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Exact Evaluation of Internal Forces
for Beam Elements Carrying Uniformly

Distributed Loads™

M. S. PEREIRA

Mechanical Engineering Department, Instituto Superior Técnico, Lisbon, Portugal

In a classical 2D truss/beam finite element, based on the technical theory of beams, the axial and
transverse displacement fields are normally interpolated with linear and cubic shape functions
respectively. These elements provide exact results when modelling rigid joined structures with

concentrated forces and moments

It is shown, within the framework of finite elements

formulation and with the aid of additional shape functions, that the nodal displacement solution
is exact when uniformly distributed loads are applied. Using these additional shape functions a
method is developed to obtain the exact shear forces and bending moments in suc h loading

conditions

INTRODUCTION

SEVERAL introductory finite element teaching
programs in structural analysis [1-4] present the
truss and beam elements and apply them to the
analysis of planar frames, including the evaluation
of shear forces and bending moments at nodal
points.

It is well known that models of planar structures
using the standard beam element give exact dis-
placements and generalized forces at nodal points
provided only concentrated loads are applied.
When uniformly distributed loads are considered,
nodal equivalent point forces can be calculated
from the potential terms of such loads and exact

nodal displacements are still obtained. However, if

shear forces and bending moments are evaluated
by derivation of the displacement field, strong
inaccuracies are expected. This is due to the fact
that the standard beam element cannot model
exactly the fourth order transverse displacement
fields and the second order axial displacement
fields which occur in such loading conditions.

Based on different physical arguments, the
evaluation of internal forces for elements carrying
uniformly distributed loads has been presented in
the literature in several ways.

Nath 5] suggests that the nodal equivalent point
forces, being merely an expedient for calculating
exact nodal displacements, cannot be strictly con-
sidered as external loads. Consequently these
forces must be subtracted to the internal gener-
alized forces obtained from the derivation of the
displacement fields. Coates et al. |6] suggest a two
step analysis: in the first step a full stiffness analysis
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is carried out to render the structure ‘kinematically
determinate’ by clamping all joints against dis-
placement and a ‘particular’ solution is obtained. In
the second step a ‘complementary’ analysis is car-
ried out using a set of loads equal and opposite to
the fixed end moments and forces exerted by the
clamps in step 1. The solution to the problem is
then obtained by superimposing the ‘particular’
and the ‘complementary’ solutions.

In both methods internal forces F¢ are evaluated
for each member using the following expression

F'=K'q' — Q° (1)
where K¢ is the element stiffness matrix, q° the
element nodal displacement solution and Q¢ a
correction term corresponding to the nodal equiva-
lent point loads associated with the distributed
loads.

These methods have undoubtedly the advantage
of providing some insight into physical aspects of
this problem. However questions regarding the
exact displacement solution obtained in such,
loading situations and the role played by the
correction term Q are yet to be answered within the
framework of the finite element formulation.

For the sake of completeness a brief outline of
the finite element formulation is presented.

The truss and beam elements are developed
introducing additional higher order shape func-
tions to model the displacement fields associated
with uniformly distributed loads. It will be seen why
in such loading conditions the displacement solu-
tion is exact for these elements. The formal reason
for the introduction of a correction term Q¢ in the
evaluation of internal forces as shown in expression
(1) is also presented.
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THE FINITE ELEMENT METHOD

The application of the finite element method in
linear elastic structural analysis can be briefly
described in the following major steps:

Step 1

A structure/continuum is divided into elements;
in each element the displacement field is chosen in
terms of a set of shape functions and a set of nodal
displacement parameters.

Step 2

Based on the principle of minimum total poten-
tial energy, a stiffness matrix relating the nodal
forces and displacements is obtained for each ele-
ment from the strain energy terms. Also a load vec-
tor is obtained from the potential of the external
forces. For each element an equilibrium equation
can be written in the form

Keqe = (2)

where K¢ is the stiffness matrix, q¢ is the vector of
the nodal generalized displacements and f* is the
generalized force vector.

Step 3
A global equilibrium equation

K-:qx=p< (‘;)

is obtained by assembling a global stiffness matrix
K* and in a global load vector f* the different
element stiffness matrices and the corresponding
element load vectors, respectively, according to the
topological description of the structure’s finite
element model. g* is the vector of global degrees of
freedom.

Step 4

Once the displacement solution of equation (3)is
obtained, internal forces can be calculated in each
element by proper derivation of the displacement
fields.

The selection of displacement functions is a
crucial step on the finite element formulation since
it determines the ability of an element to accurately
model the expected displacement fields within the
structure.

THE TRUSS/BEAM ELEMENT

The standard truss/beam element has two
extreme nodes, six degrees of frcedom, two transla-
tions and one rotation in each node as illustrated in
Fig. 1.

This element can be obtained by the superposi-
tion of the beam element and the truss element.
These two simpler elements are now described.

Truss element

Consider the one dimensional truss element.
This element has two axial degrees of freedom: u,
and u, as shown in Fig. 2.

If the element is carrying a uniformly distributed
load Q, itis well known from elasticity theory that
the displacement u is quadratic in x.

Consider the displacement within the element to
be given by

u=Nu, + Nyu,+ N;p 4)
where p is an extra degree of freedom and

1'\/] = (L - X)/'I,: ‘;\w: = x/L:

This element now has an extra quadratic shape
function as compared to the standard truss ele-
ment. It can be seen that N,=0 for x =0 and
x = L, thus u, and u, can still be interpreted as the
nodal axial displacements.

The strain energy of the element is given by

1 (& [du\?
U ,J EA(dX> dx (6)
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Fig. 1. Truss/beam element.
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where E and A are the Young's modulus and the
truss cross-sectional area, respectively.

If expression (4) is derived with respect to x and
substituted in (6) the element stiffness matrix is
obtained

o TEEA v oo v s ar wrpna:
K: =| == [NiN3N3T[N;N; Nifd
1 -1 0
ZY I
“lo o 173 (7

the potential of the distributed load Q, is defined by

-l
Qq-' Q.udx (8)

and the nodal equivalent point forces f; can be
calculated

rL
fe=| QNdx ©9)

or
ff =[O,L/2; Q.L/2; Q.L/6]" (10)

The equilibrium equation for the element can be
established

) 1 =1 0] |u, 1/2
éLﬁ -1 1 0 |{u,t =QL{1/2 (11)
0 0 1/3]|p 1/6

The extra degree of freedom p is not coupled
with «, and u, and can be immediately calculated:
p = Q.L*/2EA; this result shows that u, and u,
are exact for the present loading conditions even
assuming a linear displacement field.

If, for example, u, = 0 (which correspond to the
1D problem of a simply supported rod subjected to
its own weight), equation (11) has the solution

QII‘: . — L)II‘:
2EA’ 12 P=2EA

= ():

(12)

u,

The internal forces in the element can be evalu-
ated
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. (du
F,=—AE (H),-“;

or in matrix form

. (du
== < | — ‘;
F,= AF <d >.-/ (13)

X

Fl _‘\v’lin-n \:il-n u]
.= AE ) .
F, =Nilie =Nl | |42
—N; x=() AE I =l u
+ EAp | - AE :
- :I.-/ L —1 1 u,

-1
)

(14)
substituting the solution (12) in equation (14)
F, Q.L/2 —-Q,L/2 0
E|"|~oLz|T |-oLn|” |-or| ()
which is the exact solution.
Equation (15) suggests another form
F/=Kq/ — Q (16)

where q¢ is the element displacement solution.

The vector Q¢ is a correction term that cor-
responds to the nodal point loads equivalent to the
distributed forces Q..

In Fig.3 the exact displacement solution is
compared with the finite element results.

It can be observed that the corrective term
Q.L/2 in expression (15) corresponds, in terms of
derivatives of u, to measure the slope of angles
a + B,,and a + B, at node points 1 and 2 respec-
tively, instead of a alone as illustrated in Fig. 3.

Comparing expressions (7) and (14) it can be
seen that

L

| NiNidx = =Nl (17)
W
| MiNidx= =Nl =Nilo, (18
il
| MiNidx = =Ny = Nt (19)
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Fig. 3. Simply supported rod. Displacement distribution
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Considering, for instance, expression (18) and
integrating the left hand side by parts

3 s
NiNydx=N,N,Jt —| N;N;dx (20)
() b |
N, is linear in x thus N7 = N||
the relationship (18).
Expressions (17) and (19) can be equally
demonstrated in the same manner.

;, = 0 thus proving

/

Beam element

Consider the 4DOF beam element shown in
Fig. 4.

The transverse displacement w is described
within the element by

w=Nw,+N,0,+ Nw,;+ N6, (21)

where
N,=1-—3x%/L*+2x%/L?
N, = x —2x%/L + 2x%/1
N;=—3x%/L*—2x°/1
N, = —x¥/L + x/L> (22)

are the third order Hermite polynomials.
For uniformly distributed loads the exact dis-
placement solution is a fourth order polynomial.
Let us suggest the following displacement field

w= N,w, + N,0,+ Nyw,+ N,0,+ N.A
(23)

where Ny = x*(1 — x/L)* and A is an extra degree
of freedom associated with this new element. It can
be observed that w,, 6,, w,, 8, maintain their
physical previous meaning since N,_,= NJ|,_, =
Niimo = N4, = 0.

The strain energy of the element is given by

1t (2w
U=5EI| (ti"“_) dx (24)

where E, I are the Young's modulus and the
second moment of the cross section, respectively.

If the displacement field (21) is derived twice
with respect to x and substituted into expression
(24) the element stiffness matrix terms are then
obtained.

K;=EI| N'Ndx (25)

y
t
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The potential of the loads is given by

Q) = ‘ Qwdx (26)

and the nodal equivalent point forces f can be
obtained

X !
fi=| ONdx (27)

The element equilibrium equation can now be
established for a uniformly distributed load Q..

[12/ 6 —12/L 6 0 ] |w
- 6 4L —6 2L 0 0,
1— —-121 -6 12/L -6 0 W,

6 21 —6 4L 0 0,
[ 0 0 0 0 4LY/5) |4
1/2
L/12
=QL{ 1/2
—L/12
1%/30 (28)

Again 4 is not coupled with w, €,, w,, 6, and is
L“I'L‘(I'_\ calculated, 4 = Q.L-/24EI.

Let us consider the case of a cantilever beam
with w, = 6, = 0. The equilibrium equation is

reduced to

o1 |12/L —6] |w, 1/2
['—1 =L (29)
L -6 44| {6, L/12
yielding the solution
QL* O.L?
, = 0, = — 30
! 8EI "’ 6E] (59)

which is the exact solution for this case.
We can pmccui and evaluate the shear forces F

and bending moments M, according to the follow-

Ing expressions

d'n d’w

- M= EI =
dx’°’ dx-

(31)

These internal forcs can then be obtained for
each node using the matrix equation

19 —

T

f= L

S

L

Fig. 4. 4DOF beam element
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4 Nleo  Nileo Nl
M, =N/, =Ny o =Nj'|s=0
= FEI
I, =N =1 =N, L-/ =Nyt
M, Nl Nl —Nile
N{lmo | W1 N3l im0
~N/]-a | |6, N2l,m
+ EIL S,
=Nyl | |2 IN§ |ymi
=Ny|i= | 1 6, Nili-r) (32)

For the case of the cantilever beam referred to
above, substituting solution (30) into equation (32)

T -1/2 -1/2
M, —5L/12 —L/12
r =0l +Q.1
v —-L/12 L/12
—-Q.L
- 0
0 (33)

which corresponds to the exact solution obtained
with the technical theory of beams.

Again it can be seen that expression (32) can be
rewritten in the form

F; =K;q; — Q; (34)

where F§ are the equilibrium external forces, K§, the
element stiffness matrix, qj, the element degrees of
freedom, Q¢ a correction term which can be
directly obtained from the nodal equivalent point
forces (27).

Comparing the stiffness terms in (25) with the
first matrix on the right-hand side of equation (32
several identities can be established such as

W
| NiNidx = Nl (35)
"l
| N;Nzdx = N7, (36)
o |
| NiNidx==Nl.,  (7)

which can be equally verified, integrating by parts
the left-hand side.

CONCLUSIONS

[t was shown, within the framework of the finite
element formulation, that by introducing addi-
tional higher order shape functions and additional
new degrees of freedom in the standard 6DOF
beam element it is possible to obtain exact solu-
tions for uniformly distributed loaded structures.

These additional shape functions allow the exact
evaluation of internal forces by introducing new
correcting terms which have been shown to corres-
pond to the nodal equivalent point forces.
Although for practical purposes, this result is well
known, the formulation presented herein allows a
better understanding and provides a formal expla-
nation of the role played by such terms. This
method can easily be extended in the development
of other elements to model more severe displace-
ment fields (non-uniform distributed loads) with-
out the corresponding increase in the total number
of degrees of freedom of the finite element model.
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