Int. J. Engng Ed. Vol. 8, No. 4, pp. 288-302, 1992
Printed in Great Britain

0742-0269/91 $3.004+0.00
© 1992 TEMPUS Publications

Microprocessor-based Control Systems:
System Development in a PC Environment*

J.E.COOLING
A.H. WHITFIELD
G.M. AL-SADDIKI

Department of Electronic and Electrical Engineering, University of Technology, Loughborough LE11 3TU,

U.K.

This paper describes a general-purpose PC-based workstation for use with embedded control
systems projects. Its purpose is to provide a self-contained environment for research, design and
development activities for both undergraduates and posigraduates. Its requirements, structure
and use, both in terms of hardware and software, are described in the context of an adaptive (self-
tuning) control system research project.

INTRODUCTION

COMPUTERIZED tools for the analysis, synthe-
sis and development of control systems have gene-
rally been based on the use of mainframe and
minicomputers. More recently, however, much
attention has been focused on low-cost alternatives
using personal computers (PCs). In many cases the
emphasis has been on training, analysis and theor-
etical synthesis [1]. Little has been reported con-
cerning the use of PCs in the development of
practical embedded systems, typified by servo
applications. Yet the PC can provide many facili-
ties needed for all phases of the research and design
activity. In this paper we show how a PC-based
development environment satisfies the require-
ments of the control student, from hardware design
to system testing. The hardware and software
configuration described here is specifically
intended for use in practical microprocessor-based
projects. These include:

® second-year undergraduate laboratory setwork;
® final-year projects (individual activities);
® postgraduate research work.

Our objective was to provide a comprehensive,
stand-alone facility at a reasonable cost. Experi-
ences gained in undergraduate (final year) and post-
graduate project work were instrumental in
developing this facility. Its form, function and
features are here described in the context of work on
practical embedded control systems—specifically a
research projeet investigating the use and perform-
ance of adaptive control techniques in servo-type
systems.

The work described here will be of particular

* Paper accepted 10 September 1992.

interest to those involved in the development of
undergraduate (and similar) courses in:

® practical digital control systems;
® real-time embedded systems;

® software engineering;

® microprocessor engineering.

CONTROL SYSTEM DEVELOPMENT

General

Control systems vary considerably. At one
extreme are fast high-performance systems such as
weapon stabilizers. In such applications many
aspects of the design are new and unique, and the
related control design effort is considerable. At the
other end of the spectrum are process systems
where the control engineer is asked merely to
supply a three-term controller. Here the control
design is minimal (though the system design may be
considerable).

The system described here, together with rele-
vant research and design techniques, falls into the
first category. Figure 1 shows the main objectives
of the programme, these being the development of
the target system controller and the development
of appropriate control techniques. The target
system (‘plant’) is real as opposed to simulated, and
is described in detail below.

In the past we had been faced with a number of
difficulties when embarking on projects such as
these. The development facilities were fragmented,
with little interconnectivity. For instance, simula-
tions were usually carried out on mainframe
computers, using terminal access methods. Stu-
dents thus had to acquire a working knowledge of
the mainframe operating system (in our case Mul-
tics). Simulations were done using standard control

Microprocessor-based Control Systems 289

CONTROL SYSTEM
DEVELOPMENT

DEVELOPMENT OF

A MICROPROCESSOR
BASED DIGITAL
(TARGET) CONTROLLER

TECHNIQUES
(SIMULATION)

DEVELOPMENT OF
DIGITAL CONTROL

EVALUATION AND
DEVELOPMENT OF
DIGITAL CONTROL
TECHNIQUES APPLIED
TO SPECIFIC PLANTS

/ N\

FIXED SELF-TUNING
CONTROLLERS CONTROLLERS
OFF-LINE ON-LINE
IDENTIFICATION IDENTIFICATION
STRATEGIES STRATEGIES

Fig. 1. System development programme.

packages or, more commonly, specially written
simulation programs. For convenience these were
usually coded in FORTRAN—thus enabling the
use of the NAG numerical libraries. However, mic-
roprocessor-based software was generally pro-
duced on microcomputer development systems
(MDSs), which have a quite different operating sys-
tem (and text editor, etc.). Programming had, in the
main, been done in assembly language.

Many of the projects called for application-
specific hardware. This in turn led to the need to
produce new designs. Unfortunately the testing
and debugging of such designs frequently proved to
be extensive and time-consuming. Final-year stu-
dent projects were particularly prone to problems
here—the limited supply of in-circuit emulators
(ICEs) and logic analyzers caused regular bottle-
necks.

Finally, the development and evaluation of digi-
tal control techniques tended to be a tedious and
manually intensive process. Direct acquisition of
plant and controller data was normally performed
using chart recorders or X-Y plotters. In general it
was extremely difficult to analyse these results
automatically—a necessity for system identifica-
tion to work. And, on a mundane note, demand for
such recorders and plotters frequently outstripped
supply.

It was clear to us that this situation was adversely
affecting our students’ project work: significant
improvements were needed. Central to these was
the use of an integrated development facility.

The integrated workstation

By ‘integrated workstation’ we mean a facility
that supports all phases of the design, development
and test activities. Until recently the high cost of
such units has limited their availability to the
researcher. Now, however, PC-based systems are

changing this situation, providing a variety of tools
relatively cheaply.

In developing the workstation the basic require-
ments of the development facility must first be
established. The main criteria are:

1. The system must use a standard operating
system to take advantage of standard software;
this also saves users the effort of having to
familiarize themselves with yet another sys-
tem.

2. Software must be available for both high-level
and assembly language support. Further, this
must be able to generate object code for
Eprom programming.

3. Software debugging tools should be part of the

complete package.

A hard disk should be used whenever possible.

A good text editor should be included as

standard.

6. The PC must have sufficient memory space to
accommodate modern programming langua-

it o

ges and computer-aided engineering/
computer-aided design (CAE/CAD)
packages.

A printer is an essential item.

Graphics facilities are highly desirable.

An Eprom programmer is essential; an Eprom

emulator is desirable.

10. A logic analyzer is essential; one that is PC
compatible is highly desirable.

11. AnICE is desirable but not essential.

12. Multiple standard serial communications
ports should be available.

13. The station should be reasonably compact and

mobile.

oo

The essential points of the workstation developed
for this programme are shown in Fig. 2; the actual
equipment is shown in Fig. 3. The PC is capable of

290 J. E. Cooling, A. H. Whitfield and G. M. Al-Saddiki

RS-232C
SERIAL LINKS

= ST\

DOT MATRIX PRINTER

EPROM PROGRAMMER

LOGIC ANALYSER

SERIAL LINE TO DIGITAL
(TARGET) CONTROLLER

PC-based integrated workstation.

Fig. 3. PC-based workstation.

running under either concurrent DOS or MS-DOS.
Two serial communications lines are available as
standard, plus a local area network (LAN) inter-
face. A parallel printer interface is also included.
External to the PC is a dot-matrix printer, an
Eprom programmer and a logic analyser. The
programmer is capable of programming all stan-
dard Eproms and, with adaptors, single-chip mic-
ros and programmable array logic (PAL) devices.
The logic analyser is equipped with a serial com-

munications interface which allows it to be oper-
ated from the PC; this also enables the computer to
acquire, store and analyse data gathered by the
analyser.

Source code writing is performed using a word-
processing package. The source code is subse-
quently compiled or assembled using Pascal/ M T+
[2] or the 8086 assembler ASM86. Interactive test
and debugging of programs may be carried out
within the PC environment using the dynamic

Microprocessor-based Control Systems 291

debugging tool Codeview [3]. Interactive develop-
ment and test of the plant control algorithms is
carried out from the PC using serial communica-
tions with the target system controller.

The relevance and use of the various hardware
and software facilities are detailed below.

THE CONTROLLED PLANT

Introduction to self-tuning systems

Adaptive self-tuning systems have been the
subject of a great deal of research effort in recent
years (see [4] for a major review). Practical applica-
tions have lagged behind such work, being confined
in the main to the process industries [S-7). Few
servo applications have been reported, though the
advantages of self-tuners in these areas have been
shown by Kanniah ez al. [8] and Hope et al.[9]. The
wide bandwidths and demanding performance
specifications raise problems not found in the
process world. In fact such problems have led
researchers to develop alternative adaptive control
techniques [10]. However, the object here is to
develop and evaluate ‘conventional’ self-tuning
techniques applied to electromechanical systems in
the presence of stiction, friction and velocity satu-
ration.

Conventional self-tuning methods consist of two
parts: system identification [11] and system control
[12]. Identification may be carried out continuously
by the embedded controller as the plant runs;
alternatively it may be computed from recorded
plant data. The first case is known as ‘on-line’
identification, the second as ‘off-line’. Here we
describe the use of a PC, interfaced to the plant
controller, to carry out off-line identification of the
plant dynamics. It is also used as a software
development tool for various identification tech-
niques. This allows the student to evaluate the
performance of different methods operating on the
same set of data. The PC, though, is not limited to
the role of data collector and analyser; it also
enables the operator actively to control the test
sequence via the plant controller.

The plant

A block diagram of the ‘plant’ used for control
system development is shown in Fig. 4; Fig. 5 is a
photo of the actual test rig. This is an electro-
mechanical actuator (suitable for use with process
control valves) coupled to a mechanical load
simulator. Closed-loop control on actuator pos-
ition is provided by the digital controller described
in this paper. The actuator motor and associated
control/power electronics are considered to be
part of the plant itself, as is the load shaft position
Sensor.

The drive unit of the actuatoris a 1/6 h.p. induc-
tion motor, originally designed for 115 v, 60 Hz,
three-phase operation. It is powered from a static
inverter which, when used with its controller,
provides full linear speed control from zero to
maximum speed in both directions. Maximum
motor shaft speed is 2000 r.p.m., though the
maximum load shaft speed is 1.2 cm/sec.

A gearbox is used to translate motor shaft rotary
motion to linear motion of the load shaft. Both the
load resilience and viscous force can be varied by the
rig operator. Furthermore, the effect of valve load-
ing is simulated using a coulomb damper (a disc
brake) on the motor shaft; this, too, is adjustable.
Position sensing is carried out using a continuous-
track rectilinear potentiometer. Motor speed
control is carried out by a pulse-width-modulated
(PWM) controllerin conjunction with a three-phase
static inverter [13]. The inverter uses power field
effect transistors, connected in a full bridge con-
figuration, to switch power to the motor. Motor
speed is determined by the switching frequency of
the transistors, this being set by the PWM controller.
In turn this is determined by the analogue input
signal to the controller, the switching frequency
range being 0-1 kHz (approximately). Constant
flux conditions within the motor are maintained by
modulating the drive pulse width, though voltage
boosting is used at low frequencies to compensate
for shaft stiction effects. Thus the motor drive
frequency is directly proportional to the input
signal, setting the synchronous speed of the motor.
Note that as the motor is an induction type its

) P— -
RECTIFIER
S’g’m FRICTION LOAD
g‘g" (ADJUSTABLE)
VISCOUS
rF] GEARBOX (ADSTABLE)
PWM 30 38
——— CONTROLLER el INVERTER .\\\' ARRRNNN \NNN
INPUT J
CONTROL
SIGNAL
(ANALOGUE

POSITION
SENSER

Fig. 4. Controlled plant.

USTABLE)

3]
\O
(3]

J. E. Cooling, A. H. Whitfield and G. M. Al-Saddiki

Fig. 5. The actuator rig.

actual speed depends on shaft loading, i.e. it exhibits
slip.

DIGITAL CONTROLLER—ELECTRONIC
HARDWARE

General information

The unit described here (Fig. 6) is designed to be
used as a general-purpose digital controller in
closed-loop systems. Although intended for use in
laboratory conditions, its design reflects the
requirements of real systems. It can be seen that the
complete system consists of three main building
blocks:

® microcomputer (CPU) section;
® analogue input/output (I/O) section;
® serial communications I/O section.

All digital electronics are housed on a single
printed circuit board, the analogue subsystem
being located on a small adaptor board. This
technique enables a standard computer section to
be tailored to meet specific I/O requirements. The
complete assembly is defined as the ‘target system’,
the micro being the target processor.

CPU section

This is based on the use of the Intel 8088 micro-
processor, augmented by an 8087 numeric data
coprocessor. It is designed to handle a maximum
memory address space of 64 kbyte, all devices
being memory (not I/0) mapped. The address
space is programmable through the use of PROM
decoding techniques. Currently the system is
equipped with 32 kbyte of Eprom for program and
fixed data storage, together with the 16 kbyte of

Fig. 6. Digital controller.

RS - 232 RS - 422 —I
| INTERFACE INTERFACE l
l USART (A) USART (B) I
Serial
L Comm. Sec]
+ e
1
byte wide mem %%sg ac%! %2:: l . ADC &
3 EPROM socket | socket contbrollar interface logic
» L) (2 ‘
g ‘ﬁ
= waTti:nh;og 8 - channel' Analogue Mux J
= Device Clock and I))
fg PIC Dse:l:;:r el 3rd ord. || 3rd'ord.
% noise and| | noise and
&> E I ov anti-alias| | anti-alias
= filter filter
<z ref
B I cal !
PIT feud ref
| l diff./ Amp || diff Amp
Microcomputer Section with with
transient || transient
protection||protection
M
DAC (2 DAC (0
’S;;logue (12 - bit) (12 - bit) | Analogue
: I/P
S Section
Buffer Amp Buffer Amp
l with o/p prot with o/p prot l
| = 1 iZp (0 i/p (2
] Y

Microprocessor-based Control Systems 293

RAM for variable data storage and stack opera-
tions. The design also requires the use of timing
and interrupt functions. These are implemented
using standard microprocessor-compatible com-
ponents, as these are programmable for flexibility.
As a safety feature a watchdog timer is included in
the CPU design. Also included is a wait-state
generator to enable the processor to be single-
stepped through its program sequence.

In normal circumstances restricting the address
space to 64 kbyte allows the processor to operate
in minimum mode [14]. Unfortunately, when using
an 8087 the system has to be in maximum mode; as
a result an 8288 bus controller must be added to
the design.

Analogue /O section

Two analogue input channels are provided. One
is for the measured value variable (shaft position),
the other being an optional extra for shaft velocity.
Each signal is input via a differential amplifier,
bandlimited by a third-order, low-pass anti-alias
filter and digitized by a 12-bit successive approxi-
mation analogue to digital converter (ADC). Con-
version time is insignificant when compared with
computing activities. Additional internal analogue
signals are digitized, including calibration refer-
ence values and DAC outputs. Signal selection is
carried out using an analogue multiplexer, the out-
put from this being applied to a sample-hold
module prior to digitization. Two output stages are
provided, each one consisting of a 12-bit digital to
analogue (DAC) converter followed by a buffer
amplifier. Simple (low-pass filtering is used to mini-
mize the effects of DAC glitch spikes and to act in
part as a reconstitution filter. Both short circuit and
transient overvoltage protection are included for
the output amplifiers.

Serial communications

Two full-duplex serial communication channels
are incorporated into the design—a short distance
one corresponding to the RS232C standard [15]
and a longer distance RS422 version [16]. The
RS232 version is designed mainly for interactive
working with the PC. When used in this mode the
maximum data rate is 9.6 kbaud, this being the limit
of the PC. The RS422 channel is included to
support controller operations within a distributed
control system.

The PC as an aid to hardware design

The development philosophy used here is to
bring the hardware to a fully functional state by
incremental testing. That is, to start off with the
minimum amount of circuitry on the board, verify
its correct functioning, add more circuitry, repeat
the process, and so on. The ICE is an ideal tool for
use with this process. Unfortunately, because it is
relatively expensive, its availability is limited; this
creates a bottleneck in the development process.
For hardware testing, the combination of a single-
step facility used in conjunction with a bus monitor
enables static testing to be carried out. For this

approach it is highly advantageous to bring the
RS232 link into operation as soon as possible.
Further testing can be carried out interactively
using a standard terminal device. Dynamic fault
analysis (should it occur) is done with the aid of the
logic analyser.

For this level of test it is essential to work in
assembly language. Here the PC acts as the micro-
processor development system, supporting source
code writing, program assembly and PROM pro-
gramming functions. Once the RS232 serial com-
munications channel is operational, the PC can be
used as an interactive terminal to assist in the
functional testing of the remainder of the elec-
tronics. Moreover its data storage facilities, and the
ability to print such information out, is an
extremely useful tool for post-mortem analysis.

FUNCTIONAL TESTING AND SYSTEM
IDENTIFICATION

Overview

The ultimate objective of this test is to produce a
mathematical model of the plant based on mea-
surements of the plant input (control) and output
(measured value) signals. Therefore it is necessary
for the experimenter to control the test procedures,
setting conditions such as signal type and duration,
sampling rates and number of measurement points.
The set-up used for these tests is shown in Fig. 7,
the use of the PC being self-evident from the
following text. Note that there are two distinct
aspects of the operation. In the first place the plant
has to be run to obtain data; subsequently, the
information so obtained is used as part of the
model identification process. This is carried out
within the PC.

Plant testing

The control program, which actually runs the
plant and collects data measurements, sits within
the target controller in Eprom. The source code for
the control program is written in Pascal/MT+;
details are given below in the software develop-
ment section. Program development, ie. code
writing, compilation, linkage and PROM blowing,
takes place within the PC environment. During
plant testing the PC functions as a terminal with
data storage facilities, and communicates with the
target controller using its RS232 serial data line. To
start the test procedure the controller and plant are
powered up. The PC must be connected to the
controller, and set into terminal mode. Instructions
from the controller to the operator are displayed
on the PC screen, with responses being entered at
the keyboard. These include plant test data and
designation of the PC data file (on disk) that is to be
used to hold the plant measurements. A typical test
procedure is shown in Fig. 8 where, once the test
parameters are entered by the operator, the
controller runs the plant through its test sequence.
During this, measurements are made of the control

94

control signal

J. E. Cooling, A. H. Whitfield and G. M. Al-Saddiki

ACTUATOR

DIGITAL
CONTROLLER

A—

shaft positien

SYSTEM

measured value

RS-232
serial comms
line

:
m;

o S S
[E====Tm_]
/z \D\

| o -

OPERATOR

Fig. 7. System organization—functional testing.

signal and measured value, and these are stored
within the memory of the controller. At the end of
the test the data are transferred to the named disk
file in the PC. If required, the information can also
be printed out for evaluation and review.

Off-line identification

The purpose of the off-line identification process
is twofold. Firstly, using the data recorded during
the test run, it enables a mathematical model of the
plant to be generated. Secondly, using this same set
of data, a number of models can be obtained by
applying various identification schemes. By com-

FLIBDY

ENTER THE MO, OF YOUR OPTION
TEP INPUT
RAnP INPUT
NO. OF SAWPLES
ANPLING RATE

CR THE STYEP VOLTAGE IN oVOLTS. (+6 _ -SV

§ THE SPACE BAR TO ENTER THE W0

TPUT_VOLTRGE 1S SET=3000.0aV
TER ANOTHER OPTION. .

MANY ITERATION 7

paring these with the model derived from fre-
quency response testing of the plant, the relative
performance of the identification methods can be
assessed.

Evaluation of a number of identification
schemes may be carried out, including recursive
least squares (RLS), recursive extended least
squares (RELS), recursive maximum likelihood
(RML) and recursive instrumental variable (RIV)
methods. The process of plant identification can be
better understood by considering one of these in
more detail, RLS being a suitable candidate.

Figure 9 illustrates the concept involved in

Fig. 8. Photo—Plant testing—Operator dialogue

Microprocessor-based Control Systems 295

identification and model generation using RLS
techniques. Here a program running under the PC
operating system performs the following actions:

1. Sets up a preliminary (estimated) model of the
plant using information supplied by the opera-
tor.

2. Reads the recorded plant control signal at a
specific sample instant, applies this to the
model, and calculates the resulting output.

3. Reads the recorded plant measured value at the
same sample instant and calculates the error
between this and the model output.

4. Computes the average error power and its
gradient.

5. Adjusts the model parameters to reduce the
power gradient.

6. Repeats the above steps (2-5) for all recorded
values, working iteratively towards a condition
of a zero power gradient.

As the program is executed sample by sample, the
model parameters hopefully converge towards
those of the plant itself. What we are left with is a
best estimate of the plant transfer function, and this
information is used in the implementation of an
appropriate control scheme. The results may also
be stored at each calculation interval, thus allowing
the experimenter to review the convergence rate
and accuracy of the identification process. It is, of
course, necessary to design and write the identifica-
tion program in the first case, and this is covered in
the following section.

STORED DATA
PLANT PLANT
CONTROL MEASURED
SIGNAL VALUE

o/sp

(VA MODEL

PARAMETER
ADJUSTMENT

MODEL

SOFTWARE DESIGN AND DEVELOPMENT

Design techniques

The basic software design method used here is
that of structured programming [17] using a top-
down development approach. Diagramming tech-
niques are used throughout, specifically Jackson
chart methods [18]. These diagrams, Figs 10 and
11, are read from top to bottom to obtain more
detail on program activities and from left to right to
get the time sequences. The recommended control
structures of structured programming have gene-
rally been used in the writing of the program source
code.

Programming language

It would have been possible to develop the
software for the target system entirely in 8086
assembly language. This was rejected, however,
and the decision was taken to use a high-level
language wherever possible, turning to assembler
only as a last resort. Three factors influenced this:

® speed of development;

® problem (and not processor) orientation of high-
level languages;

® inherent support by block-structured languages
for structured design techniques.

In the context of the PC development environment

it makes little sense to use a different language for

the off-line programs. Software commonality is

highly advisable. For this work the basic language

selection criteria were that:

® The compiler must be capable of generating
ROMable code.

® Code produced must also run under the PC
operating system.

-
o\
"

o
a
-

AVERAGE
POWER

PARAMETER
CALCULATION

Fig. 9. Plant identification process.

296 J. E. Cooling, A. H. Whitfield and G. M. Al-Saddiki

TARGET CONTROLLER

INITIALISE SYSTEM RUN TEST
transfer
iti u et collect
STOP mmarh" sseef”:lp ?est set-up data data to
plant ;mfm ?f?' oo ef B bt B analogue via int floppy
e ‘ ' program disk
: change tart =
initialise| | send set set send param select run star e send close
devices | | sign-on input sampling| | options it input the interrupt| | interrupt| | fiie file
message signal rate needed channel| | plant program program
° © £y
set set °|| exiT set anable checkl_ disable stop
set set set input | [samplin sampling sampling| |.
PIT_| |USART] | PIC signal | [rate i counbae | | TTRERIH counter | |interrupt] | plant

Fig. 10. Software design diagram—target controller.

¢ Object (‘in-line’) code inserts must be supported.

® Access of specific memory addresses and hard-
ware devices from the source code (i.e. the high-
level language statements) must be a standard
feature.

® Access to the processor interrupt structure is
essential.

Pascal/MT+ from Digital Research was the chosen
language.

Target controller software

Figure 10, the structure design chart, is pro-
duced from the system requirements. As such it
should reflect what needs to be done to run the
plant and collect appropriate data. From this the
source code (Pascal) is generated. At the higher
levels of the chart, operations are fairly self-
explanatory. At lower levels a detailed knowledge
of the system and hardware is required to under-
stand fully what is happening.

The Pascal program must correspond to the
design diagram (otherwise there is not much point
in having the diagram in the first place). As an aid to
program visibility and clarity, modular programm-
ing techniques are used extensively. Fortunately
Pascal/MT+ allows modules to be compiled separ-
ately, global variables being avoided through the
use of ‘external’ procedure declarations. The top-
level of ‘program’ module is essentially made up of
a set of procedures that are located in lower-level
modules, as shown in the Appendix (listing 1).

Here each program statement consists of a pro-
cedure without parameters; as such the sequence is
clear, readable and unambiguous. In turn these
procedures call lower-level procedures, which,
depending on the complexity of operations, may in
turn call still lower-level operations. This is demon-
strated in listing 2 in the Appendix, which is the
code for the procedure ‘SET UP SERIAL
COMMS..

The major software design objectives for reli-
ability and clarity are modularization, information
hiding, loose coupling and high cohesion [19].
These are well supported by the structure and
organization of Pascal. However, for embedded
applications, the language must fulfil the following
roles:

e Allow the programmer to access the various
hardware devices, preferably from high-level
language statements.

® Use meaningful and recognizable names and
identifiers.

The procedure INITIALISE DEVICES
shows how Pascal/MT+ facilitates such require-
ments. It also shows that, to develop software for a
target system, an intimate knowledge of the pro-
cessor hardware is needed.

Off-line identification on the PC

The off-line identification program is derived
from the software design diagram of Fig. 11. Only
the higher levels are shown to maintain diagram

~
N
o

rems

VS

-based Control Sy

Microprocessor

"uonedynuUIP! JuR|d—werdeip udisap aremijos

1381

049 Wy
|owesed sopaal| 3enoe dso| |sopan | | dso|| Jopdaa|| jeubss
ewiysa | | ueb ayy pue pow | | 4ndyno | Ljued | 1104u0d | 110u4u0)
ajepdn | |ajeyen|| asedwor||ajeinaes | |ajepdn | | peas| | 3jepdn jos
Jajunod N suoido suoijdo
uoljeJajl 04394 | | J0)394 suoyydo suoijdo awayds wayds s | |suonjesay Jeubis
10 ‘0N $J9 jowe md indjno indur Jopow 19pow | [uoijedijijuap: | uoljednjuap bundwes }0 ‘oN 153} 435
- WA Aeydsip 198 198 196 puas 136 puas jos jos
Jajunol
uoLj R Ut uoljeiaji anpPnays ways pi-shs SUOI{IPUO)
INSINIA jo ‘oN 19pow UoL{RIJ1juIPI $J3 awesed abessaw 11
ino Aised jos jos jos 59} ab puas jas

wayshs Ajiyuapi

sJajawesed Jsaj uny

|3s

NOILVIIJILN3QI WILSAS 3NIT-440

waysks asneijiul

298 J. E. Cooling, A. H. Whitfield and G. M. Al-Saddiki

clarity; the essentials of the identification process
can, however, be deduced from this.

This program runs on the PC, having been
developed on it in the first place. Thus, to produce
the identification software, the programmer does
not require any special knowledge of the target
system. In fact test data are not even needed to
evaluate the identification processes; simulations
can be run on the PC using information provided
by the programmer.

GENERAL COMMENTS AND
CONCLUSIONS

Experiences—comments and conclusions

The workstation described here has now been in
constant use for over six years. It has been applied
to a variety of embedded controller projects
involving five different types of microprocessor
and numerous programming languages. The
majority of these projects have been carried out by
undergraduates, at second-year and final-year
level. In each case it was used as the basic
development tool for both the hardware and
software of the controllers. By comparison with
traditional MDSs it is a much more cost-effective
tool; moreover it is a general-purpose rather than a
specialist item. Experience has shown that if the
workstation meets the criteria defined earlier, then
it provides an excellent environment for the
development of practical control systems. How-
ever, four particular points should be noted.

Firstly, if the PC had not been able to com-
municate with the target system its capability would
have been significantly impaired. In our own case it
was necessary to develop specialist software pre-
cisely for this task.

Secondly, few compilers (relatively speaking) are
available which generate ROMable code; even
then, difficulties may be experienced in actually
loading the object code into the Eprom program-
mer.

Thirdly, the addition of a maths processor to the
PCis a worthwhile investment, especially in view of
the large number of matrix operations involved in
control system analysis and synthesis. Our own
tests have shown that the speed-up in performance
is, on average, by a factor of 30. For more complex
maths operations (such as trancendental functions)
the improvement is of the order of 100. Finally, a
graphics screen plotting and hard-copy capability,
though not essential, is very highly recommended.

Teaching and course aspects—the future

We are currently carrying out major changes to
the software engineering section of our undergradu-
ate course. In the past our approach to software-
based systems has been somewhat fragmented:
programming, software development and micro-
processor systems have very much been treated as
isolated topics. One of the primary aims of the new
course structure is to integrate the design, develop-
ment and programming of software-based systems.
In particular, we intend to provide an integrated
environment for the development of embedded
(microprocessor-based) systems. The equipment
(workstation) described here forms the basis of such
an environment.

In the first year, students are introduced to
programming and algorithm development. This
involves both individual and group activities, using
the PC for program development. Our standard
teaching language is Modula-2 [20], using the Stony
Brook compiler.

During the second year, software design and
development is a major topic within the software
engineering course. Students will be required to
develop software to run on target systems, pro-
gramming in both assembly language and
Modula-2 (the emphasis is placed on high-level
language programming). To do this they must
produce ROMable code, which is placed into the
target units. It is at this phase of the work that the
full facilities of the workstation are required. Our
experiences described in this paper have enabled
us to define such facilities with great confidence.
We have been able to identify the actual—not
merely the perceived—requirements for practical
embedded software development. Unfortunately,
we have not yet been able to find a textbook that
covers all aspects of the course.

In conclusion, our decision to develop a PC
environment for practical microprocessor work
has proved to be a sound one. A major advantage is
that students do not have to cope with a multitude
of systems; instead they can concentrate on the
essentials of their subject. An added bonus has
been the arrival of low-cost PC software for related
topics: control system analysis and simulation,
computer-aided software engineering (CASE)
tools and software metrics packages, to name but a
few.

Acknowledgements—The authors wish to acknowledge the
work carried out by Mark Morgan Lloyd to develop the
communications software used in this project.

REFERENCES

1. IEE86, The use of personal computers in control systems analysis, IEE Colloquium, 3 May 1986,

London. Colloquium Digest No. 1986/83 (1986).

2. Digital Research, Pascal/M T+ Language Programmer’s Guide for the CP/M-86 Family of Operating
Systems, Digital Research Inc., Pacific Grove, CA (1983).

3. Microsoft, Microsoft CodeView and Utilities—Soft

Redmond, WA 98073 (1987).

ware Development Tools, Microsoft Corporation,

4. K. Warwick, Further development in self-tuning control. In C. J. Harris and S. A. Billings (eds) Self-

Microprocessor-based Control Systems

tuning and Adaptive Control: Theory and Applications, IEE Control Engineering Series 4, 2nd edn,
pp- 332-360 (1985).

5. T. Cegrell and T. Hedqvist, Successful adaptive control of paper machine, Automatica, 11, 53-59
(1975).

6. F. Buccholt and M. Kummel, Self-tuning control of a pH-neutralisation process, Automatica, 15,
665 (1979).

7. D.W. Clark and P.J. Gawthrop, Implementation and application of microprocessor-based self-
tuners, Automatica, 16,233-244 (1980).

8. J. Kanniah et al., Microprocessor-based universal regulator using dual rate sampling, /EEE Trans.
Ind. Electron.,1E-31 (4), 306-312 (1984).

9. G.S. Hope et al., Digital implementation and test results of a self-tuning speed regulator, Can. Elec.
EngngJ., 6 (1),9-15(1981).

10. A.H. Jones and B. Porter, Expert tuners for PID controllers, Proc. IASTED Conference on
Computer-aided Design and Applications, Paris (1985).

1. L.Ljung and T. Soderstrom, Theory and Practice of Recursive Identification, MIT Press, Cambridge,
MA (1983).

12. G. Goodwin and K. Sin, Adaptive Filtering, Prediction and Control, Prentice Hall, Englewood Cliffs,
NJ (1984).

13. Z.M. A. Ismail, Microprocessor control of electro-mechanical actuators, Ph.D. thesis, Lough-
borough University of Technology (1986).

14. Intel, iAPX 86/88, 186/188 User's Manual, Hardware Reference, Intel Corporation, Santa Clara, CA
(1985).

15. EIA, Interface between data terminal equipment and data communication equipment employing
serial binary data interchange, EIA Standard RS-RS232, Electronics Industries Association,
Engineering Department, Washington, DC 20006 (1969).

16. EIA, Electrical characteristics of balanced voltage digital interface circuits, E/A Standard RS-
RS422-A, Electronics Industries Association, Engineering Department, Washington, DC 20006
(1978).

17. S. Bennett, Real-time Computer Control, Prentice Hall, London (1988).

18. B. Sanden, Systems Programming with JSP, Chartwell-Bratt (1985).

19. J. E. Cooling, Software Design for Real-time Systems, Chapman and Hall, London (1990).

20. N. Wirth, Programming in MODULA-2, 4th corrected edn., Springer Verlag, Berlin (1989).

Jim Cooling is currently a senior lecturer in the Department of Electronic and Electrical
Engineering, Loughborough University of Technology, Loughborough, UK. He has special-
ized in the area of real-time embedded microprocessor systems for 17 years, and is a
consultant to a number of major UK companies. His publications include four textbooks:
Real-time Interfacing, Modula-2 for Microcomputer Systems, Software Design for Real-time
Systems, and Introduction to Ada (co-author).

Alan Whitfield, formerly of Loughborough University of Technology, is now a senior consul-
tant with ICL (UK) Ltd. He is concerned with information technology in general, specifically
with the analysis and specification of distributed computing systems.

Ghassan Al-Saddiki’s present post is that of Professor in the Department of Electric and
Computer Engineering, King Abdulaziz University, Kingdom of Saudi Arabia. He specialized
in the area of microprocessor-based adaptive control systems while researching for his
doctorate. His research and teaching interests include those of real-time embedded systems.

299

300 J. E. Cooling, A. H. Whitfield and G. M. Al-Saddiki

APPENDIX
(**)
(LISTING 1 *)

(* This is the body of the Data Collection program module *)

(**)

BEGIN

STOP_PLANT;
INITIALISE CNT_DATA_INT;

SET_UP_SERIAL_COMMS;

GET_TEST_ PARAMETERS;
SET_UP_ANALOGUE_SYSTEM;
COLLECT_DATA_VIA_INT;

TRANSFER_DATA;

END. (* End of main program module *)

(**)

Microprocessor-based Control Systems 301
(e e sk e ok e ek ke ke ok ok ko ko ok e ek k)

(LISTING 2 *)

(* This procedure is called by the main program module *)

(*****’k**)

PROCEDURE SET-UP_SERIAL_COMMS;
BEGIN
INITIALISE DEVICES;
SEND_SIGN_ON_MESSAGE;
END;

(* end of the procedure *)

Procedure INITIALISE DEVICES is implemented as follows;

(* This procedure initialises all CPU hardware *)
PROCEDURE INITIALISE_DEVICES;

BEGIN

(* Initialise the Programmable Interval Timer *)
PITCONT :=CONWORDO;

PITCTERO:=DATALOW;

PITCTERO:=DATAHIGH;

PITCONT :=CONWORD2;

PITCTER2 :=DATA2LOW;

PITCTER2 :=DATA2HIGH;

PITCONT :=CONWORD1;

302 J. E. Cooling, A. H. Whitfield and G. M. Al-Saddiki

(* Initialise the UART *)
URTCOMD:=$00;
URTCOMD:=$00;
URTCOMD:=$00;
URTCOMD:=$40;

URTCOMD :=MODE_URT;

URTCOMD :=TRANS_INS_URT;

(* Initialise the Programmable Interrupt Controller *)
PIC_COMO:=ICW1;
PIC_COM1:=ICW2;
PIC_COM1:=ICW4;

PIC_COM1:=0CW1;

END;
(* End of hardware initialisation procedure *)

(**)

