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This paper emphasizes the importance of teaching proper statistical design techniques in
manufacturing engineering education. Metal cutting is chosen as an example area to outline the
principles involved, and guidelines are provided to conduct and report experimental studies.

SUMMARY OF EDUCATIONAL ASPECTS
OF THE PAPER

1. The paper discusses material for:

(a) A complete course in Experimental
Design for Manufacturing, or
(b) Modules for use with a course in:
(i) The Principles of Metalcutting, or
(i) Manufacturing Processes.

. Students of the following departments could
be taught this:

Industrial Engineering
Mechanical Engineering
Production Engineering

. Level of the course:

Senior level (fourth-year undergraduate), or
First-year graduate.

Mode of presentation:

Lecture with discussion and a review of
existing metal cutting literature. Also as
instructions for laboratory experiments in
manufacturing/metal cutting.

5. Is the material presented in a regular or in an
elective course:

The material should be presented as a
module in a regular course, or in detail as a
separate course on an elective basis.

. Class hours required to cover the material (if
treated as a module):

2 hours if students have a background in
experimental design.
6 hours if students have no background in
experimental design.
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7. The material will be most useful when students
have spent 5-6 hours evaluating current
experimental metal cutting literature.

Description of novel aspects presented in the

paper:
This paper applies the principles of statisti-
cal design of experiments to experimental
work in metal cutting so that valid conclu-
sions can be drawn from the experiments. It
also provides guidelines for conducting and
reporting experimental studies.

Recommended Text:

Metal Cutting by E. M. Trent, published by
Butterworths, ISBN 0-408-10856-8.

10. This material is not covered at all in the text.

INTRODUCTION

A SUBSTANTIAL portion of engineering
research is experimental in nature. The validity of
conclusions drawn from experimental research is
significantly influenced by the conditions under
which the experiment is conducted, and therefore
careful thought has to be given to designing the
experiment properly. Researchers in the social and
life sciences have long realized the importance of
this fact. However, it has been our experience that
the same is most often not true of engineering. As
an illustration, most graduate engineering curricula
do not even require a course in experimental
design.

It is the intent of this paper to demonstrate the
importance of teaching sound experimental design
in manufacturing engineering education, and to
motivate students and researchers in this area to
incorporate these principles in their work. It is also
intended to encourage graduate students who have
an interest in any type of experimental research to
study this subject as part of their education. The
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Table 1. Factors motivating experimental studies

R e e e T

FACTOR

EXAMPLE

A hypothesis to be tested
for validity.

A functional relationship
to be established between a
response variable and a set
of inputs in order to
predict the response for
the general case.

An established theoretical
result to be experimentally
validated, when all the
assumptions of the
theoretical model are not
exactly met.

Vibrations generated by a
worn cutting edge contain
more high frequency energy
than those generated by a
sharp edge.

Taylor’s Tool Life Equation.

Comparing experimental and
theoretical values of the
cutting gap in ECM for
various electrolytes and gas
densities.

R i e

principles involved are demonstrated by using the
broad area of metal cutting as an example; however
the principles apply equally well to any area
involving experimental research.

In experimental research, the typical procedure
would be to set up the required equipment, and to
then make several experimental runs where
observations are made on one or more variables of
interest. The observations are then analyzed and
appropriate conclusions drawn from the results of
the analysis.

As an example, consider the general process of
metal cutting that is basic to the study of manu-
facturing engineering. Operations in this area are
often analyzed by conducting experiments where
cutting and associated parameters are studied
under various machining conditions. In general, a
metal cutting study could be motivated by one or
more of the factors shown in the first column of
Table 1. The second column in the table gives an
example from metal cutting for each case. In all
cases, the common condition lies in the presence of
a response variable of interest that is studied in the
presence of one or more controlled inputs.

In general, as the inputs are changed, the levels of
the observed responses also change. Variations in
the observations could of course be due to a
relationship between the response variable and the

inputs. However, it could also be due to error, both
error in measurement, and in random variations
(or ‘noise’). While it is difficult enough to draw
conclusions about a system even when experimen-
tal data is relatively free of noise, the presence of
random variations complicates this task tremen-
dously. Under such circumstances it is critical for
the experimenter to make use of some basic
statistical techniques that can vastly improve the
reliability of conclusions drawn.

By their very nature, the different areas of
manufacturing are characterized by substantial
variability. Metal cutting, for example, is character-
ized by high strain rates and a lack of external
constraints during deformation. This complexity is
often translated into relationships that can only be
empirically captured. It also leads to significant
interactions between material, cutting and tooling
parameters. Thus scientific experimental design
that accounts for these interactions is especially
important in order to draw valid conclusions.

A detailed examination of the literature on
experimental studies in the area of metal cutting
displays an absence of statistical considerations in
most cases. Even if such considerations are taken
into account during a study, they are rarely if ever
reported. The most striking aspect of these studies
is that in most cases the conclusions drawn could
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Fig. 1. Average cutting force as a function of nose radius.

have been made far more reliable and meaningful
by expending the same amount of effort, but with
more careful planning.

A good example of a study where a manufactur-
ing experiment was carefully designed and exe-
cuted, and the results analyzed using sound
statistical considerations, is a tool wear experiment
conducted and reported by Taylor [1]. Taylor’s
paper clearly demonstrates the importance of
accounting for variability in an experimental study,
and the use of appropriate statistical techniques in
drawing conclusions. Unfortunately, reports such
as these are few and far between.

In the following sections of this paper we detail
why statistical methods must be integrated into
manufacturing engineering curricula, the kinds of
difficulties that they can mitigate (if not overcome)
when conducting experimental work in this area,
and provide guidelines on how an experiment
should be conducted and reported so that the
results can be interpreted meaningfully. Finally, we
provide a possible outline for a course in experi-
mental design for manufacturing.

TYPICAL DIFFICULTIES IN METAL
CUTTING EXPERIMENTS

In investigating the relationship between a
response and a set of inputs, an experimenter
would typically encounter the following sources of
difficulty |2]:

® presence of experimental error
® confusion of correlation and causation
® complexity of the effects of inputs

We now examine each of these a little further, in
the context of a typical metal cutting experiment.

Consider a study [3] to determine the effect of tool
nose radius on the forces (cutting, tangential, and
radial) generated during a turning operation.
Assume that there are three pieces of barstock of a
given specification available for the study, and that
each of these can yield six individual samples for
actual machining; thus there is enough material for
a total of 18 possible experimental runs.

Suppose standard carbide inserts are used and
the experiment was conducted as follows: first, the
six samples from the first piece of barstock were
sequentially machined using a cutting tool of nose
radius r,, then the six from the second piece with a
tool of nose radius r,, and finally, the six from the
third piece with a tool nose radius r; (say where
ry>r, > r)). In each of the 18 experimental runs,
the cutting forces are measured using a transducer.
The average of the cutting forces measured for
each nose radius is then plotted against the appro-
priate nose radius. Suppose this results in the
hypothetical graph shown in Fig. 1.

Looking at Fig. 1, one might be tempted to
conclude that cutting forces increase nonlinearly
with increase in cutting tool nose radius. However,
if we relate this simple experiment with the three
sources of difficulty listed above, a conclusion such
as this could well be quite inaccurate.

Consider the first category of difficulties; this
reflects the variations produced by factors other
than those being directly considered in the study.
The variations could be partly due to measure-
ment error, but could also be caused by factors
that are unknown or beyond the experimenters
control; these have the effect of either obscuring
theimportance of certain factors or exaggerating the
importance of others. In the nose radius study, the
transducer could have an inherent measurement
error. While it is possible that this error could be
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random, it could also be biased due to an oversight
in calibration or due to a drift in the measuring
device.

Even if the measurements were completely
accurate, the observed variations may be caused by
other factors. For instance, even though the three
pieces of barstock are of the same specification, the
hardness of each may be different because of batch
variations during manufacture. There is no con-
clusive evidence to rule out the possibility that
cutting forces are affected more by hardness than
by the nose radius. Differences in other elements of
the tool signatures of the inserts could be another
factor; this is especially important in conducting
studies using non-standard and custom designed
tools.

The second category of difficulties relates to the
ambiguity that often persists between causation
and correlation. Causation refers to a direct cause
and effect relationship between the response and
the levels of an input. Correlation on the other hand
refers to the situation where the response may vary
with the levels of an input not because of any direct
relationship, but rather, because they are both
correlated through a common factor. This is an
important distinction with a critical implication: a
sound experimental study should look for causality
and be capable of reducing the effect of correlation.

In the nose radius study, it is possible that the
nose radius has only an indirect effect on the
cutting force. The more relevant independent
variable to be studied could perhaps be the total
contact area between the tool and the workpiece.
The contact area is a function of not only the nose
radius, but also of other factors such as the depth of
cut, the temperature of the tool-chip interface and
the other elements of the tool signature.

The final source of difficulties is the complexity
of the effects being studied. In many instances, the
factors being employed in the study interact with
one another. The implication is that the magnitude
of the effect of a factor on the response variable
under study depends on the level of some other
factor; misleading conclusions can be drawn if this
is not accounted for.

Suppose that in the nose radius study we also
wish to check the effect of the depth of cut (d) on
the cutting forces by treating it as a second
independent variable. Suppose we denote the
cutting force F_ with nose radius 7, and depth of cut
d by F (r,,d). Then it may well be that, F (r,,d,) —

«(ryd,)isnotequalto F (r,,d,) — F(r,,d,). This
is because a higher depth of cut may mean a
disproportionate increase in the frictional com-
ponent of total energy expended during cutting.

Furthermore, the amount of experimental error
that is transmitted may also be different at different
levels of the factors. Finally, the response itself may
behave in a highly nonlinear fashion with respect to
various levels of a given factor. Statistically
designed experiments have the attractive feature of
actually trying to account for these complexities.

SOME GUIDELINES FOR CONDUCTING
AND REPORTING MANUFACTURING
BASED EXPERIMENTS

Many of the problems encountered in the course
of a manufacturing investigation can be mitigated
by the use of statistical techniques in designing and
analyzing the experiment. This fact has been
recognized more by researchers in the life sciences
than in engineering, perhaps due to the fact that
systems in the latter area have somewhat less
inherent variability. Even if this were true, the
benefits that can be accrued from sound statistical
design principles, far outweigh the additional effort
involved.

In this section, we summarize the typical pro-
cedures that an experiment should follow. The
primary benefit from doing so is that this allows for
a meaningful, appropriate and unbiased interpreta-
tion of the results. The three main principles of a
statistically well-designed experiment are replica-
tion, randomization and blocking.

Replication refers to multiple observations for
the same set of inputs. In general, a larger number
of replicates results in more reliable conclusions.
Randomization ensures that observations are inde-
pendent of each other; this minimizes the effect of
correlation. Finally, blocking is a procedure to
make the experimental conditions more homo-
geneous so that the effect of extraneous variables is
neutralized.

We now outline some general guidelines to be
followed in designing and analyzing experiments.

Choice of Input Levels: The number of levels for
each input in the study depends on the objective of
the experiment and the feasibility of making multi-
ple runs. In general, it is best to run a large number
of replicates across a wide range of all inputs, but
often this is not feasible. For example, metal cutting
experiments tend to be time consuming and
expensive. Thus one usually has to trade off the
number of replicates against the number of dif-
ferent input levels. In general, if a functional
relationship is to be evaluated it is better to use
more levels spanning a wider range. On the other
hand if a specific hypothesis is being tested, it is
better to have more replicates.

Consider the nose radius study. It might have
been better to have two replicates for each of nine
different nose radii if a functional relationship
between nose radius and cutting forces is to be
established. Alternatively, six replicates at three
levels might be adequate if we are just testing the
hypothesis that nose radius has a significant effect
on cutting forces (although in this case one should
be careful about extrapolating any conclusions
drawn to nose radii outside of the range spanned by
the experiment).

Blocking: A block refers to a set of experimental
conditions that are homogeneous and across which
all input levels can be tested. Blocking tends to
minimize the effect of extraneous variables. Blocks
are often formed on the basis of time, batches of
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materials, or tools, since each of these presents
opportunities for greater similarity. In the nose
radius study, an example of blocking would be to
assign two samples from each of the three pieces of
barstock to each nose radius (rather than assigning
all six from a single piece of barstock to a single
nose radius). This would tend to neutralize the
effect of any differences between different pieces of
barstock.

Order of Runs: The order in which experiments
are conducted should be completely random so
that correlation effects are not present and thus the
observations are independent of each other. In the
nose radius study a possible procedure would be to
first assign a specific nose radius to each of the 18
samples (based on blocking), and then decide on
the actual order of the runs in a random fashion
(e.g. by using a deck of 18 cards, or by drawing 18
slips of paper from a hat). This will tend to
minimize the effect of measurement errors and
other random sources of variation such as hard
spots within a sample.

Interaction Effects: When more than one input
variable (or factor) is studied, it is important to take
into account the complexity of the effects. The
interactions that may be present between the dif-
ferent factors could result in nonlinear effects on
the response. These can be rigorously examined by
means of an analysis of variance (ANOVA). While
there are a number of excellent references on
ANOVA, experimental studies in manufacturing
engineering that actually report the use of this
technique are relatively few. In general, we cannot
emphasize enough the use of statistical techniques
in making inferences. For the most part, the
techniques are simple and go a long way in pro-
viding rigor to conclusions drawn from experimen-
tal studies.

Factorial Designs: A problem with statistical
analyses where multiple factors are studied at
several different levels is that a large number of
experimental runs are required for legitimate
conclusions. Suppose that we are studying the
effects of five different elements of the tool sig-
nature on cutting forces. Each element is to be
studied at two values (or levels). If a variable is at its
first level it is assigned a code of — and if it is at its
second level it is assigned a value of +. The scheme
is summarized in Table 2.

Since we have a total of five factors and each
factor is studied at two levels, we have a total of
2% =32 different combinations of factor levels.
With two replicates for each of these, we would
need a total of 64 runs. Such an experiment is called
a full factorial design and is schematically repre-
sented in Table 3.

Now suppose we have material only for 32 runs,
and we want to retain at least two replicates for
each run. Statistical design techniques permit us to
run experiments with fractional factorial designs. A
half-fraction of the 23 design would use only 16
instead of all the 32 possible combinations. The
choice of the levels for these 16 runs is critical and

if done correctly, results in conclusions whose
statistical validity approaches those from a full
factorial design. If the levels are simply selected at
random, then a statistical analysis of the results
becomes impossible and any conclusions drawn
from the experiment would have had limited
validity. A valid half-fractional factorial design is
shown in Table 4. For a detailed description of
fractional factorial design, the reader is referred to
references [2] and [4].

The use of fractional factorial designs has started
to receive a lot of attention and Taguchi techniques
that use orthogonal arrays are essentially based on
the same concept.

Reporting Guidelines: When reporting the
results of an experimental study we recommend
that the following details be included:

e descriptions of the experimental setup

® levels and combinations of input variables, and
the rationale for their selection

e number of replicates for each combination of
inputs

e order in which runs were made

e an ANOVA table and statistical tests

e material characteristics (specification, hardness,
etc.)

® any other information needed to replicate the
data presented.

AN OUTLINE FOR A COURSE IN
EXPERIMENTAL DESIGN FOR
MANUFACTURING

A single semester course in experimental design
for manufacturing could be designed to cover the
following topics:

® brief review of basic statistics, hypothesis testing,

and confidence intervals

randomization, replication and blocking

analysis of variance

applications to manufacturing studies

two-way factorial designs, Latin square designs

general factorial designs

fractional factorial designs

review and critique of current literature in

experimental manufacturing

e student project: Experimental study in manu-
facturing, incorporating statistical design.

CONCLUSIONS

This paper describes some of the problems
associated with the design of engineering experi-
ments. It also demonstrates how well-known statis-
tical techniques can enable students and
researchers in the area of manufacturing to greatly
enhance the validity of conclusions from empirical
data, with minimal additional effort. This points to



Table 2. Factor levels and codes for an experimental study to evaluate the effects of five elements of tool
signature on cutting force (F,)

Variables Values used

1 Nose Radius (mm) X, X,
2 Back Rake Angle (degrees) a) as
3 Sside Rake Angle (degrees) 81 8o
4 End Relief Angle (degrees) Y1 Y2
5 Side Relief Angle (degrees) 81 P
Level codes for values - +

Table 3. Full Factorial Design; Y, is the measured response (kg) for replicate j of run i (total of 64
measurements).

Run Variable Levels Response

Measured Cutting Force

H
o
[
N
(]
=Y
wn

No.

1 l1 - - - - -

2 2 - - - - + 217 Yzz

3 3 - - = + - 3 Ysz

4 4 = = - * + Yur 42

5 5 - - + - - Ysiv Y,

6 6 - g + - + Ycu Ycz

7 7 = - + + = Y‘nr Yn

8 8 - - + + + Yur Yuz

9 9 - + - - - 917 Y’z
10 10 - + - - + 10,17 Yj0,2
11 11 - + - + - 1,00 Y33,2
12 12 - + - + + 12,17 Y32,2
13 13 - + + - - 13,17 13,2
14 14 — + + - + 14,17 Xai4,2
15 15 - + & + - 15,17 X31s,2
16 16 - + + + + 16,17 16,2
17 17 + - - - - 17,10 X317,2
18 18 + - - - *> 18,17 Yje,2
19 19 + - - + - 19,17 X19,2
20 20 + - = + * 20,17 20,2
21 21 + - + - - 21,17 X231,2
22 22 + - + - + 22,17 Y22,2
23 23 + - + + - 23,17 Y23,2
24 24 + il * . + 24,17 24,2
25 25 - + - - - 25,17 25,2
26 26 + + - - + 26,17 26,2
27 27 + + - + - 27,17 27,2
28 28 + - - - + 28,1¢ Yae,2
29 29 + + + - - 29,17 29,2
30 30 + + + - » 30,17 30,2
31 31 + - + + - 31,17 31,2
32 32 + + + + + Yiy2,1¢ Yi3,2
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Table 4. One half fractional factorial design with; Y, is the measured response (kg) for replicate j of run i
(total of 32 measurements).

Run Variable Levels Response

-4
o}
-
w)
[
N
w
s
(4]

Measured Cutting Force

1 2 =~ - - . + Yiur Yy,
2 3 - - - + - Yz 1’ Yzz
3 5 - = + - = Yae Yy,
4 8 - - + + + Yar Y
5 9 = + - - - Yo, Y5,
6 12 - + - + + Y10, Yea
7 14 - + + - + Yy, Y5
8 1 5 - + + + - Y.‘ ’ 82
10 20 + - - + + Yi0,1¢ Yo,z
11 22 + - + - + 1,17 X11,2
12 23 + - » + - 12,17 X12,2
13 26 » * - - + 13,17 X13,2
14 27 + * - + = 14,17 X14,2
15 29 + + + - 15,17 15,2
16 32 » + + + Yi6,1r Yie,2
a strong need for including a course in applied motivate researchers to use the abundance of
experimental design for students of manufacturing literature on statistical design in future experi-
engineering. It is hoped that this paper will also mental studies in engineering.
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