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Coplanar Projectile Motion Including the
Effects of Constant Thrust and Drag*
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The elementary coplanar projectile motion problem is expanded to include a constant thrust and

a velocity-dependent drag. Using a method previously developed, this nonlinear problem is
shown to possess an exact solution. Several important cases are discussed

INTRODUCTION velocity-dependent resistance D(v). There is

negligible loss of mass m, constant gravitational

IN two previous papers (Gillis and Jones [1] and force mg, and constant thrust F. The thrust acts

Jones, Gillis, and Vujanovic [2]), it was demon- over a prescribed interval of time 0 < ¢ < 7. The

strated that the solution to a wide class of projectile thrust and the drag are in the direction of the local

motion problems is within the grasp of students in tangent to the trajectory. Under these conditions,
elementary dynamics. These problems are very the equations of motion are

useful for extended classroom discussion and as
projects. They acquaint the student with a non-
trivial exercise and bring the classroom experience and
closer to the real world. At the same time, this class s i e (T DA )
of problems is exactly solvable and allows the i o e wiv )
student to see the form that solutions to systems of where dots over symbols denote differentiation
nonlinear differential equations can take. These with respect to time.
problems also have the advantage of requiring only This system is generally nonlinear and must be
a basic knowledge of differential equations. The integrated subject to the initial conditions
solutions to these apparently complicated systems = =
can be achieved thrgggh a sequence of elem);ntary i R R G)
steps. The result is a parametric representation and
which applies to a variety of physical problems " et S g
along with a variety of initial conditions. Informa- #0) = Vieos 6, )(0)=vysin & *
tion can be easily extracted from the parametric where 4 is the launch elevation (see Fig. 1), v, is the
solution because the solutions are algebraic or launch speed, and @ is the launch angle.
require, at most, the evaluation of definite integrals
involving well behaved integrands.

In this paper, the discussion of these problems is
expanded to include the effect of constant thrust as ’{D,.
well as drag. The drag functions are proportional to Y F /’;?
powers of the local velocity. The complete solu- -

tions to two problems are given as examples. ”
0

THEORY y

mi = (F — D)i/v (1)

Consider the coplanar motion of a projectile B
which is launched into an atmosphere that affords a
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As pointed out in Jones, er al. |2], an exact
solution in terms of elementary functions can be
found for the case when F = 0 (unpowered flight).
The technique used was an analysis of the motion
along the trajectory-y = y(x). The same approach
will be adopted in this paper.

Suppose that the drag force D = D(v) can be
expressed as a power function

D=D(v)=c. (5)

where n is a dimensionless exponent and ¢, is a
constant drag coefficient with the dimension of
force per unit (velocity)™.

Consider the motion of the projectile (1), (2)
along the trajectory y = y(x). Differentiating the
trajectory equation, we get

y=yx (6)

and
ymy &ty i (7
wherey’ = dy/dx and y”’ = d*y/dx*. By combining

(1), (2), (6) and (7), we get a fundamental relation-
ship for the curvature of the trajectory.

Y =—gh ®)

This equation can be differentiated and combined
with (1) and (2) to get the equation of motion of
the projectile along the trajectory.

T P paxlt sakl.
 goog i g 4 T i gy

©)

The integration of this equation can be accom-
plished by means of the substitution y' = p, y”’ =
—z,and y"”’ = zdz/dp. With this substitution, (9)
becomes

2 % n=1 2-n
B 1+ p) T T

(10)

%_2_1'_-1.’_2"%_
dp mg( el mg

where a factor of z has been discarded. This
equation is an elementary Bernoulli Equation (e.g.,
see Ince [3]) and integrable by means of the sub-
stitution z = u?”, for n # 0. In this case, the
equation for u is

n
n—1

2
—E_ 1+p)3

mg

. A
= mg (1P 7u

(11
This equation is linear and first order and can

always be integrated by means of the integrating
factor

P +(1+p)7) g (12)

Multiplication of (11) by (12) results in an exact
differential equation that can be immediately inte-
grated to give

- 4
2

nF Cdg

A .4 A
uuzzacw”,g_

W mg

(13)
2 "_—2 "F
X[(1+p*)7 wmdp

where C is an arbitrary constant of integration and
1
w=p+(1+p?H)2 (14)

In many instances, the integral appearing in (13)
can be evaluated in terms of elementary functions.
Several of these important cases will be discussed
in succeeding sections.

Powered flight in a vacuum
If drag is neglected, then ¢, = 0 and (13) reduces
to

2F
2o =Syl g (15)
where w = w(p) is defined in equation (14). The

constant C can be evaluated from the initial con-
ditions

y(0)=h (16)
y'(0)= tanf (17)
Y’ (0)=—gv,*sec’0 (18)

and
2F
C = gv;2sec’0(tanb + secO) ™ mg  (19)

Notice that the projectile must be launched with
nonzero initial velocity, even though the flight is
powered.

The differential equation for y in (15) has
separable variables and can be integrated once by
observing that y’ = p and y" = dp/dx. The result of
the integration is the x-coordinate of position for
the projectile

2F
x==C'[l o w mdp,t<i (20)
and
x=x—CY(p—p), >f (21)

where p is the slope of the tangent to the trajectory
at the point when ¢ = 7 is reached. 7 is the time at
which powered flight ceases or F = 0. x is the x-
coodinate of position when powered flight ceases.
This is given by

§alparphaged y 2
Jtan6 mg p (2)

The y-coordinate of position can be found by
means of the observation y”’ = pdp/dy.
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D 2f -
y=h=C [l pw mdp,t<i  (23)

and
- l Ve bl - -
y=y—zC(p*—p)t21i (24)

where y is the y-coordinate of position when
powered flight ceases. This is given by

5 2F
_)-1=h—C_lLZ"9pW.—TnEdp. (25)

Equations (20) and (23) represent the para-
metric solution to the problem in terms of the para-
meter p when ¢ < 7. Equations (21) and (24)
represent the parametric solution to the problem in
terms of the parameter p when ¢ 2 7. Notice that
(21) and (24) can be combined to give the classic
parabolic trajectory by algebraically eliminating p
between (21) and (24). The integrals that appear in
all of these equations can be evaluated in terms of
elementary functions. The details of the integration
are contained in the Appendix and a detailed
example later in the paper.

To complete the solution, we need to find p
given the time for powered flight 7. An integral for
current time can be developed directly from (8) in
terms of the tangent parameter p. Extracting the
root in (8) and separating leads to

dt = (—y"/g) 7 dx. (26)

By combining this equation with (15) and (20), we
get

2
dt =—(gC)" Tw " mi dp. @7)

This equation can be integrated directly and the
result is

Sd0p S ok <
[=_(gC) :.[lunﬂw mg dp,f<[ (28)
and
- g - r
t=i=(8C)" 2 (p—p)t>i (29)

where

~ _1 k.
i=—8C) 2w mdp. (30)

The last equation can be used to find p and this
value of the tangent parameter can then be used to
find X and y in (22) and (25). The solution of the
powered flight problem in a vacuum is now com-
plete.

Powered flight with viscous drag
In this case, n = 1 and the drag function (5)
becomes

D = D(v)=c V. (31)

Equation (13) reduces to

1 8 Loann Opisen LBt -+
22=(—y" )2 =Cwm = ~wm | (1+p7) 2
mg2
F F m
W—'ngp=CWm_x_L1<_§—F
mgT mg
e mg - N_
¥ mg+Fw> ) (32)

Where w is defined by (14), and F # mg. The
constant C in this equation can be evaluated from
(16)—(18) and the result is

BBl ) 5 Ca
C = (tan6 + sec6)™ mg { gz vy'secO + T
2mg>
mg ___mg
[mg —F (tan6 + sec@) " (tanb

(33)

"+ secO)“‘]

Equation (32) has separable variables. Separation
and integration lead to an expression for the x-
coordinate of position for the projectile.

X == [ugM(p)dp, t<i (34)

tanf

and

x=i—J',.,"l:C— Cdl(w—w“)jl dp,t2i (35)
mg?

where
% == fno M7(P)dp. (36)
The y-coordinate of position can be found by
means of the observation that y”’ = pdp/dy. It is
given by
Y =h=ue PM(p)dp,t<i  (37)

tan

and

y=y'-,§’p[ - (W—w“)} dp, 1> i
(38)

where

}; SR j[Z’!O pM—Z(p)dp (39)
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In all of the above equations, F # mg. The case for
F = mg can be handled separately and that solu-
tion will not be treated here.

The time of flight integral is given by

el a
t=— e M7(p)dp, t<1i (40)
gz

and

-1
1
tmi=— [P|C=—4 w=w)| dp,1>1i
@ mg?2
(1)

where

e W
= Jiuno M~'(p)dp (42)
g 2
can be used to find p. This completes the solution
of the powered flight problem with viscous drag.

Powered flight with velocity-squared drag
In this case, n = 2 and the drag function (5)
becomes

D = D(v)=cp2. (43)
Equation (13) reduces to

2F g
3 Sy W g % (mg —2F)"'w

(44)
8Ca ~1,,,—1
+—2— (mg +2F)'w™'=G(p)
where w is defined in (14) and 2 F#mg. The case
for 2F = mg can be handled separately and will not

be presented here. The constant C appearing in
(44) can be evaluated with (16)—(18).

I 'gﬁ -2 2 Czlg
C = (tanf + secO)” mg |gvy°sec’6 + o (mg
- Ci8 L
— 2F)7!(tan6 + secf) — Ty (mg + 2F)™!

(tan6 + secO)“} (45)

The differential equation (44) has separable
variables and the solution for the x-coordinate of
position is

X == [oe|G@)'dp,t< i (46)

and

-1
x=i—j,§’[c— g w+—-ciw-'J dp, 1> 1.

2m 2m
(47)
For the y-coordinate of position, we have

Yy=h=[ue PGP 'dp,t<i  (48)

o
£l C *
) Ags i ﬁpplic—mw+-2imw‘] dp,t21i.
(49)

The time of flight can be found for the velocity-
squared drag case by using (26). The result is

-g’%f,’jno [G(p)] ’%dp, t<i (50

2m
(31)
The value of p can be found from
o _1p il
t=_g 2 ImnO[G(p)] de (52)

This completes the solution of the velocity-squared
drag problem.

Example

For powered flight in a vacuum, using the
Appendix, we can show that all of the integrals
appearing in that section can be evaluated exactly.
When F does not equal mg/2 or mg, the exact
solution for ¢t < 7 is

JR ;. | -(1+#H)_, -1+
(w ( g W mg )
mg + 2F (53)

Gt mg 65 gp
Lt [m LEELETT

*)

i1 -+ ~@+E
(w ( "")“Wu ( mx)):|
mg+F (54)
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where w is defined in terms of p in equation (14)
and w, is the value of w at p = tan 6. The cases for
F = mg/2 and F = mg can be treated separately
and lead to analytical solutions. These cases will
not be included in this discussion.

When ¢ reaches 7, p = p, and the transitional
values of x and y, X and y, are given by

e mg

Y = —— | —— -]—7_:’('— ]_’:'_"‘8

T2 |mg=2r ¥ e

— M -(+H_,-(1+%
mg+2F ¥ Wo ) 9

C oy mg = Yy

i 8 mg-—F( i, v

+ (=R ) gy — 2+ E)
mg+F (56)

where w is the value of w at p = p.

This completes the solution for the zero-drag
case. It is completely analytical. A typical calcula-
tion using (53-56) and the post-propulsion solu-
tion (21) and (24) is shown in Fig. 2.

For this example, 6 =45°, v,=20m/s, h =0, F

1500
Parameters Used
Drag coefficient 0.00
Launch angle 45.0 deg
Initial height 0.00
1200  Thrust 1000 N
Burn time 2.0 sec
symbols used
o- Runge-Kutta
oo} O~ Present Method
s
3
g
>
600 -
300 |
1 1 1 1 J
0.0 1000 2000 3000 4000 5000

X - position

Fig. 2. Trajectory for zero drag.

= 1000N, 7 = 2 sec., and the mass of the projectile
is 5 kg. It is somewhat difficult to discern, but the
trajectory is virtually linear during the propulsive
phase. After the propulsive phase has been com-
pleted, the trajectory follows the normal parabolic
path dictated by (21) and (24). However, the range
and angle of impact have been altered by the initial
constant thrust.

Example

Consider the powered flight problem with
viscous drag discussed by means of equations of
(31)~(42). In this case, the integrals cannot be
evaluated by means of the Appendix. However, the
integrands of all of these integrals are well behaved
and numerical evaluation of them can even be
achieved on a pocket calculator. A typical calcula-
tion is given by Fig. 3. For this example, ¢, = 0.24
Newton-sec/meter and the thrust F = 1000
Newtons. The burn time 7 = 3.0 sec. and the mass
was launched at an angle 6 = 45° with initial veloc-
ity v, = 20 m/s from A& = 0. The trajectory shows
the typical unsymmetrical profile associated with
nonzero drag. However, because the thrust
dominates the weight and drag on the protectile
during the initial phase of motion, the trajectory is
virtually linear.

Several cases for viscous drag are presented in
Fig. 4. For some launch conditions (6 = 45° v, =
20 m/s thrust F = 1000 Newtons and burn time 7 =
3.0 sec.) the trajectories of a 5 kg. projectile are
compared to the same case for nonzero drag. The
drag coefficients are ¢, = 0.10, 0.20, 0.30 Newton-
seconds/meter. Notice that all of the trajectories
virtually coincide during the nonzero thrust phase
of the motion and the trajectories are nearly linear.

Parameters Used
5000.0 1

Drag coefficient 0.24
Launch angle 45.0 deg
4500.0 I |nitial height 0.00
Thrust 1000 N
4000.0 | Bumn time 3.0 sec
symbols used
35000}  ©- Runge-Kutta
o- Present Method
c 30000}
.2
g 25000}
>
2000.0 i
1600.0 |
1000.0 |
500.0 |
0.0&

1.0 20 30 40 50 60 70 80 90 100
X - position »10°

Fig. 3. Trajectory for viscous drag.
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o 15
- Parameters Used
X 14f Launch angle 45.0 deg
13t Mass 5.0 kg Thrust 1000 N
Burn time 3.0 sec
12}
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A o- Drag Coeff - 0.00
p 10F o- Drag Coeff - 0.10
g ol a- Drag Coeff - 0.20
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B
(<)
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>
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Fig. 4. Trajectories for various values of c,.

Even for a very large drag coefficient ¢, = 0.3, the
thrust still dominates the drag and the weight. This
will be the case until the speed is sufficiently high to
produce a drag large enough to reduce the net force
along the trajectory and allow the weight to add
significantly to the vector sum.

CONCLUSION

In this paper, we have presented another inter-
esting example of a relevant, nonlinear, physical
problem which possesses an exact solution for a
number of important cases. The problem was used
for a computer project in the elementary dynamics
course at the U.S. Air Force Academy. The exact
solution was presented afterward and the value of
this solution became clear. For example, the
students realized very quickly that they could not
numerically integrate (1) and (2) with zero initial

velocity, even though it seemed that the initial
thrust would be enough to launch the mass. How-
ever, it became perfectly clear that v, must be
different from zero when the initial conditions are
used to evaluate the constant of integration C in
(19), (33), and (45).

This exercise further revealed to the students the
actual mathematical structure of the solution. As
noted earlier [1,2], many of these complex prob-
lems possess exact solutions when the equations of
motion are expressed in terms of the proper vari-
ables.

In this case, the natural variable p, the local slope
of the tangent vector, is the key to reducing the
system to an integrable form. The transformation
of (9) to the linear first order equation (11) taught
the students that some complicated nonlinear
systems are often thinly veiled examples of ele-
mentary problems. The solution of these element-
ary problems is within their grasp with only the first
course in differential equations behind them.

Even when the exact solution required numer-
ical integration, it offered a positive alternative to
standard numerical integration. The integrals are
easy to evaluate because they all have well behaved
integrands. The solution can be computed to any
degree of accuracy at any point on the trajectory.
Upper and lower bounds on the integrals can be
achieved with something as elementary as Simp-
son’s Rule, which the students learned in their first
calculus course. It is easy to apply because the slope
is generally positive until maximum height is
reached, at which point p = 0. From that point on,
the slopes are all negative.

Further efforts in this area will concentrate on
improving the formulation by including the effects
of mass loss due to propellant burn, optimizing the
range with burn time and thrust, and examining the
intermittent thrust problem. All of these problems
have the potential for exact solutions. Their solu-
tions will expand our base of knowledge and our
understanding of the solutions to nonlinear differ-
ential equations.
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APPENDIX

Several of the integrals that appear in the paper
can be evaluated in terms of elementary functions.
The integrals in question have the form

I=[p'(1+p*(p +(1+P2)%)‘dp (A-1)

where a, b, and ¢ are constant exponents. These
integrals can be reduced to a relatively simple form
by means of the substitution
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1
w=p+(1+p’)7 (A-2) L4+p7=5 (w+wy. (A-5)

Differentiating this equation, we get Using these relations in (A-1), we find that / now
has the form

1
dw=(1+p*—2wdp. (A-3)
I= 2 (1+u+2h;J’(W 23 w")"(w + wfl):hvlwffldw. (A—())

Now,
: There are numerous integrable cases. For
p=35w—w") (A-4) example, whenever a and 2b + 1 are positive
3 integers / reduces to the evaluation of several
and integrals involving only power functions.




