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In science, as well as in engineering, the concept of analogy has proved a very effective tool for
information transfer, easing the introduction of new concepts and ideas in an interdisciplinary
teaching programme. When introducing students to the field of energy conversion and system
dynamics, no systematic approach concerning the use of analogies has been attempted so far.
However, it is possible to offer a basis for a generalized introduction into energy conversion using
energy as a universal quantity which links the whole spectrum of energy forms. Any specific field
built around a particular energy can then be used as a starting point leading into adjoining fields
by the use of analogous relations, hence a systematic approach offers a considerable simplifica-
tion in the teaching procedures, and the potential understanding of learning processes and

knowledge transfer.

THE PAPER concentrates on a specific educa-
tional approach used in the introduction of funda-
mental concepts of energy conversion
demonstrating the use of analog principles to ease
information transfer processes in interdisciplinary
fields. This approach relies mostly on an interesting
phenomenon known in psychology as transfer of
knowledge. It has been found in educational
research that previously acquired knowledge influ-
ences the process of introducing new information,
specifically where analogous models are used. In
this particular case, the application of simple
physical models is extremely useful in the forma-
tion of basic concepts and principles of energy con-
version.

To highlight the theoretical considerations con-
cerning the method applied for this purpose, some
simple examples of models, in which transfer of
knowledge is particularly visible are demonstrated
and thoroughly examined, and the implications on
the teaching process in engineering education are
discussed. The paper discusses not only the
mechanisms of transfer appearance and the
analogous quantities which are common in the
models shown but what is even more important, it
also endeavours to categorize those features of the
analogous models used which are of particular
importance in the teaching-learning of basic con-
cepts of engineering and science.

INTRODUCTION

Energy distribution uniquely defines the state of
a physical system. Any change in the state of a
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system is then associated with a change in energy
distribution, and as a consequence, results in
energy conversion processes. Since there are many
energy forms involved, we are particularly con-
cerned with a host of direct and indirect energy
couplings and conversions in which a unique and
exclusive system of analogy emerges.

The relations describing various conversion pro-
cesses are very similar and thus lead to many
analogous relationships. Such analogies have been
discussed widely in literature [1-8|. By using
energy as a basic function linking all energy forms,
it is possible then to establish a systematic
approach leading to analogue relations which are
also philosophically associated.

It is feasible to set up a variety of alternative
analogue connections relating to specific pheno-
mena. However, the energy-based approach is
unique and leads to a generalized system of energy-
based relations, handling the whole spectrum of
energy forms at a macroscopic level. This
inevitably leads to an interdisciplinary approach to
teaching of energy conversion in all branches of
engineering and science, and thus making the
transfer of knowledge more manageable.

ANALOGUE RELATIONSHIPS

Analogue relations for general physical systems
can be derived directly from the universal nature of
energy. These relations lead to what may be
defined as a generalized theory which provides a
general basis to which all analogies can be referred.
There are a number of fundamental and unique
relations for energy. Energy in a system is con-
served and thus one form of energy is related
directly to another form of energy. This, and the
fact that energy in a closed system always seeks a
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minimum, allows us to establish system perfor-
mance relations. These take the same mathematical
form for all energies, hence they are analogous.

The analogous nature of system equations has
been extensively discussed in literature in the past,
relating to specific situations [1-4]. Electrical and
mechanical analogies are the most common rela-
tions and they have been used extensively in
control system applications and analogue system
simulation for many years now. For instance,
analogue computers make extensive use of these
features in dynamic systems.

As another example, thermal systems are often
simulated using electrical analogies. It is possible to
use different analogous sets of variables suitable for
particular situations. A natural analogous set is
presented in Table 1. This particular natural set is
shown to relate the temperature 7 to the voltage e,
and the entropy S to the electrical charge g. The
analogy shown is energy based, and hence is called
natural, since it can be extended to other energy
forms.

Table 1. Terms—Electrical analogue sets

Natural Special
T~e T~e

S~¢q O~1i

P~ fs

V~x Q=kT;i=ge

k = thermal conductivity
g = electrical conductivity

A special alternative analogue set relating 7 to e,
and the thermal energy flux Q to the electric cur-
rent i, is particularly easy to use for studies involv-
ing thermal heat conductivity. It is very useful to
demonstrate heat flux relations in terms of electric
current flows. However, this analogous set is res-
tricted to this particular set of variables and there-
fore lacks flexibility, when other energy forms are
involved.

To establish the energy based relation, we have
to consider the basic laws of energy conversion,
and hence to deduce the generalized performance
relationships.

BASIC CONCEPTS

A basic set of postulates defining the fundamen-
tal energy function and a set of energy states can be
established covering the full spectrum of known
energy forms when dealing with macroscopic
phenomena. This paper offers an attempt to extend
this postulatory approach and shows that it pro-
vides a basis ranging from thermodynamics to gen-
eral systems theory. For energy studies, it provides
a unified approach which should make the teaching
process simple.

Established statistical mechanics and thermody-

namics have provided a framework from which
theories for specific areas such as solid state phy-
sics and the theory of liquids, can be deduced.
Specific theories involve simplifications and res-
trictions that have to be imposed on the postulatory
framework offered.

Energy conversion statics goes beyond thermod-
ynamics and provides a postulatory formulation
which employs states of a system rather than pro-
cesses. Energy and entropy, as well as derived state
functions, feature as a starting point and lead to
statements about Carnot cycles, irreversibility, etc.
It demonstrates the universal character of the state-
ments as, for example, the fact that the Carnot cycle
is a property [1-4] transcending classical thermod-
ynamics and applying to any pair of coupled energy
forms not necessarily involving thermal energy.

A fundamental approach to the theory of energy,
energy conversion and transfer, as developed here,
must predispose the maroscopic consequences of
statistical mechanics. This allows the setting up of
lumped parameter characterization of phenomena
and leads to conventional and more special theo-
ries like electro-mechanics.

Attempts to establish comprehensive methods
for general solution of problems concerned with
energy systems have been described by Mela ez al.
[13-14].In ref. [13], Rayleigh’s dissipation function
is used as a starting point. This approach derives
from the entropy maximum criterion as discussed
in [4]. In Ref. [14], energy relations are introduced
and used to set up analogue relations on a syste-
matic basis.

In this paper, we set out the basic relations as
already discussed in literature [1-3] and extend this
to allow for non-static situations usually dealt with
under the umbrella of irreversible thermodynam-
ics. It is shown how the basic state functions and
state laws for coupled energy sources are derived
leading to the generalized system relations in terms
of partial derivatives of the system energy function.
As follows, for example, the thermodynamic
energy function leads to fundamental relations and
concepts like the Carnot Cycle, which apply to any
other coupled energy pair. Using the postulatory
approach, a host of theorems can be derived [3]
setting out the performance criteria for energy sys-
tems.

ENERGY FUNCTION

The energy stored in a system depends on the
work done on, and extracted from, the system. This
storage energy is described by an energy function
U which is defined by four postulates as already
discussed [1-4].

We are concerned here with macroscopic sys-
tems which relate generally to agglomerates of
large numbers of nuclear components. Energy
conservation applies to the components hence we
can assume that a definite energy can be assigned to
the macroscopic systems. The resulting energy
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function of a system is then characterized by
postulating [1]

1. the equilibrium state as a function of exten-
sive variables,

2. the minimum energy criterion,

3. the mathematical restrictions imposed on the
energy function and

4. the requirement that the energy of a system
must approach zero when the intensive var-
iables or forces are zero.

Extensive and intensive variables are defined
later.

A system may be made up of a number of subsys-
tems. The total energy is then the sum of that of all
subsystems. Energy distribution defines the state of
a system. Any change in this distribution involves a
change of state and this is accompanied by energy
conversion or transfer processes.

In general, we are dealing with two situations,
firstly a steady state or quasi-static condition as
defined by the postulates and, secondly, a situation
involving non-equilibrium conditions which are
usually dominated by loss processes in which
energy is degraded into a state of lower availability.

Energy is made up of available and unavailable
energy defined as exergy and unergy. Given the
energy of a closed system U we have then:

U=E+B
where

E = exergy which is available for conversion
into other energy forms
B = unergy which is unavailable for conversion.

A closed system is defined as an isolated system
with no energy exchange across its boundaries and
total energy is conserved but not exergy.

Although energy is universally conserved,
exergy continuously decreases as energy is
degraded. At the same time, unergy continuously
increases and this corresponds in many ways with
the increase in entropy of the environment postu-
lated by the second law of classical thermodynam-
ics, however, it is a more definite statement. The
terms exergy and unergy have been introduced in
literature to help to distinguish first law and second
law efficiency [1] and we have, in general:

Instead of using entropy as a starting point, we
are here using energy and the concepts of exergy as
the basis for the setting up of a general theory for
energy systems. This approach leads to the theory
of mechanics, electro-mechanics and modern sys-
tem theory dealing with macroscopic phenomena.
These areas involve Hamilton’s principle and the
energy minimum criterion as basic concepts. In fol-
lowing this approach, we can introduce thermody-
namics as a special case. In contrast, classical
thermodynamics uses the entropy maximum princ-

iple with entropy as the fundamental state function.
Since entropy is usually ignored in electro-mechan-
ics and system theory, an entropy based approach
leads to difficulties.

One has to distinguish here between concen-
trated and distributed systems. In the concentrated
representation we consider energy entering a sys-
tem at specified points of entry or ports. This leads
to port representation and lumped parameter
description which is nearly universally adopted in
mechanics and system theory. Distributed systems
are concerned with volume flows which have to be
analysed in multi-dimensional forms. They can be
described in terms of simple parameters but only in
the limit when dealing with small variations in sys-
tem quantities.

In this paper, we are dealing with lumped para-
meter representation of elements for energy sto-
rage and conversion and for the coupling of energy
sources and sinks.

EXERGY AND UNERGY VERSUS ENTROPY

The major areas of energy conversion and trans-
fer such as electromechanics, which are covering
vast fields of technology, have been developed and
can be readily treated without the use of the con-
cept of entropy. However, we know that entropy is
generated in any process involving heat losses and
degradation of heat.

Losses are generally allowed for in conservative
system theory simply by introducing loss elements
[1-9]. This is not so simple in thermodynamics,
since losses in thermodynamics appear as a some-
what diffuse heat loss or as heat degradation and
this is difficult to separate in practice from reversi-
ble heat fluxes [10].

Energy flows and flux quantities are usually of
distributed nature. However, they are very often
assumed to be concentrated into ports of entry in
multi-entry storage elements. We can then resort to
lumped parameter representations for the coeffi-
cients describing couplings or linkage between
ports and storage elements.

When dealing with loss processes the distributed
nature becomes more pronounced and simple
lumped parameter representation becomes more
difficult. Loss processes are usually studied assum-
ing small changes for a first approximation. They
develop usually when quasi static equilibrium is
disturbed by changing forces.

For example, when voltage across a resistive ele-
ment rises, an electric current starts to flow. This
current is trying to re-establish the original equilib-
rium by reducing the voltage. At the same time, the
current creates entropy.

Similarly, when a temperature gradient is
applied across a thermo-electric element, a heat
flow develops and this is associated by an entropy
creation or flux and is trying to bring temperatures
down. At the same time, an electron drift produces
a voltage which results in the thermo-electric effect.
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Thus, the change in forces introduces a new rever-
sible coupling effect which is caused by the forces
and not by their rate of change as in the case of the
usual and quasi-static coupling effects [1]. This
important difference will emerge when setting up
the general interrelations as discussed in more
detail later.

MULTIPORT THEORY

Energy forms

Energy is a concept or construct and any specific
energy form is defined by two physical quantities.
Any such two quantities are defined as an asso-
ciated pair made up of a force and a flux or, in
mathematical terminology, as an intensive and an
extensive quantity as shown in Table 2. There are,
for example, four directly coupled sets of such
associated pairs dealing with macroscopic pheno-
mena:

e potential and kinetic energies
chemical and caloric energies
electric and magnetic energies
nuclear and radiation energies.

There can be indirect coupling between pairs.
Pairs of associated quantities are shown in Table
2 and the related energy increments are given. In
the case of.coupling of several energy sources, we
apply the requirement of energy conservation.
Four typical coupling situations are shown in Table
3. They all represent rwo-port systems where two
energy sources are coupled via a joint storage ele-

ment (Fig. 1).

Basic energy relations

In any system, energy must be conserved and its
behaviour is governed by two general laws. If
changes occur, the energy seeks a minimum, and
this is another physical requirement. In particular,
the useful energy decreases with time, if the system
is left on its own. If work is done, or energy is intro-
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Table 3. Energy storage for typical pairs of couples sources

Magneto-Mechanical System

dU = idy + fdx

Caloric System

dU = TdS — PdV

Electro-Caloric System

dU = Tds + edq

Magneto-Caloric System
dU = TdS + Hdm

¥ = magnetic flux linkage
= electric current

= mechanical force

= displacement

= temperature
= entropy

= pressure

= volume

= voltage
= charge

- TR e S A R e

= magnetic intensity
M = magnetization

dW; = yrdzy

dW; = yadz2

|4U (21, 2)]

dU(zy,22) = yr1dz; + y2dz,

Fig. 1. Two-port diagram.

duced into a system, the storage energy U must
increase and if work increments are given as dW,
the change in U must be dU or

dU = ZdW,.

However, some losses occur during such a process,
and in practice we have

dU <ZdW,.

(e

2

Here the relation (1) is the law of energy conserva-
tion, whereas the relation (2) is the law of energy

dissipation.

In Table 2, the associated pairs for the general
range of energies are shown [2]. In Table 3, the

Table 2. Sets of associate variables

Force or Flux or

Intensive Extensive Energy
System Variable Variable Increment Power
Mechanical
potential f force x displac. fdx fx
kinetic X speed p momentum Xxdp xp
Thermal
caloric T temp. S entropy Tds 78
chemical g chem. potent. N number density gdN gN
mechanical P press. V volume —Pdv —P(dV/dr)
Electro-magnetic
electric e volt. q charge edq eq
magnetic i curr. y flux linkage idy iy
Nuclear
radiation E ener. level ¢ photon density Edgp
nuclear unuclear force N number density udN uN
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coupling relations, as determined by the first law,
are shown [3] for four typical examples. In Table 4,
the performance relations for an electro-mechani-
cal transducer are derived and generalized.

The similarity of these relations is then made
evident by introducing the concept of port-
representation. In such cases, we are dealing with
two coupled energy sources and have then, what is
defined as a two-port system, as depicted in Fig. 1.

A very relevant example is shown in Table 5,
where the conventional relationships of two
magnetically coupled electrical coils are derived
from the energy functions. The energy function
represents the energy stored in the field produced

Table 4. Basic relations for a 2-port

Electro-Mechanical General
Transducer Two-Port
Law I
dU = edq + fdx dU =y,dx,+ y,dx,
Law I
dU < edq + fdx dUu <y dx,+ y,dx,
Equations of State
U =U(q,x) U =U(x,, X,)
_9U(g,x) AU (x,, x,)
aq Vi X,
=e(q,x) =y'(x), x,)
aU(q, x) aU(x,, x
it a— ¥, - _(‘_2)
x x2
= f(q,x) = Ya(xy, X3)
Performance Equations
de = U,dq+ U,dx dy, =Udx,+U,;dx,
df = U,dq+ U,dx dy, =U,dx,+ U,dx,
qu i qu UX,X:. =~ UX:X,

Table 5. Transformer relations

Lawl dU = i,dy, + i,dy,
Law Il dU< i dy, + i»dy,

Equations of State

U =Uw,v.) i,=‘?l_/£_%’_"_”_) ,.2=OU(_v/g,wz)
x1 2

Performance Equations
di, =U,dy,+U,dy,
di, =Uydy,+ Yy,dy,
or inverting
dy,=F,di, +F,di,=L,di,+M,di,
dy, = F,di, + F,,di,= M, ,di, + L,,di,

These relations prove that mutual inductance must be
equal since

Fyy =F = M,=M, =M

Since coefficients are constants these equations can be
integrated, i.e. they are holonomic,

Y, =L, i +Mi,
Y, =Mi, + Lyi,

s Uin=U,,

by the currents i, and i, in the coils. The flux
linkage of each coil is given by y, and ¥,. This
particular example is interesting, since it demon-
strates the simplest way in which to prove that the
mutual inductances for the two coils, as seen by
either, are identical, i.e. M, = M,,.

Derived energy functions

As shown in Table 5, for the transformer rela-
tions we had to introduce a new energy function
F(i,, i,)to establish an inverted relation. This leads
to the concept of derived energy functions, as
widely used in Classical Thermodynamics and
Dynamics.

For example, the derived and so-called free
energy functions of thermodynamics, ie. the
enthalpy H, free energy F and Gibbs energy G are
a special class of a more general class of derived
energy functions (see Table 6(i)). This general form
has been defined as the general class of Helmholtz
functions for n-ports: F(y;; x;), where i =1,.. ., r,
andj=1....r+1. . ..1n

Table 6. Derived energy functions
and potential relations

(i) Thermo-Dynamics
dtl .= JdS — PdV
dH . = TdS+ VdP
dF ‘=i =SdT —PdV
dG = —S8dT + VdP

(i) Electro-Mechanics
dU = idy + fdx
dF, = idy — xdf
dF, = —wydi+ fdx
dF; = —vydi+ xdf

(iii) Thermo-Electrics
dU . .= . TdS + edg
dFy, = TdS —qde
dF, = —8dT + edq
dFg = —8dT — qde

Here n is the number of sources and ports of the
system described by the Helmholtz function. The
Helmholtz functions are based on the energy func-
tion U(x;; x;) which is equivalent to the Hamiltonian
of a system. The Helmholtz functions are derived
using a simple Legendre transformation such that:

"¢ i e W e b | e
d(X,1Y1s+ - > XVe): 3)

This class of function includes the Lagrangian,
Co-Lagrangian and widely used co-energy func-
tions of dynamics and electro-mechanics.

In thermodynamics, we are generally concerned
with a single energy storage medium, i.e. a two-port
system. For two coupled sources there exist three
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derived Helmholtz functions only leading to the
well-known free energies (see Table 6(i)).

In dynamics we generally deal with systems of n-
ports, hence we have multiple storage elements and
systems leading to a multiplicity of possible derived
energy functions. A more systematic approach to
the selection of classes of Helmholtz functions is
then necessary, such as the Lagrangian and Co-
Lagrangian types, and their variations used
throughout electro-mechanics [1-6]. In some ways,
the Co-energy type function used in electrical
machine theory corresponds to the Gibbs free
energy of the thermodynamic two-port. The prob-
lem of systems involving mixed variables has been
discussed in the past by Kron [11] and others.

ENERGY CONVERSION STATICS AND
CONSERVATIVE SYSTEMS

The basic derived energy function used in
mechanics and dynamics is the Lagrangian state
function which is a Legendre transformed energy
function derived from the Hamiltonian. The
Hamiltonian is the total energy of a system and as
stated before corresponds with the energy function
of energy conversion statics.

Itis important to note that the Lagrangian is not a
function of the extensive variables only, but a
mixed function. This fact was not important in
earlier work in mechanics which dealt with linear
mechanical systems. In electro-mechanics the
following relations exist then for the Hamiltonian
H and Lagrangian L:

H =U 4
=K+V
L ai _Fl,(yla areiny yrv xr+l’ o xn) (5)
= $ o V
where

G 4§ ARG A
= Potential energy function
K = K(xg,..4%)
= Kinetic energy function
K'=K'(Yi,--»¥)
=—[K(Xp..5%)—dx,yl+...
= Co — kinetic energy function
F, = derived Helmholtz function
= —Lagrangian L.

+ X, r)]

In electro-mechanics K * is the co-kinetic and V
the potential energy of a system. The roles of K
and V can be exchanged when changing from loop
to nodal relations or vice versa in a systems study
4].
[ ]The Langrangian state function becomes useful
in interconnected systems in electromechanics.
Introducing mixed variables via the ko-kinetic
energy function, it is possible to simplify the system
relations and reduce the number of equations [1].
The negative sign in L allows for the fact that a
Legendre transformation changes the sign for the
resulting equations of state because of the change in

the dependent variables. When applying Kirch-
hoff’s nodal or mesh laws the Lagrangian emerges
naturally [1].

In the case of a coupled thermo-chemical system
of energy forms we are commonly dealing with the
Gibbs energy function which can be directly
related to the Lagrangian function. This fact
indicates the close relationship between electro-
mechanics and thermostatics.

The problems of allowing for loss effects have
never been satisfactorily resolved in conservative
dynamics. Rayleigh’s loss function must make use
of an artificial factor of two |3, 5]. In addition flux
rate cross couplings have never been allowed for as
discussed below.

Loss effects. and flux rate coupling can be
included in energy conversion statics relations
leading to the general relations for energy conver-
sion dynamics as will be shown. Consequently, the
theory established here provides a broad basis for
handling energy conversion.

GENERAL SYSTEM THEORY

Reversible conditions
For a general n-port the energy increment is given
by

AU(X X3 oo s %;) ™= 314X, & YodXo +.o o Yyl
(6)

Introducing matrix notation

WU S Xy Y,dX-Z ydx;

i=]

Y1
Y =|: |and Y,is transpose of Y
Y2
dx,
dxX=|:
dx,

and Y, is the transpose.
The state laws are then given by the partial deri-
vatives

BUIX L i ki)
ox;
and the force increments or differential perform-
ance relations are

dy, =U,dx,+ Updx,+...+ U,dx, 7

=U=U-=Y,

dx, ...+ U,dx,.

.dyll - U nn n

nl

where the U, elements are the second order deri-
vatives of U, i.e.

U _azU(x,,...,x,,) Q2U(%,15505%,)
554 0x,,0x, dx,0x,,
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Thus in matrix form we have

dY = UdX
Ull Ul2 22, Uln
where U, = Uy Uy, -
Unl e Unn
The inversion relation leads to
dX = U;'dy (8)
where
D;=U;'.

We also have the Legrende transformation
5 TR 4 ek ) e SRR R S € T s

=—D(yl""’yn)

i.e. the inverse energy component matrix can be
expressed as

Dimmin F or D;=—F,.

y Ul
Thus D; is closely related to co-energy functions.
So far only static changes in the associated
quantities have been considered. In practice flux
rates become important when considering energy
flow or power. For example, the charge g is the
extensive quantity of generalized flux for a capaci-
tor. The flux rate would be the current i or

dq

i=—

dt

In general the flux rate matrix is

d
I= - X=X
Thus the reversible flux rate relations follow from
relation (8) above

Imv 3 D i Ed_ Y
: ©)

- D,Y.
Rate processes

When forces are applied to a system, flux rates
appear and a non-equilibrium state usually de-
velops. This leads, for example, to thermal conduc-
tion and electrical resistance drops. It can also
involve flux rate coupling effects like thermo-
electricity, piezoelectricity, etc. We have for these
effects the Onsager relations which express the fact
that these phenomena depend on forces directly
and not the rate of change of forces as shown above
for reversible conditions. Thus the flux rates are
given by;

Irale > Rin (10)
Gy @y e @y,
a H
where R;= | ;"%
a,, Ay,

and R; is the rate coefficient matrix.
We get the total flux rates including reversible
and rate processes using (2) and (3):

Fx I + Imu (11)

d
=D; 2 Y+R,Y

d
(D,, o R)Y

and here G; =
impedance mamx
For steady state the flux rate relation reduces to:

I=RyY (12)

which is equivalent to the Onsager relations [10].

Dy(d/dt) + R, is analogous to an

Power flow
The power flow into the system is given by the
sum of the power flows from the ports. This is:

P=YI
- YG,Y
=Y,D,Y+ YR,Y. (13)

If we are dealing with a linear system, the first term
takes a more familiar form by taking d /dt outside

P= —2— E (Y.D;,,Y)+ YR
d e o
where
D, - = YD,,,,Y
= aderived energy function
R = YRYX 9

= rate function.

The rate function includes loss terms which cause a
production in unergy.

The power relations here is sufficient when
analysing purely electrical and mechanical systems
and systems without entropy sources. It is evident
that conventional dynamic system relations can
only be established when the H; coefficients are
time invariant.

There is still one component missing when con-
sidering the power relation in general systems and
that is the heat flux due to heat generation by
electrical loading and resistive heating in electrical
systems, friction and other irreversible processes
producing heat and causing entropy or unergy to
rise. This can be allowed for by an entropy produc-
tion source term:

P = 8;Y.

entr
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The total power is then:

P=YD,Y+ YR;Y + YS;Y. (16)
where the last term is a rate of production of unergy
due to losses in addition to those included in R.

State space relations
The performance relations can now be re-
arranged:

D,Y=—R,Y+S;Y+1I

This relation can be put into the form:

Y=AY + BI (17)
where

A —D:;’.I(Ri/' +5;)

B= D,

y*

This is then the state space form of the perform-
ance relations. It is a simple matter to establish these
relations in particular cases using D, and R; and
making allowance for the entropy production term.

Interconnection

When simple components are interconnected,
we impose constraints on variables and reduce the
number of independent quantities. This is covered
in detail in circuit theory where topogical relation-
ships are set out specifying interconnection
requirements for meshes and modes. The same
applies for mechanical and other lumped para-
meter systems.

In a particular situation, usually a number of sets
of independent variables can be chosen as specified
by the topological relationship between branches,
nodes and meshes. If a set / is chosen and we want
to change to a new set /, then this is related by a
connection matrix C and the Ys by M:

I, =CI (18)

"

Y, = MY.

The consequential relations between the forces
can be derived using the concept of power invari-
ance. This implies that fluxes in individual elements
in such a system do not change due to a different
choice of variables. In that case we have:

Y, =YI

wtu

or

Y Cl =YlI
thus

YaCimd,
or

CY, =Y

=My,

Hence

M =C!
and

¥ = C 'Y if|C|#0. (19)

This relation is well known for orthogonal trans-
formations when invariant constraints are
imposed. The transformation can be extended to
cases when further interconnection reduces the
degrees of freedom in the system. The connection
matrix then becomes rectangular and has no
inverse, but the force connection M can still be
related to the flux connection matrix C.

CONCLUSION

Energy conversion theory can be based on the
energy function and the energy minimum principle
making use of the concepts of exergy and unergy.
This differs from the conventional entropy based
approach used in classical thermodynamics.

The energy function can then be defined within
the framework of four basic postulates [3] and
system equations can be established leading to
systematic relationships as used in dynamics and
electro-mechanics.

It is important to note the restrictions, generally
unstated, imposed on derived energy function. For
example, the conventional dynamics, the Lagran-
gian as used, applies only for linear systems. In
general, one must use the Co-Langrangian state
function. Another feature is that the theory of
classical thermodynamics reduces to a special case
of two-port or more generally n-port theory.
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