
intervals, I = g
12 ier number, F = 8. 60 1
Step in x, dx = 8.16666 S50
Step in t, dt = 0.013774 40
30
20
x= x= x=
B.166667 8.333333 8.5
8 a 8
18 ] 8
14.4 10.8 8

17.568 16.848  3.456 04 06 08
24.5952 9.2448 14.8608 x (m)

18.62784 21.82464 4.8384 1=0dt - 3dt . 6dt
27.36922 9.714816 28.72218
18.35505 26.91187 3.9426085 o 9t 12dt 15kt

(d) F=0.6

dt = c* x d*u(x,t FTCS Method for 1—D Diffusion Equation
>
Constant 12
Solution domain in
Number of x interval
Grid Fourier nunbel®)
Step in
Step in

,

t 8 0.166667

20 o SN ‘ el

.006887 10

-013774 10 4.2 i T by
-820661 10 4.95 x (m)
.827548 10 5.466 o t=0dt < 3ct .o 6dt
-034435 18 5.8749

941322 18 6.22422 - 9cit w12dt L 1S5ch

Fig. 6. The effects of changing the boundary conditions to «(0, t)= 10 using FTCS.WK3 (/ = 6, F = 0.3)
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A:C208: -20"@SIN(SPI*C18)

C
dt = ¢? x d?u(x,t)

Constant
Solution domain in
Number of x interval

Step in
Step in

x= x=
t 0 0.166667

j.006887 30 -8.19615

FTCS Method for 1—D Diffusion Equation
40 -

30
Grid Fourier numbe 20

0.2 04 06 038

§.013774 30 4.143078
D.020661 30 7.872886 x (m)
§.027548 30 9.246047 o t1=0ct o 3cit o 6clt
f.0834435 38 18.99986
0.0841322 38 12.47851 o 9clt - l2dt 15
FTCS.WK3
Fig. I'he effects of changing the initial condition to u(x, 0) = —20sin (7x) using FTCS.WK3 (/ =6, F=0.3)
A:B29: 68 READY]
B C
FTCS Method for 1—D Diffusion Equation
x= )

x=
8 8.166667

38 ]

30 9

38 12.6

30 14.85

30 16.398

38 17.5761

38 18.52686

30 19.32456

38 20.01886

35 0.061983 N0 .61145
.868871 60 30.14342
.875758 60 34.21879
.082645 60 36.89642
.089532 60 38.83107
.896419 68 48.33585

0 . 103306 60 41.55757

£S.WK3

g e

- Sy <
- - e
- * S -

0.2 0.4 0.6 0.8
x (m)
o 1=0ct o 3clt « Gclt
o 9clt N b et

Fig. 8. The effects of changing to a variable boundary condition u(0, 1) = 30 for ¢ < 9A¢, u(0, 1) = 60 for 1 > 9A¢

using FTCSWK3 (/ =6, F=0.3)

at the corresponding x-grid points using the built-
in mathematical functions of 1-2-3. The alternative
way is to directly enter the pre-calculated numeri-
cal values of the initial conditions at the x-grid
points. By using this technique, problems with
variable boundary conditions can be easily treated.
Figure 8 displays the results when the original
boundary condition u(0, r) is suddenly increased
from 30 to 60°C at 1= 9A..

The spreadsheet program CN. WK 3

This spreadsheet program employs the CN
method to solve the diffusion equation. To march
one r-step, equation (4) is solved by the matrix

inversion technique. This is done by the 1-2-3's
/Data Matrix Invert and /Data Matrix Mullnply
commands programmed in the macros.

Example. Consider the same problem solved
previously.

The input data are the same as those shown in
Fig. 2 for FTCS.WK3. In this case, the computed
results for 15 z-steps and the variations of u« with x
are obtained as shown in Fig. 9. For CN.WK3, the
interactive graphics mode cannot be used as
explained previously. However, the results for
F=10.6 are obtained as shown in Fig. 10 which
does not exhibit any numerical instability.
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The spreadsheet program CD. WK 3

This spreadsheet program employs the explicit
CD method to solve the wave equation. To march
one f-step, the program assigns equation (6a) or
(6b) accordingly to the interior grid points at the
end of the r-step and the numerical results are
obtained. This is done by the 1-2-3's /Copy
command programmed in the macros.

Example. Consider the problem of finding the
deflection u(x, r) of an elastic string of length
L =1 mand ¢ = 1 m/s. The string is held fixed at
both ends and released from rest with the initial
deflection u(x, 0) =sin(zx)/15.

The input data ¢, L, I, R, the boundary condi-
tions and the initial conditions are entered as
shown in Fig. 11. The computed results for 15 ¢-
steps are obtained as shown in Fig. 12(a), the varia-
tion of u with x and the variation of u with ¢ are
shown in Fig. 12(b—c). From Fig. 12(c), it is easily
seen that the period of the vibration is 2 s.

The interactive graphics mode is used to perform
the ‘What-if* analysis by following the same proce-
dure as that described for FTCS.WK3. The effects
of varying the Courant number R are shown in Figs
13 and 14. These figures clearly demonstrate that
the CD method is unstable for R > 1. Figure 15
displays the results by changing the initial condition

A:A35: +A34+DT
Proceed another t-step ? <Y/N> :
A A B C 0 E F G H
Results
X= x= X= x= x= X= x=
t 8 8.166667 8.333333 8.5 8.666667 B.833333 1
8 38 8 8 8 8 8 18
.0086887 30 7.818219 08.824565 8.1280808 0.284834 2.348558 10
8.013774 30 11.089949 2.619332 0.68719 8.936215 3.7088883 18
0.820661 38 13.72261 4.512353 1.454215 1.701745 4.689163 18
B.027548 30 15.55581 6.265784 2.513184 2.514704 5.2760863 10
§.034435 30 16.92614 7.833681 3.656446 3.346841 5.824981 10
8.0841322 38 18.808547 9.225891 4.885544 4.179018 6.312589 18
§.048209 30 18.8899 18.46183 5.917891 4.99657 6.7655 10
B.8550896 38 19.63623 11.56599 6.97268 5.788673 7.195185 18
B.0861983 30 208.27982 12.5567 7.961357 6.54789 7.605429 10
.068871 30 20.84373 13.44978 8.881953 7.269554 7.997244 18
B.075758 30 21.3437 14.25818 9.735896 7.951132 8.370134 10
0.082645 30 21.790891 14.9925 10.52627 8.59166 8.723471 10
B.089532 30 22.19364 15.66146 11.25686 9.191289 9.0856825 10
: 38 22.55817 16.27237 11.9317 9.758942 9.3780886 18
30 22.88945 16.83136 12.55477 10.272085 9.663468 10
Fig. 9. The solution of the one-dimensional heat conduction problem for / = 6 and F = (.3 using CN.WK3

(a) The solution for 15 t-steps

Crank—Nicolson Method for 1—D Diffusion Equation

-

>
-

0 0.4 0.6
x (m)
o 1=0ct __ 3t o Oclt o it

(b) Variations of u with x as displayed on the screen




A:A35: +A34+DT
Graph Print Save Quit
Input Use Quit

B C 0 E F G

X= x= x= xX= X= x= X=

8 8.166667 B8.333333 8.5 B.666667 B.833333 1
30 8 8 8 8 8 10
30 11.6814 2.3080797 0.58952 0.843387 3.98812 10
30 15.77958 6.281755 2.384465 2.585263 5.354887 18
30 18.18979 9.264369 4.768458 4.158436 6.338165 18
30 19.68991 11.60212 6.965383 5.776082 7.197264 18
30 28.87523 13.47924 8.889326 7.265231 7.994562 10
308 21.81174 15.81638 18.53876 8.593457 8.722144 18
30 22.57328 16.29212 11.94569 9.7567 9.371191 10
30 23.28317 17.36843 13.14399 18.76443 9.94851 18
30 23.72968 18.26829 14.16415 11.63168 10.4344 18
30 24.17269 19.82115 15.83256 12.37497 108.85985 18
30 24.547082 19.66684 15.77175 13.810841 11.22472 18
30 24.86417 20.21349 16.40094 13.55276 11.53677 18
30 25.13332 28.67867 16.93651 14.81521 11.80319 10
38 25.362 21.87421 17.39238 14.48926 12.83838 18
30 25.55641 21.41065 17.78041 14.74491 12.224 10

Fig. 10. The solution of the one-dimensional heat conduction problem for / = 6 and F = 0.6 using CN.WK
(a) The solution for 15 7-steps

Crank—Nicolson Method for 1—D Diffusion Equation
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(b) Variations of u with x as displayed on the screen

Crank—Nicolson Method for 1—D Difusion Equation
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(¢) Variations of « with 1 as displayed on the screen
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A:H28: @
Any changes for u(x,08) ? <Y/N> :

SOLVING THE 1-D WAVE EQUATION BY THE EXPLICIT CENTRAL DIFFERENCE METHOD
onditions : constant steps in x and t, constant B.C.'s (may not equal)
[© C Y Lan, Nanyang Technological University]

quation to be solved :

d?u(x,t)/dt? = c* x d?u(x,t)/dx? where d denotes partial differentiation

Constant ¢, ¢ = 1
Solution domain in x, L = 3
Number of x intervals, I = 6
Courant number, R = 1
Step in x, dx = 0.166667
Step in t, dt = 0.166667
Boundary and initial conditions u(x,8) at t=0 are :
x= X= x= x= n= x= n=
t @ 0.166667 8.333333 8.5 0.666667 8.833333 1
20 B @ 0.033333 0.0857735 0.066667 8.057735 0.033333 R
CD.WK3
Fig. 11. The input datain CD.WK3
(a) The input data and the boundary and initial conditions u(x, 0)
A:H26: @
Any changes for du(x,8)/dt ? <Y/N> :
H
x= ‘ x= x= x= x= x= x=
t 0 0.166667 0.333333 0.5 0.666667 0.833333 1
26 8 i Bl 8 8 a DR

(b) The initial condition du(x, 0)/0¢

u(x, 0) to u(x, 0)=0.015x for 0 < x <4Ax and
u(x, 0)=0.03(1 — x) for 4Ax <x < 1. The other
initial and boundary conditions can also be altered
to study the effects of the changing.

CONCLUSIONS

Three spreadsheet programs have been devel-
oped to solve the one-dimensional diffusion equa-
tion by the explicit FTCS method and the implicit
CN method, and the one-dimensional wave equa-
tion by the explicit CD method. These programs
are menu-driven, user-friendly and interactive.
Little spreadsheet knowledge is required to use
these programs. The programs use constant Dirich-
let boundary conditions. However, variable boun-
dary conditions can also be used if they are entered
manually. The powerful interactive graphics fea-
ture allows the user to carry out a series of numeri-
cal experiments easily by varying different input

parameters and to view the effects automatically in
graphical form. These features, which are difficult
or impossible to obtain by the traditional program-
ming approach, certainly help the students to
improve their understanding of the numerical
methods. The limitations of these spreadsheet
programs are similar to those of the programs
developed for Laplace equation as discussed in
Part 1 [1]. They include a maximum of six curves
that can be graphed together and the number of x-
grid points cannot be too large to avoid memory
full error. However, the limitations do not present
any problems for educational purposes as the grid
systems need not be very fine. Classroom use of
these programs has resulted favourable comments
by the students, especially in the ease of use and the
interactive graphics feature. The spreadsheet
approach can be extended to other finite difference
methods, other problems subject to Neumann
boundary conditions and other parabolic and
hyperbolic equations. Work in this direction is
being pursued.



A:A47: +A46+30T

Proceed another t-step ? <Y/N> :
A A B C 0 E F G
SULTS
x= x= x= x= x= x= =
t 8 8.166667 8.333333 8.5 8.666667 8.833333 1
8 8 8.833333 8.857735 8.866667 8.857735 8.833333 8
§.166667 8 0.828868 0.085 8.857735 0.085 0.028868 8
8.333333 0 0.016667 8.828868 8.833333 0.028868 0.016667 8
8.5 8 -3.4E-21 -6.8E-21 -3.4E-21 1.BE-20 8 8
J.666667 0 -0.01667 -0.02887 -0.03333 -0.02887 -0.01667 8
§.833333 8 -0.02887 -0.85 -0.85774 -0.05 -0.02887 8
1 8 -8.83333 -8.85774 -0.086667 -0.85774 -8.83333 8
.166667 0 -0.02887 -8.05 -0.05774 -0.05 -0.02887 8
.333333 8 -8.81667 -8.82887 -8.83333 -0.82887 -0.81667 8
1.5 8 -3.4E-21 3.4E-21 -3.4E-21 2.BE-20 3.4E-21 8
.666667 0 0.016667 0.828868 0.833333 0.028868 0.0816667 8
.833333 8 0.828868 8.85 8.857735 8.85 0.828868 8
2 8 0.0833333 0.857735 0.066667 0.857735 0.033333 ]
8 0.0828868 8.85 0.857735 8.85 0.028868 ]
-333333 8 B8.016667 0.828868 0.833333 0.028868 0.0816667 ]
8 -1.8E-20 -2.7E-20 3.4E-21 -1.8E-20 6.8E-21 8
Fig. 12. The solution of the one-dimensional heat conduction problem for /=6 and R = 1 using CD.WK3
(a) The solution for 15 -steps

Explicit Central Difference Method for 1—D Wave Equation
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(¢) Variations of « with ¢ as displayed on the screen
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A:E12: 1.3 READY]

t steps in x and t, const

g Technological University]
ed :

¢ d?u(x,t)/dx?

onstant c,
omain in x,
intervals,
ant number,
Step in x, dx
Step in t, dt

AHren

ﬂ 166667
8.216667

al congltlons u’(: .8) at t 8 . 15 2 25 3 3.5
0.166667 08.333333 ﬂ 5 t (s)

.833333 0.057735 0.066667 o-Xx=cx o 2cx o 3clx

Fig. 13. The effects of varying R using CD.WK3
(a)R=1.3

A:E12: 1.8 READY]

E EQUATION BY THE EXPLICIT,
ant steps in x and t, const
g Technological University]

- ;':.l..'.'.ll!..'.l.-.l..
d?u(x,t)/dx?

onstant ¢, ¢

omain in x, L

intervals, I =
R =

Step in x, dx =
Step in t, dt =

3.166667 0.333333 t (s)
.833333 0.057735 0.0866667 -Xx=clx o 2cx o 3cix
3
(b)R=1.8
A:E12: 2.6 READY]

E EQUATION BY THE EXPLICIT
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g Technological University]
SRRt i EE E 3 R E E T

ed :
d?u(x,t)/dx?

onstant c,
omain in x,
intervals,

8.166667
8.433333

Step in x, dx
Step in t, dt

AHrrn
Hawnuwunn

1 condlhons u(x,8) at t B
B
.166667 08.333333 8 t(s)

.833333 0.057735 0.0866667 - x=cx o 2cx 4 3elx

(c)R=26



Parabolic and Hyperbolic Equations

A:E12: 2.9 READY]

E EQUATION BY THE EXPLICIT
t steps in x and t, const
g Technological University]
TSI EES

ed :
¢ d?u(x,t)/dx? where d deno

onstant ¢, ¢
omain in x, L
intervals, I

R

2.9

Step in x, dx = 0.16667 ‘. e 5
Step in t, dt = 0.483333 | .
1 conditions u(x,8) at t=0 =0.1 - 3 > : ¥
x= x= = 0902 0.4 0608 12
B.166667 8.333333 8.5 x (m)
3.033333 0.057735 0.066667 e +t=0clt . 2clit M 7. ] o 9clt - 1 30
D.WK3
Fig. 14. The results for R = 2.9 using CD.WK3
A:G20: 8.83*(1-G18) READY]

EXPLICIT CENTRAL DIFFERENC
t, constant B.C.'s (may no
iversity]

e d denotes partial diffe

A

x= X= x= 0 02 04 06 08 1.2
8.5 0.666667 8.833333 x (m)

9.0075 8.01 o-1=0clt . 2ct - Scit o 9clt - 1 300

CD1.WKk3

B) at t=0 are :

Fig. 15. The effects of changing the initial condition u(x, 0) to u(x, 0) = 0.015x for 0 € x<4Ax, u(x, ()=
0.03(1 — x)for 4Ax < x < | using CD.WK3
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