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Kirchhoff’s Current Law (KCL) and the Minimum Power Law (MPL) are used for analysis of
circuits that do not contain dependent sources, without relying on Kirchhoff’s Voltage law (KVL)
or Ohm’s Law (OL). The result is a set of algebraic equations, the solution of which gives the
branch currents and nodal voltages. The method is generalized to resolve circuits containing
dependent and independent sources.

INTRODUCTION

ABOUT a century ago, James Clerk Maxwell
wrote:

In any system of conductors in which there are
no internal electromotive forces the heat gene-
rated by currents distributed in accordance with
Ohm’s Law is less than if the currents had been
distributed in any other manner consistent with
the actual conditions of supply and outflow of
current. ... We can prove in a similar way that
when there are electromotive forces in the dif-
ferent branches the currents adjust themselves
so that ZRC? — 22X EC is a minimum, where E is
the electromotive force in the branch when the
currentis C. .. This is often the most convenient
way of finding the distribution of current among
the conductors [1].

Surprisingly, the above-mentioned theorems are
rarely discussed, let alone used, in textbooks on
circuit theory—despite the ease and elegance of
using them and despite the important conclusions
relating to power dissipation in this age of energy
awareness.

A course in circuit analysis is one of the most
important courses in the electrical engineering
curriculum and it is increasingly becoming com-
mon for students of other engineering disciplines.
Usually analysis techniques are developed based
on Ohm’s Law (OL) and Kirchhoff’s Voltage and
Current Laws (KVL and KCL), and these are
accepted as axiomatic. KCL can be easily accepted
as axiomatic because of the many examples around
us that can be used to illustrate it. KVL, however, is
not as easily acceptable initially, especially to non-
electrical engineering students. Based on these
laws, methods for circuit analysis, like the mesh
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method (MM) and the nodal method (NM), were
developed; each of those methods has its own
limitations. In particular, neither MM nor NM can
directly handle all types of dependent sources.

An alternative introductory approach for teach-
ing circuit theory is to use KCL and the Minimum
Power Law (MPL) as axiomatic. A power function,
F, is defined and it will be shown that branch
currents are such that this power function is
minimal subject to KCL. Dependent sources will
be treated as independent sources when minimiz-
ing F, and additional equations are added to
describe the dependency of those sources. The
minimization process results in an OL equation for
every branch current and a KCL equation for every
unknown nodal voltage. The necessary circuit
theory tools are only KCL and the MPL to be
introduced. Writing the power function F is easy
and straightforward. The mental effort and the
possibility of errors are reduced when using this
approach. The computer is used as a computa-
tional tool to solve equations.

When comparing the methods developed in this
paper with the MM and the NM, it will be apparent
that the limitations of those methods are overcome.
As the unknowns in the resulting set of equations
are the branch currents and the unknown nodal
voltages, the resulting set of equations to be solved
is larger than when applying the MM or the NM.
This apparent disadvantage is insignificant con-
sidering the fact that the skill required to write the
equations to be solved will be quickly mastered,
and most engineering students have programs to
solve equations at their fingertips. Also, it will be
found that the matrix of coefficients is sparse,
making it easy to solve the resulting equations
without a computer.

It is emphasized here that the purpose of this
paper is not to replace existing methods of circuit
analysis; these methods took decades to develop
and refine. The presented ideas, however, can be
taught in conjunction with existing methods and
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can be the nucleus of major development in this
area.

In what follows, the theorems will be presented,
followed by special cases of the MPL and then the
general case. The techniques presented can be
applied to AC circuit analysis, by substituting the
usual phasor or complex quantities in place of the
real variables and parameters used herein.

THE MINIMUM POWER LAW

TueoreM 1 In a DC circuit having no voltage
sources the injected currents will be distributed in
the branches such that the power loss is minimal,
subject to KCL.

The proof of this theorem appears in Appendix I,
but it is not necessary to introduce the proof to the
students, because the suggested alternative
approach is to accept this theorem as axiomatic and
use it together with KCL to resolve circuits without
referring to OL or KVL.

Application

The problem of analyzing a circuit that has
independent current sources is reduced to mini-
mizing a function of the branch currents F, where
F = Zif,quq. F will be called the power function.
The minimization is subject to boundary condi-
tions, A - i =1, which are KCL at the nodes, and A
is a connection matrix. The only circuit theory
background needed is KCL and the MPL theorem.
Lagrange multipliers or other techniques can be
used to minimize F. The minimization process will
result in a set of linear equations that are OL for
every branch and KCL for every independent

node. The equations can be written directly and
with ease as the following example illustrates.

Example 1

Consider a circuit having four nodes including
the reference node, one current source at node 2,
I,, and four branches as shown in Fig. 1.

The power function F to be minimized is:

F=R,i?+ R,i3 + R, + R,i3 (1)

subject to equality constraints:

—i,—i,=0 )
L+i,—i,30 3)
i\ +i,—i,=0 (4)

To apply the method of Lagrange multipliers, a
function Y is formed from Eqs (1) and (2)—(4):

Y= R,i+ R,i3+ R;i}+ R,i}

T Vi — i)+ V(L + i — i)

+ Vi(i, +i;— i) (5)
where the Vs are Lagrange multipliers. (Although
usually 4 is used for Lagrange multipliers, Vis used
instead because these multipliers turn out to be the
nodal voltages). Y will be cailed the unconstrained

power function. The next step is to form the
following equations, in accord with the MPL.

dY/di, =0 (6)
dY/di, =0 )
dY/di, =0 8)
dY/di, =0 )

Fig. 1 Circuit for example 1.
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These equations, together with the nodal constraint
equations, i.e. KCL, give the following linear
equations describing the circuit:

iy iy in i Vi V, Vs

OL1 R, 0 0 0 1 —1 0 0
OL2 iR, 0 01 e 4wy 0
OL3 0 0 R, 0 0 1 -1 0
OL4 0 0 0 Ry, 0 0 —-1¢{=40
KCL1 -1 -1 0 0 0 0 0 0
KCL2 1 B0, . +17 0 108 0 L
KCL3 O 11 3. % .05 0 O 0

The first four equations come from eqs (6)—(9) and
they are recognized as OL, but this fact is incidental
and need not be mentioned here. The last three are
KClL.

An alternative to using Lagrange multipliers to
minimize F, given by Eq. (1) subject to Eqs (2)-(4),
is to use the elimination method. Suppose in this
example we are interested in i, only, then Eqs (2)-
(5) can be written as:

iy =—i,

iy=1,+i,

=)+ (I, +1iy)

F can now be written in terms of i, only as:
F=R,i{+ R,i}+ Ry(I, + i,)* + R,I5 (10)

and finding i, that minimizes fis straightforward.

CororLarY 1 In an AC circuit having no voltage
sources, the injected currents will be distributed in
the branches such thatZi, Z., is minimal, subject to
KCL, the summation index is over the branches; i,
is a phasor and Z,, is branch impedance.

TueoreM 2 In a circuit containing independent
current and voltage sources, the branch currents will
be such that Z(1/2i*R + Ei) is minimal, where E is
a branch emf source with a polarity such that Ei is
power absorbed by the source. In case non-linear
resistances exist, then Z(([iv(i)d i)+ Ei) is mini-
mal, where v(i) is the characteristic of the branch
resistance.

The proof of this theorem is given in Appendix
II.

APPLICATION

Assume in the previous example that there is an
emf source E in branch 21 with a polarity such that
i;E is power absorbed by the source. The power
function F to be minimized now is:

F=1/2[R,i{ + R,i3 + R;i5 + R i) +Ei;  (11)

subject to the constraint Eqs (3)—(5). The resulting
equations will be the same as those of example 1
with the exception of the right-hand vector, which
becomes

(—E 0000 I, 0y.

If an independent voltage source is connected
between a node and the reference node, then the
voltage at that node is known and the column
corresponding to it can be deleted after modifying
the right-hand constant vector accordingly.

GENERAL METHOD FOR NETWORK
ANALYSIS

The following steps are suggested for resolving
networks:

1. Draw the circuit and assign branch currents
such that they enter the positive terminal of the
branch emf source, if any. Branches containing
current sources are removed and their effect
will be presented as nodal current injection,
positive and negative, at both ends of the
branch, as shown in Figs 2 and 3. Identify the
nodes.

2. Write the power function F, according to
theorem 2, F = Z(1/2Ri* + Ei).

3. Write KCL at every node, preferably with
currents into the nodes considered positive.

4. Minimize F subject to the constraints obtained
in step 3.

Dependent sources will be treated as indepen-
dent during the minimization process. This will
result in a set of simultaneous equations with the
branch currents as unknowns. The equations will
also have Ijepngene and Ejepengen, and must be
augmented by the equations (féscribing the depen-
dency of those sources. For example, suppose that
in the previous circuit a dependent current source
isadded at node 3,suchthat /; =2V, + 3i,,,row 7
now becomes

(-3111-2000).

The value of I; can be calculated if desired by
augmenting the previous unmodified matrix by a
Tow

(—3000-20001)

andacolumn (000000 —1 1).

To summarize: to find the branch currents and
the nodal voltages in a circuit containing both
dependent and independent sources, theorem 2
can be applied, treating the dependent sources as
independent when minimizing the power function.
The resulting equations are augmented by equa-
tions describing the dependency of the dependent
sources. Thus for each branch an OL-type equa-
tion results, for each unknown nodal voltage a KCL
is written, and for each dependent source an
equation describing its dependency can be written;
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Fig. 2 Circuit for example 2.
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Fig. 3 Redrawn circuit for example 2.

thus, the number of equations is the same as the
number of unknowns.

Example 2

Figure 2 shows a circuit to be resolved. It has a
voltage source, E,; a current-controlled current
source, /=2i,; and a current and voltage-
controlled voltage source, E;=—3i, + 2V,. The
circuit is redrawn so that the current source

appears as an injected current at node 1 and a
negative injected current at node 2. The revised
circuit is shown in Fig. 3. The power function is:

F=1/2[R,it + R,i5+ R3] + i,E, + isE; (12)
F should be minimized subject to:
I+i,—is=0 (13)

iy— i —iy=0

(14)
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—I—i,—i,=0 (15)

Note that E, and [ are treated as constants in the
minimization process. The unconstrained power
function is:

Y =1/2[R,i} + R,i3 + R;i 3]+14E + isE;
+Vi+i—i)+ Vy(iy,— i, —iy)
+ Vi(—1—i,—iy) (16)

Taking the derivatives with respect to the i’s gives
five equations:

Riiy+ V= V,=0 (17)
R,i,— V,=0 (18)
Ryi;— V;=0 (19)

E,+V,—V;=0 (20)
Es—V,=0 (21)

The dependent source voltage E ; may be treated as
an unknown and the equation describing its depen-
dency added to the resulting set of equations, or the
expression of E; in terms of the branch currents
and nodal voltages is made use of at this point to
get:

—3i,+2V,— V,=0 (22)

Equation (22) replaces (21). The same treatment
will be used for the current-controlled current
source, /. The above five equations are augmented
with the three KCL equations to obtain the eight

equations that are needed. These equations written
in matrix form are:

Ba Ak BN s VeVl K,

oL1 R, 0 0 0 " 0
oL2 0 R, 0 0 0 -1 0 0
oL3 0 0 R, 0 0 0 0 -1 0
Bra 0 0 o0 § B 2l E:
BrS =0y 0.0 0 -1 2 o] Jo
ReErSEsSpe e '2 -1 0 0 0 0
kL2 |-1 -1 0 1 o0 o0 o o 0
QL3 Ao laveresy 9ei g o 0

CONCLUSION

An alternative approach to resolving circuits
containing both dependent and independent
sources is presented. The circuit theory tools
needed are KCL and the MPL introduced in this
paper. A power function, F, is defined and can be
easily written for any circuit. Mimimizing F subject
to KCL yields a set of linear equations, the solution
of which provides the branch currents. The method
is particularly useful where the nodal method and
the mesh method cannot be directly applied.
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APPENDIX 1

Proof of theorem 1

Proor Let the current in the branch from node pto node g be i,,,. Accordmg Ok i, = (¥, = V R}
Suppose the current in branch pq is not i,, as given by OL, but i ., T Ai,, (the currents i’ still obey
KCL). The power loss in this case is i, R, = 2(i,, + Ai,, )’R,, anJ

il R, =ZR, i (i, + 2A0,) +Z(Ai, )R, (23)

The first term on the right can be shown to be ZV,/,, which is the same as Zi2 R, , and since the last term on
the right is positive, the losses when the currents do not obey OL (i,) are therefore greater than when they do.

The above proof is similar to that presented by Maxwell. An ‘alternative proof can be presented using
minimization techniques and OL. The theorem also, can be more acceptable as axiomatic than KVL
especially for non-electrical engineering students.

APPENDIX II
Proof of theorem 2
Theorem 1 is a special case of theorem 2, and a similar proof can be given. When non-linear resistances are
present, the following proof is more general.

Proor Suppose that the branch currents as determined by KCL and OL are i,. Define F(i,) to be
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= j “ Wiydi + Ei;
0
itis required to show that F(i") > F(i,), for any i satisfying KCL. Assume that lg = b, T AL, heD
- ipgo™ Bipg . 20
F(iy=2, _[o Vo (ing)d iy (24)
where V), (i,,) is the voltage across branch pq.
it - : ivgo+ Ai ’ J
F(i') = zfo”" Vig(ing)d ipg + 2, J' vl o o (25)
Ipgo
2 - ipgo* Aipg IR
F(iy=Fi) + 2 [ ™, (i) i (26)
ipgo
Since V,,,(i,,) is an increasing function of i,
ipgo* Aipg Vo(idi 2 :
_ G ™ Vol )AL, (27)
ipgo

ingotAi
regardless of the sign of Ai,,.. And since ZV,(i,,,)Ai,, = 0, because Ai obeys KCL, > f i e Vo (ipg)d iy,
is positive, which proves the theorem. ipgo

Applying the MPL to cases where non-linear resistance are present will result in a non-linear set of
algebraic equations in i; special techniques must be used to solve these equations.




