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Two educational spreadsheet programs have been successfully developed by using the popular
spreadsheet software Lotus 1-2-3 to solve the two-dimensional elliptic Laplace equation in
rectangular domains subject to Dirichlet boundary conditions. Finite difference methods are
used. They include the Gauss-Seidel method, the successive over-relaxation method and the
alternating direction implicit method. Extensive macro commands have been used to construct
these customized programs so as to provide interactiveness, user-friendliness as well as some
distinct and useful features. The advantages of these spreadhsheet programs over the traditional
computer programs are highlighted. Experience in classroom adoption of these programs has
confirmed that they are of great educational value.

INTRODUCTION

ALL engineering and science disciplines involve
partial differential equations. These equations
therefore form an important part of the engineering
and science curriculum. With the complex nature
of today’s physical problems and the advances in
computer technology, the numerical techniques of
solving partial differential equations have grown in
importance.

Computer programs are usually used as tools in
the teaching of the numerical methods for solving
partial differential equations. With these programs,
a user can perform numerous numerical experi-
ments (e.g. to investigate the effects of varying the
grid sizes or the over-relaxation parameter for the
successive over-relaxation method) which are
otherwise impossible. Traditionally, they are
written in a computer language (e.g. Fortran) and
the codes are easily available from many textbooks
(for examples, see [1, 2]). However, before they can
be used, a substantial amount of effort and time is
required to spend on modifying (in order to suit the
particular compiler to be used), keying-in, com-
piling and debugging them. Moreover, they do not
provide graphics capability and their outputs are
sets of numerical values that are often difficult to
interpret. For iterative methods, they do not
provide intermediate values or errors which are
necessary for the study of the convergence charac-
teristics of such methods. While the tedious and
time-consuming traditional approach may improve
the computer programming techniques, it is inef-
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fective as a learning tool for the numerical methods
concerned.

To overcome the drawbacks of the traditional
approach, a new approach has been made to solve
the partial differential equations by using the elec-
tronic spreadsheet in a microcomputer. The objec-
tive is to enhance the learning effectiveness of the
numerical methods, rather than the computer
programming techniques. The electronic spread-
sheet, originally developed for business applic-
ations, has proved itself to be useful in various
engineering and science educational purposes [4-
8|.Its cell structure, being similar to the domain dis-
cretization used in finite difference methods,
together with its many advanced features (e.g. the
advanced macro commands and the graphics capa-
bility) make it a good choice for the current appli-
cation in solving partial differential equations.

In this paper, two spreadsheet programs devel-
oped by using the popular Lotus 1-2-3 Release 3.1
spreadsheet software to solve the two-dimensional
Laplace equation in rectangular domains, subject
to Dirichlet conditions, are described. The Laplace
equation is considered because it is the simplest
elliptic equation that models a variety of physical
problems; for example, heat conduction, fluid
mechanics and electrostatic problems. Three finite
difference numerical methods have been imple-
mented: the Gauss Seidel (GS) method, the succes-
sive over-relaxation (SOR) method and the
alternating direction implicit (ADI) method. The
solving of the Laplace equation by these basic
methods has been commonly used in the teaching
of elliptic partial differential equations. The
spreadsheet approach to the parabolic and hyper-
bolic equations is presented in [9).
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PROBLEM FORMULATION

The two-dimensional Laplace equation is

0’u , d’u
- =
axl a)l

0 (1)

where u is the dependent variable, x and y are the
spatial coordinates.

To solve the Laplace equation by using finite
difference methods, the domain is discretized and
the grid points are labelled as shown in Fig. 1 for a
rectangular domain of dimensions L X H with
constant grid sizes Ax and Ay. To obtain the
numerical solution, four Dirichlet boundary condi-
tions u(0, y), u(L, y), u(x,0)and u(x, H) are speci-
fied.
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Fig. 1. The discretized computational domain

The finite difference methods implemented in
the spreadsheet programs can be found in many
standard texts (for examples, see [1-3]). They are
briefly summarized below.

The GS method
Using central differences, the finite difference
form of equation (1) for the GS method is

Uy ult) + (Ax/AyyY(ufjey + ult)
2[1 + (Ax/Ay)]
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where Ax, Ay are the grid sizes in the x and y
directions respectively (a) the double subscripts
(for example, |7, j]) denote the number of the x- and
y-grid points respectively, (b) the superscripts
denote the numbers of iterates, and (c) the sub-
script GS denotes the GS value.

The SOR method
For the SOR method, the finite difference equa-
tion is
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where w(1 <w <2) is the over-relaxation para-
meter and all other parameters are the same as
those defined for equation (2).

The ADI method

In the ADI method, we take Ax=Ay for
simplicity, which is usually the case in the teaching
of this method. The ADI method involves calcula-
tions along the rows of interior grid points succes-
sively and then along the columns of interior grid
points successively.

For the row calculations, the finite difference
equation is

k k+] om k
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where {(& > 0) is an acceleration parameter and
the other parameters are the same as those defined
in equation (2).

Along the j-th row, applying this at all interior
gridpoints i = 1,..., I — 1 yields
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where / is the number of x-intervals.

For the column calculations, the finite difference
equation is
Ut — 2+ Hulr + Uy = —ut

ij+l1, i=ly

+2 - Ou = w2, (5a)

where the parameters are the same as those defined
for equation (4a).

Along the i-th column, applying this at all
interior grid points j=J — 1,J —2,.. ., 1 yields
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where J is the number of y-intervals.

Note that in equation (5b), the unknown column
matrix is arranged such that the j-subscript is
increasing upward along the matrix. This simplifies
the construction of the macros used in the pro-
grams for the display of the solution, such that the
y-axis is pointing upward in the same direction as
that in the physical domain shown in Fig. 1.

THE SPREADSHEET PROGRAMS

The spreadsheet software Lotus 1-2-3 Release
3.1 offers many useful advanced features for the
present application; for example, the three-
dimensional worksheet feature and the graphics
capability [10]. To facilitate user-friendliness and
interactiveness, macro commands have been
extensively used in the programs developed.

A:Al:

The structure of the spreadsheet comprises
sheets of rows and columns of cells as shown in
Fig. 2. From Figs 1 and 2, it can be seen that the
rows and columns of cells of a sheet closely
resemble the discretized computational domain.
Therefore, a particular cell range of a sheet, which
varies in size according to / and J, can be allocated
to store and display the numerical values at all grid
points. The allocation has been automated by using
macros. Since the worksheet is three-dimensional,
the working area (which contains the input data
and the computed results), the macros and other
data (e.g. flow control flags and matrices) can be
stored on different sheets. Sheet A has been chosen
for the working area. This avoids the possibility of
damaging the macros (if unprotected by the user
for any reason) and the distraction to the user since
only working sheet A is displayed at all times.

The spreadsheet programs developed are menu-
driven. The menu, which is common for the spread-
sheet programs developed, is shown in Fig. 3 and
the descriptions of the program commands are
given in Table 1. As can be seen in Fig. 3 and Table
1, all required tasks can be done within the

Data Graph Print Save Quit

Input Use Quit Results Graph  Quit

Go View Quit

X-variation Y-variation View Quit

Fig. 3. The program menu tree

-Apr—92 82:43 PN

Fig. 2. The structure of the three-dimensional worksheet of Lotus 1-2-3 (showing sheets A, B and C)
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Table 1. The program commands

Program command Description

Data Input To enter new data for subsequent

computation

Data Use T'o continue iteration using the

existing data

Data Quit To return to the main program

menu

Graph X-variation To plot and display the graph of
the dependent variable « against

the x-direction

Graph Y-variation To plot and display the graph of
the dependent variable u against

the y-direction

Graph View To display the current graph as and

when the user desires.

Graph Quit To return to the main program

menu

Print Results T'o send the input data and the

computed results to a printer

Print Graph Go T'o send the current graph to

a printer

Print Graph View To display the current graph. This
allows the user to view the graph

before printing

Print Graph Quit To return to the main program

menu

Print Quite T'o return to the main program

menu

Save To save the spreadsheet program
with the existing data and results in
afile

Quit Toreturn to 1-2-3's READY
mode

program menu. To select a program command, the
user can either enter the first letter of that com-
mand or highlight that command by using the
arrow keys and press the Enter key.

After a spreadsheet program is retrieved into the

A:Al: \=

1-2-3 environment, the user is prompted self-
explained messages at the top of the monitor screen
at all stages. These messages include user instruc-
tions or questions, error messages and current
actions taken by the computer. If an unacceptable
answer (e.g. an alphabetical answer instead of an
expected numerical answer) is entered, the pro-
grams will either reject it and pose the same ques-
tion again for re-entering or allow the user to
change it later. Examples of these messages are
shown in Fig. 4. Audible signals are also provided
when an error occurs or when computation stops.
With very little spreadsheet knowledge, the user is
able to solve Laplace equation including display-
ing and printing the results in graphical form. The
user can thus concentrate on his numerical experi-
ments rather than on how to use the spreadsheet
programs. The only 1-2-3 commands required are
the /File Retrieve command which retrieves a
spreadsheet program into the 1-2-3 environment
and the /Quit command which leaves 1-2-3 and
returns to the operating system.

As the numerical methods considered are all
iterative, a safety feature has been incorporated
into the programs to prevent them from running
into an infinite iterative loop should the solution be
diverging. This is done by limiting the maximum
number of iterations to a value input by the user.
After each iterative loop, a convergence test is
done at all interior grid points and the criterion
used is

( l‘l./)&.’u”tnl -

(u

( u:,/)prcvmu\

l./)Plt\lUU\

where ¢ is a small prescribed convergence para-
meter. Also, the starting values are taken to be the
same at all interior grid points.

In the programs, the step sizes Ax and Ay are
computed automatically based on the input data L,
I, Hand J.

Press ALT-N for NACRO nenu

SOLVING T

onditions :

HE 2-D LAPLACE'S EQUATION BY THE GAUSS-SEIDEL METHOD OR SOR MET

(1)Rectangular grid, grid size dx not necessarily equals dy

(a) Instruction to invoke the main program menu

A:Al: \=
Data Graph Print Quit
Copy a file from memo
a A

onditions :

to a file on disk

OLVING THE 2-D LAPLACE'S EQUATION BY THE GAUSS-SEIDEL METHOD OR SOR MET

ENU

(1)Rectangular grid, grid size dx not necessarily equals dy

(b) Program menu commands with explanatory notes
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A:E26: B

Any changes ? <Y/N> : _

[e C Y Lan, Nanyang Technological University]
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quation to be solved :
d*u(x,y)/dx? + d*u(x,y)/dy*=8 where d denotes partial differentiation

Solution domain in x, L =
Nusber of x intervals, I =
Solution domain in y, H = | i

S\ LN

(¢) Options for data changing and correction

A:A37:

Enter solution domain in x, L = _

E f G H

onditions :
(1)Rectangular grid, grid size dx not necessarily equals dy

(d) Input of a typical data

Entry nust be nuneric. please re-entre !

E F G H

(e) An error message

A:037: +SINIT
M = manual iteration, A = auto iteration, enter choice : _

0 3 F G H

a4
urrent iterates

(f) Selection of a mode of iteration

A:D32: 8 Iteration 1n progress. please WAIT !

A A B C ] E F G H
SVNRESULTS
31 Ziiiit

32 No. of iterations= b Ve

urrent iterates

(g) Current action taken by the program

A:C43: +SU(0.Y)

Enter legend for first data range: _
e RSN BRGed ARIRENC RN R

0. of iterations= 20

urrent iterates
(h) Input of a legend for graphing the results

Fig. 4. Examples of the user-friendly and interactive features
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The spreadsheet program GSSOR. WK 3

This spreadsheet program employs both the GS
and SOR methods. This is possible because equa-
tion (3) reduces to equation (2) for w = 1. There-
fore, the GS method applies if one is entered for the
over-relaxation parameter w. Other values of
w(1 <w < 2) entered would imply that the SOR
method is being used.

Example. Consider the two-dimensional heat
conduction problem of a rectangular plate of
dimensions L = 1 m and H = 1.6 m subject to the
boundary conditions (0, y)=10°C, u(l,
y)=—10°C, u(x, 0)=0°C and u(x, 1.6) = 30°C.
Using the program command Data Input, the data
are entered as shown in Fig. 5. The w-value entered
is 1.34 and thus the SOR method is used. After
confirming the data, the program automatically
reserves a range of cells on working sheet A to

A:E26: §
Any changes ? <Y/M> : _

o
oo
w

display the current iterates. This includes calculat-
ing and displaying the two axes, laying the boun-
dary conditions at the cells corresponding to the
boundary grid points (see Fig. 6(a)) and assigning
equation (3) to the cells corresponding to the inte-
rior grid points. An option is then provided for the
user to select a mode of iteration (see Fig. 4(f)). In
the manual mode, iteration stops every loop and
the user indicates whether iteration is to be con-
tinued. In the automatic mode, iteration continues
until the solution converges or the number of
iteration exceeds the maximum value entered.
After selection, the program then reserves two
ranges of cells also on sheet A to display the
previous iterates and the relative percentage errors.
For this problem, the converged solution is
obtained after 20 iterations as shown in Fig. 6(a),
the corresponding relative percentage errors and
the previous iterates are shown in Figs 6(b) and (c)

quation to be solved :

d*u(x,y)/dx? + d*u(x,y)/dy?=8 vhere d denotes partial differentiation

Solution domain in x, L = 1
Nusber of x intervals, I = 5
Solution domain in y, H = 1.6
Nusber of y intervals, J = 8
Boundary condition, u(ll,y) = 10
Boundary condition, u(lL,y) = -10
Boundary condition, u(x.8) = i
Boundary condition, u(x.H) = 30
Over—-relaxation factor = 1.34
Convergence parameter = BN
Nax. no. of iteration = 30
Initial values u(x,y) = 0
27 Step }'n x, dx = 8.2
28 Step iny, dy = 8.2
DRV
Fig. 5. The input data in GSSOR.WK3
A:032: 8 Solution converged. press Enter !
El 1] F G H
SULTS
EREEEn
32 No. of iterations=
urrent iterates
1.6 k] k'] k| ] 30
1.4 18 17.8421 19.18871 16.77491 9.555378 -18
1.2 18 12.2597 11.81782 8.435539 1.446687 -18
1 10 9.378879 7.467347 3.702816 -2.2045 -18
8.8 10 7.788511 4.969983 1.112984 -3.96743 -10
8.6 10 6.885261 3.519898 -0.25364 -4.77813 -18
8.4 18 5.921655 2.522039 -8.86823 -4.89142 -10
0.2 10 4.359349 1.515858 -0.81794 -3.92734 -18
] @ q 3 i
b
x ol 8.2 0.4 8.6 8.8 1

(a) The converged solution
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A:048: READY]
0
errors
1.6 @ [ 4 ¥
1.4 8 4.5E-87 S5.7E-87 4.3E-87 2.9E-97 ]
1.2 8 1.4E-06 2.1E-06 2.9E-06 B8.9E-06 4
1 8 9.3E-87 3.9E-86 7.7E-86 B8.7E-06 8
8.8 8 2.2E-86 1.BE-@6 0.00002 4.1E-086 a
8.6 0 5.4E-06 0.000012 0.0800031 3.4E-07 8
8.4 @ 0.000013 9.000027 9.8800855 2.4E-06 8
8.2 @ 8.5E-06 0.000053 0.000041 4.0E-06 3
8 8 8 8 8
Yy
x g 8.2 8.4 8.6 8.8 1
(b) The relative percentage errors
A:D62:
A mm
62 Previous iterates
6 1.6 k| 30 k| 30
1.4 10 17.842089 19.1887 16.7749 9.555377 -18
1.2 10 12.25968 11.8178 8.435518 1.446596 -18
1 18 9.378873 7.467324 3.702794 -2.20452 -18
8.8 10 7.788495 4.969899 1.112887 -3.96745 -18
8.6 10 6.805224 3.510855 -0.25365 -4.77813 -18
8.4 18 5.92158 2.521971 -8.86828 -4.89143 -18
8.2 10 4.359312 1.515778 -0.81797 -3.9273% -10
8 2 ) B 8
y
x 8 8.2 0.4 8.6 0.8 1

(c) The previous iterates

SOR Method for 2—D Laplace’s Equation

u (degree C)

|
(4]

0 0

Y 0.4

e SOy

—a-y=cdy _o 2cy

0.6

x (m)

o 4cy o Scly o Ocly

(d) Variations of i with x as displayed on the screen

Fig. 6

respectively. The variations of temperature with x
are graphed as shown in Fig. 6(d) by using the
Graph X-variation command. The results and the
graphs can be printed by using the program’s Print
commands.

'he solution of the heat conduction problem using GSSOR.WK3

The spreadsheet program ADI. WK3

This spreadsheet program employs the ADI
method. The usual procedure for running this
program is identical to that for the GSSOR.WK3
since the program menu of both is the same. For
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this program, Ax = Ay but / is not necessarily
equal to J. Therefore, after the data L, H, I and J
are entered, the program will automatically check
and request for re-entering these data if Ax(=L
I) # Ay(=H/J).For the calculations along a row or
a column, equations (4b) or (5b) is required to be
solved. This is conveniently done by the matrix
inversion technique since the inverse of the coef-
ficient matrices of these equations are the same and
remain unchanged for every loop. By using 1-2-3’s
built-in matrix operations (the 1-2-3's /Data
Matrix Invert and /Data Matrix Multiply com-
mands), the solving has been easily programmed in
the macros. Since one complete iteration consists
of the calculations of the rows followed by the
calculations of the columns, the results from the
calculations of the rows of each loop are also stored
and displayed as the intermediate iterates in addi-
tion to the previous and current iterates on working
sheet A.

Example. Consider the same problem solved
previously. The input data are entered as shown in
Fig. 7. The converged solution, the relative percen-
tage errors, the previous iterates, the intermediate
iterates and the variations of u with x after 12
iterations are obtained as shown in Fig. 8.

CONCLUSIONS

The spreadsheet programs have been developed
by using the Lotus 1-2-3 package, thus its use-
fulness is basically governed by 1-2-3’s capability.
The user-friendliness, interactiveness and graphics
capability have been easily achieved by using the
macros and the 1-2-3’s built-in functions. Flexi-
bility and safety features have also been incor-
porated. These include the automatic error
detection, the maximum number of iterations

AzE27: 8
Any changes 7 <Y/M> : _

specification and the iteration mode selection. The
user is therefore able to use the programs without
much spreadsheet knowledge. The iteration mode
selection also allows the user to view the inter-
mediate values and errors of any loop and thus
helps the user to better understand the numerical
methods. After iteration stops (either the solution
has converged or the number of iteration exceeds
the maximum value specified), it is possible to
continue the iteration by invoking the Data Use
command after manually changing the input data
maximum number of iterations (if more iterations
are required) or the convergence parameter (if
better accuracy is desired). By using a common
program menu, the user can easily master the
programs in the shortest possible time. Further-
more, owing to the close resemblance of the row
and column layout of the spreadsheet cells to the
discretization of the physical domains, both
spreadsheet programs are able to display results at
the correct physical geographical locations of the
problems. This helps the user to visualize and to
interpret the numerical results. These features,
which are difficult or impossible to achieve by the
traditional programming techniques, are the key
elements for effective learning of the numerical
methods. Indeed, testing of these programs in the
classroom has verified that most students have no
difficulty in using the programs after a brief demon-
stration, including some who have never used a
spreadsheet before. Feedback from the students
shows that these spreadsheet programs are pre-
ferred to the traditional computer programs.
However, like any other computer programs, the
spreadsheet programs developed also have their
own limitations. The program must be used after
Lotus 1-2-3 is loaded into the memory, the com-
puter thus has less storage capacity for the compu-
tation. The number of grid points (cells) that can be

3)The acceleration paremseter is constant ’or a” !unt!ons.

(4)Convergence test done at all interior grid points.

[0 C Y Lan, Nanyang Technological University]

quation to be solved :

Solution domain in x, L
Number of x intervals, I
Solution dommin in y, M
Nusber of y intervals, J
Boundary condition, u(8.y
Boundary condition, u(L,y
Boundary condition, uil.l
Boundary condition, u(x.H
Acceleration factor
Convergence parameter
: Max. no. of iteration
27 Initial values u(x,y) =
ADI.VIK3

d*u(x,y)/dx* + d*u(x,y)/dy*=8 where d denotes partial differentiation

Fig. 7. The input data in ADI.WK3
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displayed on the screen at the same time is limited.
For a large number of grid points, in order to see
the values at the same grid points outside the
screen, the user has to return to 1-2-3’'s READY
mode by using the program command Quit and
then uses the arrow keys to move around. The
maximum number of curves that can be displayed
is six, being limited by the capability of 1-2-3. For
ADILWK3, the maximum number of x- and y-
intervals is limited to 81 so that the coefficient

A:638: 9.55537583548651742

Y. Lam

matrices of equations (4b) and (5b) are at most
80 X 80, which is the maximum size invertable by
1-2-3. While these limitations may cause some
problems in practical engineering application pur-
poses, they do not pose real constraints for educa-
tional purposes in which the requirements are not
so stringent. Owing to the rapid software and
hardware development, it is anticipated that these
limitations will eventually become less severe.
With the experience gained, the author is cur-

Enter !

Solution converged. press

L ERSEE
0. of iterations= 12
urrent (ke2) iterates
1.6 38 38 30 38
1.4 18 17.84289 19.18871 16.77488 -18
1.2 10 12.25968 11.81783 8.435582 1.446682 -18
1 10 9.378867 7.467367 3.78278 -2.2845 -18
8.8 18 7.78849 4.969924 1.112867 -3.96743 -18
8.6 10 6.885244 3.5189081 -0.25369 -4.77812 -18
8.4 19 5.921655 2.522853 -8.86827 -4.89143 -18
8.2 10 4.359376 1.515878 -0.81794 -3.92734 -18
] 8 8 8 [}
y
x 9 8.2 9.4 9.6 9.8 1
(a) The converged solution
A:G49:
3
errors
1.6 30 30 38 38
1.4 18 1.9E-87 3.4E-06 2.9E-87 4.1E-86 -18
1.2 10 4.2E-07 0.00001 B8.4E-07 0.000051 -18
1 10 8.5E-07 8.000021 3.0E-086 0.000043 -18
8.8 18 1.0E-086 0.000034 9.3E-06 0.008026 -18
8.6 10 1.1E-086 0.800044 8.800042 0.00002 -18
8.4 10 9.7E-07 09.800047 9.3E-86 8.8000815 -=18
8.2 10 7.9E-07 9.900043 5.3E-06 0.80001 -10
8 8 8 8 8
y
x ) 8.2 8.4 8.6 8.8 1
(b) The relative percentage errors
A:663:

Bl G
63 Previous iterates

(c) The previous iterates

1.6 k] k| ) N 30
1.4 10 17.84289 19.18864 16.77489 9.555337 -18
1.2 18 12.25969 11.81771 8.435509 1.446528 -18
1 19 9.378875 7.467211 3.702791 -2.2046 -18
8.8 18 7.788498 4.969755 1.112878 -3.96753 -18
8.6 10 6.805251 3.510745 -0.25368 -4.77822 -18
8.4 18 5.92166 2.521933 -0.86826 -4.8915 -18
8.2 10 4.359379 1.515813 -0.81794 -3.92738 -18
] 8 8 8 8
Yy
x b 8.2 .4 8.6 9.8 1
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A:G77:

Intermediate (k+1) iterates

1.6 30 30 30 30
1.4 18 17.84209 19.18868 16.77489 9.555358 -18
1.2 10 12.25969 11.81778 8.4355087 1.446571 -10
1 18 9.37887 7.467298 3.702784 -2.20454 -18
8.8 18 7.788494 4.969852 1.112873 -3.96747 -18
8.6 10 6.805247 3.510833 -0.25368 -4.77817 -10
8.4 18 5.921657 2.522001 -0.86827 -4.89146 -18
8.2 18 4.359377 1.51585 -08.81794 -3.92736 -10
8 8 ] 8 8
Yy  eeeeecececescccccceccseseees -
x 4 8.2 0.4 0.6 0.8 1

(d) The intermediate iterates

ADI Methocl for 2—D Laplace’s Equation

| N3
0 0

s 0.4 0.6 0.8
x (m)

o Y=dy _o_ 2cly o 3cly o ddy e Scly o Ocly

(e) Variation of u with x displayed on the screen

Fig. 8. The solution of the heat conduction problem using ADL.WK3

rently working on the extensions of these programs The implementation of other numerical methods
to problems with Neumann conditions and/or using the spreadsheet approach is also being con-
irregular boundaries and other elliptic equations. sidered.
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