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The Automatic Computation of Influence
Lines
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R. VITALIANI

Istituto di Scienza e Tecnica delle Costruzioni, via Marzolo 9, 35131 Padova, Italy

This paper presents an application of numerical analysis for the determination of influence lines
By using Land’s theorem, this method shows the influence lines for actions, such as bending
moment and shear, in a completely automatic way. Almost all of the existing numerical codes for
the solution of frame structures can be used.

SUMMARY OF EDUCATIONAL ASPECTS
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. The paper discusses material for a course in:

Bridge Constructions, Automatic Calculus of
Structures.

. Students of the following departments are

taught in the course:
Civil Engineering.

. Level of the courses:

Fifth year undergraduate Bridge Construc-
tions (in Italy)

Fourth year undergraduate Automatic Calcu-
lus of Structures (in Italy)

. Mode of presentation:

Exercises, applications to actual structure
calculation, discussion group.

. Is the material presented in a regular or in an

elective course:

The material is presented in regular courses

(Bridge Constructions and Automatic Calcu-

lus of Structures) of the Civil Engineering

Degree Course.

Class hours required to cover the material:

Four classroom hours are required.

homework and revision

required for the material:

Five hours of student homework and two

hours of revision.

Description of the novel aspects presented in

the paper:

The method described in the paper presents

the influence lines of any structure (e.g.

bridges) in a completely automatic way, by

using almost all the existing numerical code for

the solution of frame structures.

standard text recommended for the

course, in addition to authors’ notes:

[1] V. Franciosi, Scienza delle Costruzioni,
Liguori Napoli (1962).
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[2] J.B. Kennedy and M.K.S. Madugla,
Elastic Analysis of Structures, Classical
and Matrix Method, Harper & Row, New
York (1990).

The material is/is not covered in the text. The
discussion in the text is different in the follow-
ing aspects:
In [1] and [2] there is no discussion on the
possibility of using numerical code to calculate
the influence lines. [1] is a good text to study
the theoretical meaning of influence lines and
to better understand the application of Land’s
theorem presented in the paper. [2] is a useful
book on classical and matrix methods to solve
elastic structures, with an extensive section on
the influence lines determination.

LIST OF SYMBOLS

is the bending moment that arises in the
cross-section § due to the imposition of the
settlements of the supports at the left-hand
side of section § itself;

is the shear that arises in the cross-section §
due to the imposition of the settlements of
the supports at the left-hand side of section §
itself;

is the vertical displacement of the beam
resulting from the elastic numerical analysis;
is the distance between the generic section

and the section S;

is the reaction of the support;

is the relative cross-section rotation;

is the relative displacement tangent to the
axis of the arch;

is the relative displacement perpendicular to
the axis of the arch;

is the vertical component of the hinge trans-
lation;

is the horizontal thrust of the arch;
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Y"  is the vertical component of the initial trans-
lation of the considered point, that is gener-
ally different from the vertical component of
the initial translation of the hinge Y.

INTRODUCTION

THE EFFECT of live or of moving dead loads can
be effectively analyzed and simply represented in
graphical form by the use of influence lines. The
concept of influence lines was first introduced by
Winkler in 1868 and then studied by several
authors |1, 2, 3, 4]. An influence line can be defined
as the representation of the variation of a particular
action such as reaction, shear, bending moment,
deflection at a particular section or axial force in a
particular member, plotted against the position of a
unit point load moving across the structure [4]. For
a proper design of some particular structures it is
very useful to know the shape of the influence lines
that show which parts of the structure should be
loaded to obtain maximum effects. For example,
when a truck gets through a bridge, the forces in the
members vary with the position of the truck and a
knowledge of the influence lines enables the critical
position of the load producing the maximum stress
in any specified member to be found.

Difficulties can arise for statically indeterminate
structures |2], for which the influence lines are
composed of curves and therefore several ordi-
nates must be computed, requiring the analyses of
many load conditions for every considered cross-
section. Problems can arise also for arches |1, 2],
where the curvature of the structure makes the
tracing of influence lines more complex [1].

In this paper we deal with the method of obtain-
ing influence lines for statically indeterminate
structures in a wholly automatic way. Both continu-
ous beams and arches can be considered. The
method is based on Land’s theorem [1, 5, 6, 7|, and
can be applied by using most of the existing numeri-
cal codes developed to solve frame structures.
Some applications with a microcomputer program
are presented to demonstrate the simplicity and the
effectiveness of this method.

INFLUENCE LINES FOR CONTINUOUS
BEAMS

Shear for a cross-section in a middle span

Let S be the cross-section for which the shear
influence line must be traced (Fig. 1). By imposing
a unit vertical displacement to the supports at the
left-hand side of section §, a bending moment M_*
and a shear T.* arise in the cross-section § itself.
The deformed beam is now cut at S, keeping M *
and T.* applied at the end of the two parts of the
beam, and the supports are put back in their
original positions. As a consequence, two
deformed curves are obtained that represent

Ts=F(Y"+1)

Ts=FY*
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Fig. 1. Influence line for shear in the middle span of a
continuous beam

exactly the influence line for the shear. In fact
Land’s theorem conditions are respected (the
relative rotation and horizontal displacement are
zero) and we can write

T.= F(Y*+1)

for the left-hand side of the beam, with respect to §
and
T,= FY*

for the right-hand side of the beam, with respect to
S, where Y* is the vertical displacement of the
beam resulting from the numerical analysis. Since
many automatic codes provide only the node
displacements, it is useful to introduce some
fictious nodes to obtain a more precise tracing of
influence lines.

Shear for a cross-section in the extreme span

To derive the influence line for the shear at the
cross-section S (Fig. 2), a unit vertical displace-
ment is assigned to the extreme support and a cut is
executed at S. With reference to Fig. 2, even if the
cut turns the left-hand side of the beam into a
mechanism, the presence of 7,* and M * makes this
structure in equilibrium, so proceeding as in the
previous case:

T.= F(Y*+1)

Tg=F(Y"+1)

Ts=FY*

Fig. 2. Influence line for shear in the extreme span of a
continuous beam
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for the left-hand side of the beam, with respect to §
and

T,= FY*

for the right-hand side of the beam, with respect to
S, where Y* has the previous meaning. It is worth
noting that just one load condition (i.e. a support
settlement) is necessary to obtain the influence line
for the shearing force for every cross-section
belonging to the same span. This is because the
deformed configuration is always the same for all
the sections of a span.

Bending moment for a cross-section in a middle
span

A vertical displacement is assigned to the
supports at the left-hand side of the beam, with
respect to section § (Fig. 3), so that a unit rotation
around § is obtained. With reference to Fig. 3, the
unit rotation around the section § is obtained by
imposing a vertical displacement v =2z, to the
extreme support (z, is the distance between the
extreme support and the section §), and a vertical
displacement v = z, to the second support (z, is the
distance between this support and the section ).

Ms=F(Y*+2)
Mc=FY*

Z,

Fig. 3. Influence line for bending moment in the middle span of
acontinuous beam

After deformation, the beam is cut at § and the
supports are put back in the original positions, by
keeping the bending moment M * and the shear 7.*
applied. Again, Land’s theorem conditions are
respected and we can write:

M, = F(Y*+2)
for the left-hand side of the beam, with respect to S
and
M, = FY*
for the right-hand side of the beam, with respect to

S, where Y* is again the vertical displacement of
the beam resulting from the numerical analysis, and

z is the distance between the generic section and
the section § (Fig. 3).

Bending moment for a cross-section in the extreme
span

The influence line for the bending moment at S is
obtained as in the previous case and is shown in
Fig. 4. Again we have:

M, = F(Y* +2)

for the left-hand side of the beam, with respect to §
and

M, = FY*

for the right-hand side of the beam, with respect to
S, where Y* has the previous meaning.

It should be noted that to trace the influence line
for the bending moment it is necessary to apply one
load condition for every considered cross-section,
even if they belong to the same span. This is
because the deformed configuration is different
from section to section, also in the same span.

Mg=F(Y"+2)
Ms=FY*

Fig. 4. Influence line for bending moment in the extreme span
of a continuous beam

Reaction of a support

Finally, to obtain the influence line for the
vertical reaction R of a support, it is sufficient to
assign a unit vertical displacement to the support
itself. The deformed curve obtained by the numeri-
cal analysis is exactly the influence line for the reac-
tion with R = FY*

INFLUENCE LINES FOR TWO HINGED
ARCHES

Shear for vertical loads

With reference to Fig. 5, let ¢, be the relative
cross-section rotation and u, and v, be the relative
displacements respectively tangential and perpen-
dicular to the arch axis. The hinge at the left-hand
side of section § is translated in a parallel manner
to the inclination of the section § itself. Then the
arch is cut at § and the left hinge is moved to its
original position by obtaining:

@, =0; u,=0; v,=1.
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Fig. 5. Influence line for shear in a two hinged arch

Hence the shearing force can be written as:
T.=F(Y*+Y)

for the left-hand side of the beam, with respectto S
and

T, = FY*

for the right-hand side of the beam, with respect to -

S, where Y is the vertical component of the hinge
translation and Y* has the previous meaning. To
obtain the influence line (Fig. 5), the (Y* + Y’)and
Y* values must be plotted as ordinates on a straight
beam with length equal to the span of the arch
(reference beam).

Horizontal thrust for vertical loads

A unit translation of the left hinge is assigned in
the direction parallel to the span of the arch, and
the vertical displacements resulting from the
numerical analysis are then plotted as ordinates on
the reference beam (Fig. 6) to obtain the influence
lines for the thrust: H = FY*.

Bending moment for vertical loads
With reference to Fig. 7, the hinge at the left-
hand side of section § is moved so that the left part
of the arch rotates round S of a unit quantity. Next,
the arch is cut at § and the opposite rotation is
assigned to the left hinge by obtaining:
Q,=1; u,= 0; v,=0.
Hence we can write (by Land’s theorem):

M, = F(Y*+ Y")

for the left-hand side of the beam, with respect to §,
and

M, = FY*

for the right-hand side of the beam, with respect to
S, where Y” is the vertical component of the initial
translation of the considered point, that is generally
different from the initial, vertical component of the
hinge translation, and Y* has the previous meaning.
Again (Y*+ Y") and Y* are plotted as ordinates
on the reference beam (Fig.7) to obtain the
influence line for the bending moment.

FIXED ARCHES

The method is the same used in the previous
section, except for the influence line for the
bending moment. In this case, when we assign the
displacement of the support, the fixed section must
rotate of a unit value, as shown in Fig. 8.

It is worth observing that the arches can be
schematized with straight lines if the microcompu-
ter programs for frame structures do not consider
curvilinear beams.

CONCLUSION

To improve and simplify the use of influence
lines that are very helpful in the analysis of struc-
tures subjected to live or moving dead loads, it is
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H=FY*

Fig. 6. Influence line for thrust in a two hinged arch

Mg = F(Y"+Y")

Mg=FY*

Fig. 7. Influence line for bending moment in a two hinged arch

necessary to automatize the procedure for obtain-
ing the line drawings. In particular, for statically
indeterminate structures, the tracing of influence
lines without an automatic aid can become an
onerous task.

The method described in this note is very simple
and effective and produces the influence lines for
every action, just using a generic automatic code
for frame structures and imposing suitable load
conditions, i.e. support settlements, so that Land’s
theorem hypotheses are respected.

For the sake of brevity, only a few particular
cases have been presented, concerning continuous
beams and arches. However, it is easy to apply this
method to any structure to obtain the influence
lines for every action that varies as the load moves
across the structure, e.g. bending moment, shearing
force, thrust, displacement at a section or reaction
at a support.
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Fig. 8. Influence line for bending moment in a hingeless arch
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