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Determining the stability of a system, either analog or digital, is a very important subject in
Control Systems courses. A computer simulation for teaching system stability concepts, called
SYSTA, has therefore been developed as a teaching aid in the learning of the stability of a system.
The software assists the students in understanding how the stability of a system is determined and
how it is affected by the parameters in the characteristic equation. The software is menu driven
and user friendly, and a manual thus seems unnecessary. The program is written in Turbo C
version 2.0 and may be run on any IBM personal computers or compatibles with CGA, EGA, or

VGA monitors. This program also provides support for a Microsoft mouse or compatibles.

INTRODUCTION

ALMOST ALL books on Control Systems courses
talk about the stability of a system, either analog or
digital. By definition, a system is said to be stable if
for all bounded inputs there are corresponding
bounded outputs. There are many approaches to
determine the stability of a system. For analog or
linear continuous-time systems (s-domain), three
approaches are used in the software: (1) The
Routh-Hurwitz stability criterion [1-3]. (2) Roots
analysis (determining the location of the roots of
the characteristic equation on the s-plane) [1-3].
(3) Graphical plot of the roots on the s-plane.

For digital or linear discrete-time systems (z-
domain), however, the following three approaches
are used in the software: (1) The Jury stability
criterion [2, 3]. (2) The magnitude and angle of the
roots of the characteristic equation on the z-plane.
(3) Graphical plot of the roots on the z-plane.

From the students’ point of view, it is not too
hard to understand how the stability of a system is
determined as long as the concepts are under-
stood. A computer simulation program for teach-
ing system stability concepts, SYSTA, has
therefore been developed to make the students
understand the processes behind the stability of
the systems by manipulating the approaches listed
above. The program is menu driven and highly
interactive, so that even the first-time user can use
it with ease. Its mouse capability makes it even
more convenient. It may be run on any IBM PCs
or compatibles equipped with either CGA, EGA,
or VGA monitors.

* Paper accepted 20 May 1991.
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SYSTEM STABILITY IN THE s-DOMAIN

The stability requirement may be defined in
terms of the location of the roots or the poles of the
closed-loop transfer function. The closed-loop
transfer function may be written as
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where ¢g(s) is the characteristic equation whose
roots are the poles of the closed-loop system.

Routh-Hurwitz criterion

The first method used by this program is the
Routh array and the Routh-Hurwitz criterion |1,
4). This method gives the absolute stability of a
system. The necessary condition for this method is
that all of the coefficients of the characteristic
equation should be non-zero and of the same sign.
The Routh—-Hurwitz criterion is based on ordering
the coefficients of the characteristic equation
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and so on. The necessary and sufficient condition
for the Routh-Hurwitz criterion is that there
should be no changes in sign in the first column of
the array for a stable system. The Routh-Hurwitz
criterion states that the number of roots of the
characteristic equation, ¢(s), with positive real
parts is equal to the number of the sign changes in
the first column of the Routh array. In the software,
the number of the sign changes is determined after
the Routh array is completed. It shows where the
sign changes are and the total number of sign
changes. There are three distinct cases in the
Routh-Hurwitz criterion that should be dealt with
separately, requiring suitable modifications of the
array calculation procedure.

Case 1: no element in the first column is zero. No
changes should be made since the array is already
completed. The software therefore determines the
stability of the system by calculating the number of
the sign changes in the first column of the array. It
also gives some comments about this case.

Case 2: zeros in the first column while some other
elements of the row containing the zero are non-
zero. The zero in the first column should be

substituted by a very small positive number, &, that
will approach zero after the array is completed. In
the program, the value of £ is 1.0 X 1075. When the
program encounters this case, the construction of
the Routh array is paused. It shows some com-
ments at the bottom of the array and waits for the
user’s response to continue with the construction of
the array by using the value of ¢ as mentioned
above. After the array is completed, the number of
sign changes is calculated and some comments are
given. (See the example in Fig. 1.)

Case 3: zero in the first column, and other
elements of the row containing the zero are also
zero. The row containing the zeros should be
substituted by the coefficients of the derivative of
the auxiliary equation. The coefficients of the
auxiliary equation, A(s), are the elements of the
row preceding the row of zeros. Once the program
encounters this case, it halts the construction of the
Routh array and waits for the user’s response to
continue with the construction of the array. Some
comments are also given atthe bottom of the array.
After the array is completed, the program com-
putes the auxiliary equation, A(s), and the number
of the sign changes. Some explanations about this
case are also given.

Roots analysis

The stability of a linear system can also be deter-
mined by the location of the roots or the poles on
the s-plane. This method gives the relative stability
of the system.

There are many approaches to finding the roots
of a polynomial, including synthetic division [1, 5],
Newton—-Raphson [5], and Bairstow’s method [6].
Our software uses Bairstow’s method because this
can calculate complex roots from real coefficients.
The locations of the real part of the roots indicate

[EDIT] [ROUTH-HURWITZ]

[ROOTS]

[QuIT]

(GRAPH| [DOMAIN]

Click the mouse button to continue . . .

———————— ROUTH-HURWITZCRITERIA — — — — — — — —

UNSTABLE.

$°5 1.00 2.00
s"4 2.00 4.00
s"3 £ 6.00
$"2 —1.200E + 06 10.00
e 6.00 0.00
s"0 10.00 0.00

So, the zero in row s "0 is substituted by €, a very small positive number which will approach zero
after the array is completed. Here, ¢ has a value of 1.0E — 5.

The number of right-hand poles on the s-plane is determined by the number of sign changes of the
entries in the first column. There are 2 poles at the right-hand side of the s-plane. So, the system is

11.00

10.00
0.00
0.00 <——— sign change #1
0.00 <—— sign change #2
0.00

Fig. 1 An example of a Routh-Hurwitz window.
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|EDIT| [ROUTH-HURWITZ| [ROOTS| |GRAPH| [DOMAIN/| [QUIT]

Click the mouse button to continue . . .

——————— ROOTSANALYSIS ' — — — — — — — — = —
right-hand root s(1)=0.8950 —j 1.4561
right-hand root s(2)= 0.8950+]1.4561

left-hand root

left-hand root

left-hand root

YYyvYyyy

UNSTABLE.

A system is unstable if there is a root with positive real part. There are 2
roots with positive real part on the s-plane. So, the system is

s(3)=—1.2407 —j 1.0375
s(4)=—1.2407 +j 1.0375
s(5) = —1.3087 + 0.0000

Fig. 2. An example of the roots analysis option.

how stable the system is. The three conditions for
the roots analysis are:

1. If one or more roots are located at the
positive half of the s-plane, the system is
unstable.

2. If there are no roots with positive real part,
and one or more roots are located along the
imaginary axis, the system is critically stable.

3. If real parts of all roots are negative, the
system is stable.

The software calculates the roots of the charac-
teristic equation and determines the number of
roots with positive real part. If the roots with
positive real part exist, the program will tell the
user that the system is unstable and give the reasons
for this. (See Fig. 2 for an example of the roots
analysis.)

SYSTEM STABILITY IN THE z-DOMAIN

The stability of a linear discrete system is also
determined from the locations of the closed-loop
poles on the z-plane. Consider the following
transfer function for a closed-loop linear discrete
system:

c@) _
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The closed-loop poles of the system are therefore
defined as the roots of the characteristic equation,
P(z). P(z)is derived from the following equation:

P(z)=1+ GH(z)=0 )

Jury stability criterion

The first method used by SYSTA to determine
the stability of a linear discrete-time system is the
Jury stability table and the Jury stability criterion
[2, 3]. This method gives the absolute stability of a

system, and may be applied to a polynomial
equation with real or complex coefficients. In
applying the Jury stability test to a given charac-
teristic equation P(z) =0, we construct a table
whose elements are based on the coefficients of
P(z). The general form of the characteristic equa-
tion in a linear discrete-time system is as follows:

Flitis=g g2t Ta& T8
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Table 1 shows the general form of the Jury table.

Note that the first row consists of the coefficients of

the characteristic equation P(z), and the second

row consists of the coefficients of P(z) in reverse

order. The elements of rows 3 to (2n — 3) are given
by the following determinants:
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Note also that the elements in the even-numbered
rows are simply the reverse of the elements in the
preceding odd-numbered rows. Once the Jury
table has been completed, four conditions are
tested to determine the stability of the system. The
conditions are:

|an| < aO (8)
P(2)[;=; >0 (€))
> 0 for n even
P(2)|,—-, (10)
< 0 for n odd
61| > [y
Icn:—zl > ICOI (1 1)
a2l > lq

Based on the preceding tests, we can conclude
that:

1. If all conditions are satisfied, the system is
stable.

2. If conditions (8) and (11) are satisfied, and
P(2).,-;=0.0 and/or P(z)|,-_, = 0.0, the
system is critically stable.

3. If one or more conditions are not satisfied,
the system is unstable.

Once the software has completed the Jury table,
it runs the tests to determine the stability of the

system. Based on the tests, the software determines
how many conditions are not satisfied for a stable
system. It also points to the unsatisfied tests. (See
Fig. 3 for an example of Jury stability criterion.)

Magnitude and angle

The second method used by SYSTA to deter-
mine the stability of a linear discrete-time system is
determining the location of the roots of the
discrete-time system characteristic equation, P(z)
[3]. This method gives the relative stability of a
system. The necessary and sufficient condition for
the stability of a linear discrete-time system is that
the roots of the characteristic equation should lie
inside the unit circle on the z-plane [2]. There are
three conditions for determining the stability of a
linear discrete system on the z-plane:

1. If one or more roots are located outside the
unit circle (magnitude > 1.0), the system is
unstable.

2. If there are no roots located outside the unit
circle, and one or more roots are located on
the unit circle (magnitude = 1.0) the system is
critically stable. However, from the physical
point of view, such a system is considered as
unstable because a very small change in the
physical constants may create instability on
the system.

3. If all roots are located inside the unit circle
(magnitude < 1.0), the system is stable.

The software computes the magnitude and angle
of the roots and justifies the stability of the system
by checking the magnitude of the roots. Based on

[T SNV S

|EDIT]| [JURY-STABILITY| [MAGNITUDE] [GRAPH] [DOMAIN] [QUIT]
Click the mouse button to continue.. . .
——————————— FUR Y S AR T Y i e e e o o e
Row 70 23 z'2 z°3 z°4
1 1.000 2.000 11.000 18.000 18.000
2 18.000 18.000 11.000 2.000 1.000
2 18.000 187.000 322.000 323.000
4 323.000 322.000 187.000 18.000
5 5.460E + 04 1.006E + 05 1.040E + 05
6 1.040E + 05 1.006E + 05 5.460E + 04
STABILITY TESTS:

18|=18<17=

not satisfied

. P(1)=50.00> 0 ? =
. P(—=1)=10.00> 0 ?; nin even =

satisfied
satisfied

. 1323 > |18] 7=
. [104005| > |54605| 2=

1 condition is not satisfied. So, the system is UNSTABLE.

satisfied
satisfied

Fig. 3. An example of a Jury stability window.
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the magnitude, the program gives some comments
about the stability of the system. From the GRAPH
option, the software displays the locations of the
roots with the unit circle on the z-plane. (Figure 4
gives an example of this type of plot.)

COMPUTER SIMULATION SOFTWARE

Upon executing the SYSTA, the title of the
program appears on the screen along with the
menu to select the domain that the user would like
to work on. The default is the s-domain. The menu
items may be selected by using the cursor keys or a
mouse if one is available. If a mouse is used, click
the left mouse button when a menu item has been

z-plane Im A

/'\ Re
— —
-5 —4 =3 =2 —1 _/1 2 talitigitiy

\

Ar=2
x
=3
=
¥ Press any
key to continue.

Fig. 4. An example of the GRAPH option.

highlighted. After selecting the domain, the main
menu appears on the screen.

The organization of the software is explained by
the flowchart shown in Fig. 5. The EDIT function,
which should be executed first, asks the user to
input the coefficient of the characteristic equation.
In typing in the coefficients, the user should press
the ENTER key to confirm an entry. If all pro-
cedures have been followed, the characteristic
equation will appear at the bottom of the window,
and the EDIT window disappears once a key is
pressed.

In the s-domain, the user can work on the
ROUTH-HURWITZ stability criterion and the
ROOTS ANALYSIS. In the Routh-Hurwitz ana-
lysis, the program simulates the Routh array on the
screen and gives some comments on the stability of
the system (based on the characteristic equation
entered by the user). It explains the Routh-Hurwitz
criterion concepts in an interactive way with the
use of pop-up windows. In the roots analysis, the
program analyzes the roots and figures out the
number of roots with positive real part in the char-
acteristic equation. A system is unstable if there is a
root with positive real part. The GRAPH option
displays the location of the roots on the s-plane
graphically.

The JURY STABILITY test and the MAGNI-
TUDE AND ANGLE analysis are available in the
z-domain. In the Jury stability analysis, the pro-
gram simulates the Jury table on the screen and
analyzes the stability of the system by implement-
ing the Jury tests. Magnitude and angle analysis
computes the magnitude and angle of the roots of
the characteristic equation. The system is unstable
if there is a root that has a magnitude greater than
1.0. The GRAPH option gives a graphical display
of the location of the roots on the z-plane.

The user can change the domain that he or she is
working on by selecting the option DOMAIN from
the main menu. QUIT returns the user to the DOS
prompt.

S-DOMAIN

Z-DOMAIN

ILED T ROOTS DOMAIN
ANALYSIS T

l JL} DOMAIN “‘“ l

DOMAIN MAGNITUDE "EDIT"
& ANGLE

HURWITZ

ROUTH- ] II GRAPH 'I

ﬂ GRAPH

JURY
STABILITY

Fig. 5. Schematic representation of SYSTA's functions.
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CONCLUSIONS

Many computer programs can analyze the stabil-
ity of a system. However, it is hard to find one that is
intended for use as an interactive teaching aid as
well as a design tool. Furthermore, most of the soft-
ware currently available does not interact with the

user very much: the emphasis is merely on the solu-
tions. Unlike other software, SYSTA interacts with
the user very well through the use of pop-up
windows and menus. It is user friendly and
accurate, which makes it highly suitable for use
either as a teaching aid or as a analysis tool.
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